质量管理常用统计方法

合集下载

工程项目质量管理统计方法有哪些

工程项目质量管理统计方法有哪些

工程项目质量管理统计方法有哪些管理方法一(一)直方图的用途直方图法即频数分布直方图法,它是将收集到的质量数据进行分组整理,绘制成频数分布直方图,用以描述质量分布状态的一种分析方法,所以又称质量分布图法。

作用①通过直方图的观察与分析,可了解产品质量的波动状况,掌握质量特性的分布规律,以便对质量状况进行分析推断。

②可通过质量数据特征值的计算,估算施工生产过程总体的不合格品率,评价过程能力等。

二、控制图法(二)控制图的定义及其用途 1.控制图的定义控制图又称管理图。

它是在直角坐标系内画有控制界限,描述生产过程中产品质量波动状态的图形。

利用控制图区分质量波动原因,判明生产过程是否处于稳定状态的方法称为控制图法。

2.控制图的用途控制图是用样本数据来分析推断生产过程是否处于稳定状态的有效工具。

它的用途主要有两个:(1)过程分析,即分析生产过程是否稳定。

为此,应随机连续收集数据,绘制控制图,观察数据点分布状况并判定生产过程状态。

(2)过程控制,即控制生产过程质量状态。

为此,要按时抽样取得数据,将其变为点子描在图上,发现并及时消除生产过程中的失调现象,预防不合格品的产生。

管理方法二(1)统计调查表法。

是利用专门制定的统计表对质量数据进行收集、整理和粗略分析质量状态的一种方法。

(2)分层法。

是将调查收集的原始数据,依据不同的目的和要求,按某一性质进行分组、整理的分析方法。

(3)排列图法。

是利用排列图寻找影响质量主次因素的一种有效方法。

(4)因果分析图法。

是利用因果分析图来系统整理分析某个质量问题(结果)与其产生原因之间关系的有效工具。

(5)直方图法。

它是将收集到的质量数据进行分组整理,绘制成频数分布直方图,用以描述质量分布状态的一种分析方法。

(6)控制图。

用途主要有两个:过程分析,即分析生产过程是否稳定。

过程控制,即控制生产过程质量状态。

管理方法三(1)保持"责任人负责制'的原则。

在管理层签订质量责任书,在劳务层签订质量指标合同,执行优质优价,返工重罚的措施,既做到全员重视质量,又有具体人员负责质量。

质量管理数据统计方法

质量管理数据统计方法

质量管理数据统计方法
1. 嘿,你知道质量管理中常用的分层法吗?就好比把一堆混杂的水果按种类分开一样。

比如在生产零件的时候,我们把不同批次的零件质量数据区分开来,这样就能更清楚地看出各批次的差异啦,好不好用?
2. 哇哦,排列图可真是个厉害的方法呀!这就像是给质量问题排个队,把重要的往前放。

像我们处理产品缺陷的时候,用排列图就能一眼看出哪种缺陷最突出,这不是很牛吗?
3. 还有直方图呀!它就像是给数据拍个照片,一下子就能看清数据的分布情况。

比如说统计一批产品的尺寸,通过直方图就能清楚知道尺寸是不是集中在合格范围内,这多直观啊,是不是呀?
4. 亲和图呢,就好像把一堆杂乱的想法整理成有序的思路。

比如说大家对质量改进提了好多意见,用亲和图就能把这些意见有条理地归类,这多妙啊!
5. 散布图也是超有用的呀!就像是在找两种数据之间的关系。

比如研究温度和产品质量的联系,通过散布图就能看出它们到底有没有关联,多神奇呀!
6. 控制图就如同给质量设了个警报器呐!一旦数据超出正常范围就会发出信号。

像监控生产过程中,控制图能及时告诉我们是不是有异常情况出现,这很重要吧!
我的观点结论:这些质量管理数据统计方法真的是各有各的好用,在质量管理中可不能小瞧它们,得好好利用起来呀!。

