2019年中考数学试卷(含答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.C 解析:C 【解析】230000000= 2.3×108 ,故选 C.
2.A
解析:A 【解析】 【分析】
作线段 BC 的垂直平分线可得线段 BC 的中点.
【详解】
作线段 BC 的垂直平分线可得线段 BC 的中点.
由此可知:选项 A 符合条件, 故选 A. 【点睛】 本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.
(2)如图 2,当 6<t<10 时,DE 是否存在最小值?若存在,求出 DE 的最小值;若不存 在,请说明理由. (3)当点 D 在射线 OM 上运动时,是否存在以 D,E,B 为顶点的三角形是直角三角形? 若存在,求出此时 t 的值;若不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
CD .若 B 34 ,则∠BDC 的度数是( )
A. 68
B.112
C.124
D.146
6.为了绿化校园,30 名学生共种 78 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵,设
男生有 x 人,女生有 y 人,根据题意,所列方程组正确的是( )
A.
x y 78 3x 2y 30
B.
A.a-7>b-7
二、填空题
B.6+a>b+6
C. a >b 55
D.ຫໍສະໝຸດ Baidu3a>-3b
13.如图,在菱形 ABCD 中,AB=5,AC=8,则菱形的面积是 .
14.如图,在平面直角坐标系中,点 O 为原点,菱形 OABC 的对角线 OB 在 x 轴上,顶点
A 在反比例函数 y= 2 的图像上,则菱形的面积为_______. x
6.A
解析:A 【解析】 【分析】 【详解】
x y 30 该班男生有 x 人,女生有 y 人.根据题意得: 3x 2 y 78 ,
故选 D. 考点:由实际问题抽象出二元一次方程组.
7.C
解析:C 【解析】 【详解】
①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线 x= =﹣1,∴b=2a<0,∵抛
2019 年中考数学试卷(含答案)
一、选择题
1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量 折合粮食大约是 230000000 人一年的口粮,将 230000000 用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×107
80
90
100
人数/人
1
3
x
1
已知该小组本次数学测验的平均分是 85 分,则测验成绩的众数是( )
A.80 分
B.85 分
C.90 分
D.80 分和 90 分
5.如图,在 ABC 中, ACB 90 ,分别以点 A 和点 C 为圆心,以大于 1 AC 的长为 2
半径作弧,两弧相交于点 M 和点 N ,作直线 MN 交 AB 于点 D ,交 AC 于点 E ,连接
A.1
B.0,1
C.1,2
D.1,2,3
10.若 xy 0 ,则 x2 y 化简后为( )
A. x y
B. x y
C. x y
D. x y
11.一元二次方程 (x 1)(x 1) 2x 3 的根的情况是( )
A.有两个不相等的实数根 C.只有一个实数根
B.有两个相等的实数根 D.没有实数根
12.已知实数 a,b,若 a>b,则下列结论错误的是
(2)2 4 1 (4) 20 0 , 方程由两个不相等的实数根.
故选:A. 【点睛】 本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.
12.D
解析:D 【解析】 A.∵a>b,∴a-7>b-7,∴选项 A 正确; B.∵a>b,∴6+a>b+6,∴选项 B 正确;
C.∵a>b,∴ a >b ,∴选项 C 正确; 55
x2 y 有意义,则 y>0,
∵xy<0, ∴x<0,
∴原式= x y .
故选 A 【点睛】 此题考查二次根式的性质与化简,解题关键在于掌握其定义
11.A
解析:A 【解析】 【分析】 先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】
解:原方程可化为: x2 2x 4 0 , a 1, b 2, c 4 ,
x y 78 2x 3y 30
C.
x y 30 2x 3y 78
D.
x y 30 3x 2y 78
7.二次函数 y=ax2+bx+c 的图象如图所示,对称轴是 x=-1.有以下结论:①abc>0,
②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是( )
A.1
即可得菱形的面积是 1 ×6×8=24. 2
考点:菱形的性质;勾股定理.
14.4【解析】【分析】【详解】解:连接AC交OB于D∵ 四边形OABC是菱形∴ A C⊥OB∵ 点A在反比例函数y=的图象上∴ △ AOD的面积=×2=1∴ 菱形OABC的面积= 4×△ AOD的面积=4故答案为:4
解析:4 【解析】 【分析】 【详解】 解:连接 AC 交 OB 于 D.
15.分解因式:x3﹣4xy2=_____. 16.已知圆锥的底面圆半径为 3cm,高为 4cm,则圆锥的侧面积是________cm2. 17.甲、乙两人在 1200 米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别 以不同的速度匀速前进,已知,甲出发 30 秒后,乙出发,乙到终点后立即返回,并以原来 的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离, x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中 y 与 x 函数关系,那么, 乙到达终点后_____秒与甲相遇.
D.∵a>b,∴-3a<-3b,∴选项 D 错误. 故选 D.
二、填空题
13.【解析】【分析】连接BD交AC于点O由勾股定理可得BO=3根据菱形的性质 求出BD再计算面积【详解】连接BD交AC于点O根据菱形的性质可得AC⊥BDAO=C O=4由勾股定理可得BO=3所以BD=6即可
解析:【解析】 【分析】 连接 BD,交 AC 于点 O,由勾股定理可得 BO=3,根据菱形的性质求出 BD,再计算面积. 【详解】 连接 BD,交 AC 于点 O,根据菱形的性质可得 AC⊥BD,AO=CO=4, 由勾股定理可得 BO=3, 所以 BD=6,
三、解答题
21.2x=600 答:甲公司有 600 人,乙公司有 500 人.
点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据 等量关系列出方程.
22.先化简,再求值:(2- 3x 3) x2 2x 1 ,其中x 3
x2
x 2
23.已知:如图,在 ABC 中, AB AC , AD BC , AN 为 ABC 外角 CAM 的
解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数 y=k1x 与反比例函数 y= k2 的图象的两交点 A、B 关于原点对称;
x
由 A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标 特征,得点 B 的坐标是(-2,-1). 故选:D
9.A
解析:A 【解析】 【分析】 【详解】 由题意得,根的判别式为△=(-4)2-4×3k, 由方程有实数根,得(-4)2-4×3k≥0,
B.2
C.3
D.4
8.如图,正比例函数 y=k1x
与反比例函数
y=
k2 x
的图象相交于点
A、B 两点,若点
A的
坐标为(2,1),则点 B 的坐标是( )
A.(1,2)
B.(-2,1)
C.(-1,-2) D.(-2,-1)
9.若关于 x 的一元二次方程 kx2﹣4x+3=0 有实数根,则 k 的非负整数值是( )
18.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.
19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9, 9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学 的植树总棵数为 19 的概率______.
20.如图所示,过正五边形 ABCDE 的顶点 B 作