质量管理中的质量统计分析方法有哪些

质量管理中的质量统计分析方法有哪些

质量管理中的质量统计分析方法有哪些在当今竞争激烈的市场环境中,产品和服务的质量成为企业立足和发展的关键。

质量管理作为确保质量的重要手段,其中的质量统计分析方法起着至关重要的作用。

通过科学合理地运用这些方法,企业能够准确识别质量问题、追溯根源,并采取有效的改进措施,从而不断提升产品和服务的质量水平,满足客户的需求和期望。

质量统计分析方法众多,以下为您介绍几种常见且实用的方法:一、分层法分层法是将数据按照不同的特征或因素进行分类,以便更清晰地了解数据的分布和规律。

例如,按照产品的型号、生产批次、操作人员、原材料供应商等因素进行分层。

通过分层,可以发现不同层次之间的质量差异,从而有针对性地采取措施。

比如,在一家汽车制造企业中,如果发现某一批次的汽车出现较多的质量问题,通过分层法分析可能发现是该批次所使用的特定零部件供应商存在质量不稳定的情况。

这样就能够迅速锁定问题的根源,并与供应商合作解决问题,避免类似问题在未来的生产中再次出现。

二、因果图因果图,也称为鱼骨图,是用于寻找质量问题产生原因的一种图形工具。

它将问题的结果放在鱼头位置,然后将可能导致该结果的因素沿着鱼骨的大骨和小骨逐步展开。

这些因素通常包括人员、机器、材料、方法、环境和测量等方面。

以一家电子厂生产的电路板出现短路问题为例,通过绘制因果图,可以分析出可能是操作人员操作不当、生产设备老化、原材料质量不佳、生产工艺不合理、工作环境湿度大或者检测手段不准确等原因导致的。

在找出可能的原因后,进一步收集数据和证据,确定主要原因,从而采取有效的改进措施。

三、排列图排列图又称为帕累托图,它是根据“关键的少数和次要的多数”的原理制作而成。

通过对质量问题的各类原因进行统计分析,计算出每种原因所导致的问题数量占总问题数量的百分比,并按照百分比的大小进行排列,从而找出影响质量的主要因素。

例如,在一家服装厂,对一段时间内出现的质量问题进行统计分析,发现“缝线不牢固”占总质量问题的 30%,“尺寸偏差”占 25%,“布料瑕疵”占20%,“色差”占15%,“其他”占 10%。

常用质量管理统计方法11.doc

常用质量管理统计方法11.doc

常用质量管理统计方法11常用质量管理统计方法常用的质量管理统计方法包括:旧QC七大手法(检查表、数据分层法、排列图、因果图、散布图、直方图、控制图)和新QC七大手法(亲和图、树图、关联图、箭条图、PDPC、矩阵图、矩阵数据分析法),以及其它一些方法如:头脑风暴法、对策表、流程图、水平对比法等。

简介如下:一、检查表(调查表、统计分析表)1、概念:系统地收集资料和累积资料,确认事实并对资料进行粗略的整理和简单分析的统计图表。

2、分类:不合格品项目检查表、缺陷位置检查表、质量分布检查表、矩陈检查表、用于非数字数据分析用的检查表。

3、用途:用在对现状的调查,以备今后作分析。

4、制作步骤(1)确定搜集资料的具体目的。

(2)确定为达到目的所需搜集的数据资料。

(3)确定对资料的的分析方法、所釆用的统计工具。

(4)根据不同目的,设计用于记录资料的调查表格式。

(5)用收集和记录的部分资料进行表格试用,目的是检查表格设计的合理性。

(6)如有必要应评审和修改调查表。

5、注意事项(1)应能迅速、正确、简易地收集到数据,记录时只要在必要项目上加注记号;(2)记录时要考虑到层別,按人员、机台、原料、时间等分类;(3)数据来源要清楚:由谁检查、检查时间、检查方法、检查班次、检查机台,均应写清楚,其他测定或检查条件也要正确地记录下來;(4)尽可能以记号、图形标记,避免使用文字;(5)检查项目不宜太多,以4-6项为宜(针对重要的几项就可),其他可能发生的项目采用“其他”栏。

二、数据分层法(分类法、分组法)1、概念:数据分层法就是性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。

2、分类方法:数据分层可根据实际情况按多种方式进行。

例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,原材料成分进行分层,按检查手段,使用条件进行分层,按不同缺陷项目进行分层等等。

数据分层法经常与统计分析表结合使用。

质量管理常用七种方法

质量管理常用七种方法

4、散布图的作法及类型
⑷ 找出影响质量问题的关系因素(要因,以3-5个为宜),用圆圈 “○”或方框“□”框起来,作为制定质量改进措施的重点考虑对象。 这些“要因”经论证后,都将列入对策表中。 ⑸ 注明画图者,参加讨论分析人员,时间等可参考的事项。 需注意:(1) 最后细分出来的原因应是具体的,以便能采取措施。 (2) 在分析原因时要集思广益,力求分析结果准确而无遗漏。 (3)可以应用排列图确定哪个或些因素是重点,订出相应的措 施去解决。
质量管理常用 七大手法
单击此处添加副标题
演讲人姓名
单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。
一、定义(七大统计手法)
1、排列法 将质量改进项目从最重要到最次要进行排列而采用的一种简单的图示技术。 2、层别法 把收集来的原始数据按照一定的目的和要求加以分类整理,以便进行比较分析的一种方法。 3、因果分析图 能简明、准确表示事物的因果关系,进而识别和发现问题的原因和改进方向 4、检查表 它是用来系统地收集资料(数字与非数字)、确认事实并对资料进行粗略整理和分析的图表。 5、散布图 ①用来发现和确认两组数据之间的关系并确定两组相关数据之间预期的关系。 ②通过确定两组数据、两个因素之间的相关性,有助于寻找问题的可能原因。 6、控制图 区分过程中的异常波动和正常波动,并判断过程是否处于控制状态。 7、直方图 将数据按其顺序分成若干间隔相等的组,以组距为底边,以落入各组的频数为高的若干长方形排列的图。
备注:全数检查
不合格种类
检查结果
小计
表面缺陷 砂眼 加工不合格 形状不合格 其他
正正正正正正正 正正正正 正正正正正正正正正 正
32 23 48 4 8

质量管理的统计方法

质量管理的统计方法

质量管理的统计方法早期,最常采用的统计技术是抽样检验。

它是以小批量的抽样为基准进行检验,以确定大量或批量产品质量的最常使用的方法。

现在,在质量控制方面已转为以预防为重点了。

人们正努力研究一种消除不合格品根源的方法。

基于这一目的,近年来,推出了七种重要的方法,这些方法不需要做大量的统计计算,因此容易被工厂基层职员所掌握。

1 分层法2 排列图法3 因果分析图法4 直方图法5 散布图法6 控制图法7 调查表法1 分层法分层法又称分类法,就是将零乱的质量数据按某一属性进行分类,找出影响产品质量问题的主要原因。

如某班某日生产中出现了40件次品,按生产时间(班次)、操作者进行分层,得到表8-1所示的资料。

从表8-1可以看出,次品数量与时间(班次)没有多大关系,但受设备的影响较为明显,甲设备生产的次品总比乙设备要多。

由此可见,甲设备是导致产品不合格的主要原因。

表8-1 某班日生产分层运用分层法时,常用的分层标志有:1. 操作者:包括操作者的姓名、年龄、工种、性别、技术级别等。

2. 生产手段:如机器、输入设备、输出设备、工艺装备等。

3. 操作方法:指操作规程、工序名称等。

4. 原材料:包括供应厂家、批次、成分等。

5. 检查条件:指检查人员、测试仪器、测试方法等。

6. 时间:如日期、班次等。

7. 环境条件:包括地区、温度、清洁度、湿度、震动等。

运用分层法进行数据分层时往往可以按几个不同的层别分层而分别得到某一方面的结论,但是不同层别的数据之间存在着有机联系时,即因素之间存在着交互作用时,孤立分层进行分析将会导致错误的结论,这时应将不同层中有关联的因素放在一起进行综合考虑。

2 排列图法排列图又称主次因素排列图,是质量管理工作中常用的一种统计工具,是找出影响产品质量主要因素的一种有效方法。

排列图是由意大利经济学家帕累特(Pareot)最先提出和应用的,故又称为帕累特图。

1906年,帕累特在研究社会财富分布问题时,首先运用了排列图,借助于排列图这一工具,他发现占人口极少数的富人占有社会财富的大部分,而占人口总数绝大多数的穷人却处于贫苦的边缘,即发现了关键的少数和次要的多数的规律。

常用质量管理统计方法1

常用质量管理统计方法1

常用质量管理统计方法常用的质量管理统计方法包括:旧QC七大手法(检查表、数据分层法、排列图、因果图、散布图、直方图、控制图)和新QC七大手法(亲和图、树图、关联图、箭条图、PDPC、矩阵图、矩阵数据分析法),以及其它一些方法如:头脑风暴法、对策表、流程图、水平对比法等。

简介如下:一、检查表(调查表、统计分析表)1、概念:系统地收集资料和累积资料,确认事实并对资料进行粗略的整理和简单分析的统计图表。

2、分类:不合格品项目检查表、缺陷位置检查表、质量分布检查表、矩陈检查表、用于非数字数据分析用的检查表。

3、用途:用在对现状的调查,以备今后作分析。

4、制作步骤(1)确定搜集资料的具体目的。

(2)确定为达到目的所需搜集的数据资料。

(3)确定对资料的的分析方法、所釆用的统计工具。

(4)根据不同目的,设计用于记录资料的调查表格式。

(5)用收集和记录的部分资料进行表格试用,目的是检查表格设计的合理性。

(6)如有必要应评审和修改调查表。

5、注意事项(1)应能迅速、正确、简易地收集到数据,记录时只要在必要项目上加注记号;(2)记录时要考虑到层別,按人员、机台、原料、时间等分类;(3)数据来源要清楚:由谁检查、检查时间、检查方法、检查班次、检查机台,均应写清楚,其他测定或检查条件也要正确地记录下來;(4)尽可能以记号、图形标记,避免使用文字;(5)检查项目不宜太多,以4-6项为宜(针对重要的几项就可),其他可能发生的项目采用“其他”栏。

6、应用实例二、数据分层法(分类法、分组法)1、概念:数据分层法就是性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。

2、分类方法:数据分层可根据实际情况按多种方式进行。

例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,原材料成分进行分层,按检查手段,使用条件进行分层,按不同缺陷项目进行分层等等。

数据分层法经常与统计分析表结合使用。

3、应用步骤(1)收集数据。

常用的质量评价统计方法

常用的质量评价统计方法

常用的质量评价统计方法1.分层法分层法是质量管理中整理数据的重要方法之一。

分层法是把收集来的原始质量数据,按照一定的目的和要求加以分类整理,以分析质量问题及其影响因素的一种方法。

2.调查表法调查表是为收集数据而设计的图表。

调查表法就是利用统计表进行整理数据和粗略分析原因的一种工具。

其格式多种多样,可根据调查的目的不同,使用不同的调查表。

3.排列图法排列图法又称主次因素分析图,是把影响质量的因素进行合理分类,并按影响程度从大到小的顺序排列,做出排列图,以直观的方法表明影响质量的主要因素的一种方法。

排列图的基本结构:1个横坐标,2个纵坐标,几个直方形和一条曲线构成。

(1)针对某一问题收集一定时期的资料。

(2)将数据按一定分类标志进行分类整理,从大到小依次排列,并计算出各类项目的频数、累计频率。

(3)按一定的比例画出两个纵坐标和一个横坐标。

横坐标表示影响质量的因素,左边纵坐标表示频数,右边纵坐标表示累计频率。

(4)按种类影响因素的程度的大小,依次从左到右在横坐标上画出直方块,其高度表示该项目的频数,并写在直方块上方。

(5)按右纵坐标的比例,在直方块中问的上方标出累计频率,从原点开始连接各点,画出的曲线就是巴雷特曲线。

应用排列图的注意事项:(1)通常把因素分为A、B、C三类。

在累计频率80%与90%两处画2条横线,把图分成三个区域,累计频率在80%以内的诸因素是主要因素(A类),累计频率在80%~90%的是次要因素(B类),90%以上的为一般因素。

(2)主要因素不能太多,一般找出主要因素一二项为宜,最多不超过三项。

若找出主要因素过多,须考虑重新进行因素的分类。

(3)适当合并一般因素。

不太重要因素可以列出很多项,为简化作图,可把这些因素合并为"其他"项,放在横坐标的末端。

(4)在采取措施之后,为验证效果,要重新画巴雷特图,以便进行比较。

4.因果分析图因果分析图又称特性因素圈、树枝图、鱼刺图。

质量管理中的统计方法

质量管理中的统计方法

质量管理中的统计方法
在质量管理中,统计方法是用于收集、分析和解释数据,从而帮助组织做出更明智的决策。

以下是一些在质量管理中常用的统计方法:
1. 控制图: 控制图是一种用于监测过程稳定性和识别突变的方法,例如常见的X-bar和R图。

2. 直方图: 通过将数据分为不同的组并显示其频率分布,直方图可以帮助质量人员了解数据分布情况。

3. 散点图: 用于观察两个变量之间的关系,以便识别可能的相关性或影响。

4. 回归分析: 用于研究一个变量如何受到一个或多个其他变量的影响。

5. 假设检验: 通过对样本数据进行假设检验,以评估所得结果的可信度。

这些统计方法可以帮助质量管理人员更好地理解过程
和产品的特征,从而做出更明智的决策。

这些方法也有助于确定潜在的问题,并提供基于数据的解决方案。

质量管理常用 的统计方法

质量管理常用 的统计方法

1
2
3
标准差相同、均数不同的正态分布曲线
正态分布的参数
均数相同、标准差不同的正态分布曲线
正态曲线下面积的分布规律
正态曲线下面积的意义:正态曲 线下一定区间内的面积代表变量 值落在该区间的概率。整个曲线 下的面积为1,代表总概率为1。 曲线下面积的求法:定积分法和 标准正态分布法


标准正态分布与正态分布的 转换

表4-1
项目 日期 交 验 数 合 格 数 废品数 不 良 品
不良品项目调查表
不良品类型
次 品 数
返修品数
废品类型
次品类型
返修品类 型
良 品 率 (%)

2. 缺陷位置调查表 缺陷位置调查表宜与措施相联系,能充分反映 缺陷发生的位置,便于研究缺陷为什么集中在那 里,有助于进一步观察、探讨发生的原因。缺陷 位置调查表可根据具体情况画出各种不同的缺陷 位置调查表,图上可以划区,以便进行分层研究 和对比分析。如表4—2。
质量管理常用统计方法目录第一节产品质量的波动及其统计描述第二节产品质量波动的原因第三节产品质量波动性的规律第四节正态分布第五节统计质量控制的实质第六节质量数据统计特征值的计算第七节质量管理常用的统计方法质量管理中常用的工具和技术概述变异性过程的输入活动和输出均存在着变异的这种特性统计技术收集整理和分析数据变异并进行推论的技术用途提供表示事物特征的数据比较两事物的差异分析影响事物变化的因素分析事物之间的相互关系研究取样和试验方法确定合理的试验发现质量问题分析和掌握质量数据的分布状况和动态变化第一节产品质量的波动及其统计描述一产品的质量特性值二产品质量特性值的波动性一产品的质量特性值测量质量特性所得的数值叫质量特性数值习惯上称质量特性数据分为

全面质量管理常用七种工具和方法范文

全面质量管理常用七种工具和方法范文

TQM全面质量管理的常用七种工具方法所谓全面质量管理常用七种工具,就是在开展全面质量管理活动中,用于收集和分析质量数据,分析和确定质量问题,控制和改进质量水平的常用七种方法。

这些方法不仅科学,而且实用,作为班组长应该首先学习和掌握它们,并带领工人应用到生产实际中。

一、统计分析表法和措施计划表法质量管理讲究科学性,一切凭数据说话。

因此对生产过程中的原始质量数据的统计分析十分重要,为此必须根据本班组,本岗位的工作特点设计出相应的表格。

常用的统计分析表有以下几种,供参考。

1.不良项目调查表某合成树脂成型工序使用的不良项目调查表如下。

每当发生某种不良时,工人就可在相应的栏目里画上一个调查符号,这样,下班时哪些不良项目发生了多少,立即可知。

2.零件尺寸频数分布表此表与不良项目调查表属同一类型。

第二栏为零件尺寸的分组,第四栏的“”与不良项目调查表中的“正”是相同的符号。

工人每加工完一个零件,经检测后,将所得零件尺寸在第二栏“组距”中找到相应的尺寸组,然后再在第四栏中记录符号,待到下班或完工时,再统计第五栏。

这样的图既直观、又明确、有助于掌握零件尺寸的分布情况。

3.汽车油漆缺陷统计表该表的特点是直观,而且将每个缺陷的部位表示出来了。

4.不良原因调查表要分清不良的发生原因,可接设备、操作者、时间等标志进行分层调查,填写不良原因调查表。

下表为调查了甲、乙两位工人5天生产塑料勺不良原因的调查表。

5 .不合格品分类统计分析表下表为某工序同时生产三种规格的轴承,按不良项目分别统计。

表的右侧和下边的合计栏均画作虚线,表示可根据需要取舍。

需要注意的是“尺寸精度”和“旋转精度”作为总目,下面还细分若干细目,这是表格设计的一种技巧,与此对应,下边合计栏也应合理设计。

6.措施计划表措施计划表,又称对策表。

在制订一个具体的改进措施计划后,所有对策编制成计划表的形式。

下表为某照相机厂生产一种自拍照相机,为了解决自拍质量问题,针对所分析的原因,制订的改进措施计划表。

常用的几种质量管理统计方法(QC7手法实例)

常用的几种质量管理统计方法(QC7手法实例)

常用的几种质量管理统计方法统计方法是一种科学的方法,其理论基础是数理统计学,它是以概率论为基础的一门数分支。

广泛应用于各个领域,包括质量管理领域。

人们为了解决实践中出现的各种质量问题,往往先搜集各种数据,然后,对数据归纳加工整理,对比分析,由表及里,去粗取精,去伪存真,找出其中的统计规律,对症下药问题才能迎刃而解。

这一切都须运用科学的统计方法。

全面质量管理的基础要求之一,是尊重客观事实,一切凭数据说话。

因此,统计方法是质量管理不可缺少的得力工具,通过对产品质量形成全过程数据的收集、分析和使用,有助于预防质量缺陷、维持合格质量、达到质量的不断改进所以,对所有企业而言,统计方法的应用都是需要的,只是应用的程度不同而已。

这里有两点必须加为说明:第一,统计方法对所有企业虽然都是需要的,但并不是不分企业类型、产品性质,强求使用某些统一的统计方法。

各企业应根据自身的实际需要,规定适用的统计技术的选定程序。

第二,统计方法是一种帮助企业搞好质量管理的工具,可借助它揭示质量形成的客观规律,找出质量问题的症结所在,至于能否实现质量突破,尚有待于进一步采取有效的改进措施。

因此不能误认为应用了几种质量管理统计方法就是全面质量管理。

本章对企业生产过程中最常用的几种统计方法介绍如下:第一节排列图一、什么是排列图排列图是寻找主要质量问题或寻找影响质量的主要原因的一种有效的统计方法。

排列图由两个纵坐标(项目、因素)、几个从左到右,由高向低,按顺序依次排列的长方块(问题项目)和一条累计百分比曲线(帕累托曲线)所组成,它的基本图形见图7-1。

在生产中即使是同一批次的产品,其质量也不可能是完全一致的,由于受多种原因的影响,会出现不同的质量问题为了辨别质量问题的主次要性及影响这些问题的主次原因,排列图应用“关键的少数,次要的多数”的原理,可抓住主要矛盾,集中加以解决,取得事半功倍的效果。

二、排列图的绘制1.采集数据采集一段时期内的质量问题数据,并按问题的不同项目进行分类。

质量管理的6个常用的分析方法

质量管理的6个常用的分析方法

质量管理的6个常用的分析方法(一)分层法分层法是质量管理中常用的整理数据的方法之一。

所谓分层法,就是把收集到的原始质量数据,按照一定的目的和要求加以分类整理,以便分析质量问题及其影响因素的一种方法。

分层的目的是要把性质相同、在同一条件下收集的数据归在一起,以便展开分析。

因此,在分层时,应使一层内的数据波动幅度尽可能小,而各层之间的差别则尽可能大,这是应用分层法进行质量问题及其影响因素分析的关键。

过程控制中进行分层的标志常有:操作者、设备、原材料、操作方法、时间、检测手段、缺陷项目等。

(二)调查表法调查表也称检查表或核对表,是为了分层收集数据而设计的一类统计图表。

调查表法,就是利用这类统计图表进行数据收集、整理和粗略分析的一种方法。

操作中,可根据调查目的的不同,采用不同的调查表。

常用的调查表有:1.缺陷位置调查表这类调查表用来调查产品各部位的缺陷情况,可将其发生缺陷位置标记在调查图表中产品示意图上,不同缺陷采用不同的符号或颜色标出。

2.不良项目调查表为了调查产品缺陷的种类及其所占的比重,可对不良项目分门别类地进行调查统计。

3.不良原因调查表为弄清不良品发生的原因,以操作者、操作设备、操作方法、加工对象、时间等为标志进行分层调查统计,找出关键的影响因素。

4.过程分布调查表为掌握过程能力,对过程中加工对象的技术特征进行检测和记录,并进行调查数据的分布分析,掌握过程分布的特征。

(三)排列图法排列图又称主次因素分析图或帕累托图。

帕累托是意大利经济学家,是有关收入分布的帕累托法则的首创者。

这一法则揭示了“关键的少数和无关紧要的多数”的规律。

这一法则后来被广泛应用于各个领域,并被称为ABC分析法。

这一法则被引入质量管理领域后,成为寻找影响产品质量主要因素的一种有效工具。

(四)因果分析图法因果分析图又称特性要因图、树枝图和鱼刺图,在质量管理中主要用于整理和分析产生质量问题的因素及各因素与质量问题之间的因果关系。

质量管理小组活动常用统计方法

质量管理小组活动常用统计方法

质量管理小组活动常用统计方法1. 质量管理小组的乐趣嘿,朋友们!说到质量管理小组,大家可能脑海里浮现出一群人围在一起,认真讨论数字和图表。

其实,这个过程就像是拼图游戏,有时候搞得一团糟,但最后拼成的画面可是特别美丽。

我们今天就来聊聊那些常用的统计方法,让大家在质量管理的旅途中轻松愉快,不再像在读枯燥的教科书。

1.1. 数据收集的重要性首先,数据收集可真是个不得不提的环节。

俗话说,“没有数据,谈何质量?”你想想,如果没有可靠的数据支撑,我们的决策就像是瞎子摸象,真是叫人捉急。

所以,收集数据的时候,一定要仔细、耐心,就像是寻宝一样。

你不知道这些数据将来会给你带来什么惊喜,可能是提升产品质量的金钥匙,或者是让你发现潜在问题的放大镜。

1.2. 描述性统计接下来我们聊聊描述性统计。

听上去好像很高大上,其实它就是对数据的简单总结和描述。

就好比你去饭店点了一道菜,服务员告诉你这道菜的特色和口感——这就是描述性统计。

我们可以用均值、中位数、众数来了解数据的中心趋势,用标准差、方差来看看数据的波动程度。

这样一来,我们就能迅速抓住数据的脉络,不再是个无头苍蝇了。

2. 数据分析的魔法说到数据分析,简直就是一场魔法表演!统计方法可以帮助我们从复杂的数据中提炼出有用的信息,真是“取之于数据,用之于决策”。

其中,最常见的就是图表分析,听起来就像是艺术创作,其实不过是把数据变得更直观。

通过折线图、柱状图、饼图等各种图表,我们能一眼看出趋势,找出问题,简直是清晰得不得了。

2.1. 直方图的魅力比如,直方图就像是在为数据举办一场派对。

你可以清楚地看到每个数据区间的人气如何,哪些数据表现优异,哪些又有待提升。

通过观察直方图的形状,我们甚至能发现一些潜在的规律,就像是在解密一样,让人心潮澎湃。

2.2. 相关性分析而说到相关性分析,就像是在说“我和我的小伙伴们”,它帮助我们找出两个变量之间的关系。

比如说,产品的质量和生产速度之间可能存在某种关系,通过计算相关系数,我们就能知道这两者之间到底是亲密无间,还是相互拉扯。

质量管理常用的统计方法

质量管理常用的统计方法
孤岛型
4)双峰型:两组机器、或材料、或操作工人施工; 然后把这两方面数据混在一起整理产生的。
双峰型
5)陡壁型:有意将不合格的产品剔除;
陡壁型
对于正常型直方图,将其分布范围B=[S,L](S 为一批数据中的最小值,L为一批数据中的最大 值)与标准范围T=[SL,Su], SL为标准下界限, Su为标准上界限)进行比较,就可以看出产品质 量特性值的分布是否在标准范围内,从而可以 了解生产过程或工序加工能力是否处于所希望 的状态。为了方便,可在直方图上标出标准下 界限值和标准上界限值。
i 1
加权算数平均数
k
X
x1
f1
x2
f2
k
xk
fk
xi fi
i1 k
fi
fi
i1
i1
xi 第i组组中值 fi 第i组的频数
列表计算例6-4中50个混凝土试块的平均强度
k
xi fi
X
i1 k
fi
i1
18880 37.76 50
②计算中位数 X~
中位数是全部数据由小到大顺次排列中位置居
中的那个数据,其确定方法有两种。
当出现非正常型直方图时,表明生产过程或 者数据的收集、整理方法存在问题,需要进一步分 析判断,找出原因,采取相应措施加以纠正。
折齿型、缓坡型、孤岛型、双峰型、绝壁型
1)折齿型:是由于分组不当或组距确定不当 出现的分布状态
折齿型
2)缓坡型:主要是由于操作中上限或下限控 制太严造成的。
缓坡型
3)孤岛型:原材料一时发生变化,工人一时变换;
(3)数据分组。包括确定组数、组距和划分组限。 ①确定组数k。原则是使分组的结果能正确反映数 据的分布规律,参考表6-7.例6-4中,取k=9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计数值和计量值
2000.6.1
总体和样本:
不同类的质量特性值所形成的统计规律是不同的,从而 形成了不同的控制方法。由于工业产品数量很大,我们 所要了解和控制的对象产品全体或表示产品性质的质量 特性值的全体,称为总体。通常是从总体中随机抽取部 分单位产品即样本,通过测定组成样本大小的样品的质 量特性值,以此来估计和判断总体的性质。质量管理统 计方法的基本思想,就是用样本的质量特性值来对总体 作出科学的推断或预测。
•测量或测定质量指标所得的数值,即质量特性值,一般称 为数据。
•根据质量指标性质的不同,质量特性值可分为计数值和计 量值两大类。
质量特性值
2000.6.1
计数值:
a.计数值。当质量特性值只能取一组特定的数值,而不能 取这些数值之间的数值时,这样的特性值称为计数值。
计数值可进一步区分为计件值和计点值。
本章主要内容:
1、了解数据、总体、样本的含义及随机抽样的一般方法; 2、掌握排列图、因果分析图的作图方法和应用; 3、掌握分层法、统计图表法的应用; 4、了解直方图的原理、作用、作图方法及应用;
本章主要要求
管理的主要任务是指导一个组织的日常运作以及 在组织的未来发展中保持其生命力。 在保持公司生命力、战略性职责方面质量管理已 成为重要因素。
对产品进行按件检查时所产生的属性(如评定合格与不合 格)数据称为计件值。
每件产品中质量缺陷的个数称为计点值。如棉布上的疵 点数、铸件上的砂眼数等。
计数值和计量值
2000.6.1
计量值:
b.计量值。当质量特性值可以取给定范围内的任何一个可 能的数值时,这样的特性值称为计量值。如用各种计量 工具测量的数据(长度、重量、时间、温度等),就是计量 值。
管理
全面质量管理
全面质量管理是指对公司每一个人所提出的关注 质量的要求。
全面质量管理
明确用户的需要;
开发新产品或提供新服务以便满足或超出用户的需要;
设计生产过程,确保一次成功。
跟踪记录生产结果,并利用这些结果指导系统的改善;
把这些概念扩展到供应商和经销环节;
方法
全面质量管理
内涵
有一些质量管理工具可供公司用来解决质量问题及实现工序的改进。 它们有助于收集和分析数据以便为决策提供依据。
对帐单(检查表,checklist); 流程图; 散布图; 直方图; 排列图; 控制图; 因果分析图;
质量管理工具
“统计(statistics)”一词是由“国家 (state)” 一词演化而来。 它的意思是指收集和整理国情资料、信息的一种 活动。
例,从具有1000个个体的总体中抽取50个个体。
1, 2, …….
K
K+ 1, K+2, ……..,
2K
2K + 1, 2K+2, ……..,
3K
直到 N为止
如果被抽总体足够大,并且易作某种次序的整理时,系统抽样比分层抽样好;
抽样方法
2000.6.1
总体
管 理
结论
抽样 分析
样本 测 试
数据
总体、样本、数据间的关系
持续改进; 树立榜样; 授权给职员; 发扬团队协作精神;
依据事实作出决策;
掌握质量管理工具;
供应商的质量保证;
全面质量管理方法
确定问题并明确改进目标 收集数据 分析问题 获得可能的解决方案
选择一个解决方案 解决质量问题 检查解决方案并说明是否 实现了目标
解决质量问题的基本步骤
计数值和计量值
2000.6.1
总体:
总体又叫母体,是研究对象的全体。
一批零件、一个工序或某段时间内生产的同类产品的全部都可以称为总体。
个体:
构成总体的基本单位,称为个体。
每个零件、每件产品都是一个个体。
质量检验常用抽样方法进行,即从总体中抽出一部分个体,并测试每
个个体的有关质量特性数据,进行统计分析后,对总体作出估计和判
名词注解
A. V. Feigenbaum 的观点: • 在全面质量管理中,“无论何时、何处都会用
到数理统计方法”。 • “这些统计方法所表达的观点对于全面质量管
理的整个领域都有深刻的影响。
专家观点
一切用数据说话,数据是质量管理活动的基础。
数据反映出产品特定数据,称为质量特性。
数据在质量管理中的作用
随机抽样
分层抽样
系统抽样
抽样方法
2000.6.1
随机抽样
指总体中每一个个体都有同等可能的机会被抽到。这种抽样方法 事先不能考虑抽取哪一个样品,完全用偶然方法抽样,常用抽签 或利用随机数表来抽取样品以保证样品代表性。
抽样
当总体容量不大时,随机抽样是一种有效的抽样方法;
抽样方法
2000.6.1
分层抽样
在质量管理过程中,需要有目的地收集有关质量数据,并对数据进 行归纳、整理、加工、分析,从中获得有关产品质量或生产状态的 信息,从而发现产品存在的质量问题以及产生问题的原因,以便对 产品的设计、工艺进行改进,以保证和提高产品质量。
数据
③质量特性值:
•质量特性值通常表现为各种数值指标,即质量指标。
•一个具体产品常需用多个指标来反映它的质量。
断。
总体、个体
2000.6.1
样本:
样本又叫子样,是从总体中抽出来一部分个体的集合。
样本中每个个体叫样品,样本中所包含样品数目称为样本大小, 又叫样本量,常用n表示。
对样本的质量特性进行测定,所得的数据称为样本值。
பைடு நூலகம்
当样本个数越多时,分析结果越接近总体的值,样本对总体的代 表性就越好。
样本
2000.6.1
分层抽样是先将总体按照研究内容密切有关的主要因素分类或分 层,然后在各层中按照随机原则抽取样本。分层抽样可以减少层 内差异,增加样本的代表性。
抽样
样本
当获得的资料不均匀,或呈偏态分布时,分层抽样是一种有效的抽样方法;
抽样方法
2000.6.1
系统抽样
从总体中每隔K个个体抽取一个个体的抽样方法,比值K是总体容 量N与样本容量n之比;
2000.6.1
抽样的目的是通过样本来反映总体。 在质量管理中,常常将测试的样本数据,通过整理加工,找出它们 的特性,从而推断总体的变化规律、趋势和性质。 一批数据的分布情况,可以用中心倾向及数据的分散程度来表示, 表示中心倾向的有平均值、中位值等,表示数据分散程度的有方差、 标准偏差、极差等。
描述总体数据离散程度的参数为方差σ2 ,描述总体数据中心倾向的 数为均值μ 。若利用样本参数近似描述总体状况时,可以利用样本 方差S2近似代替总体方差σ2,利用样本均值X近似代替总体均值p。
相关文档
最新文档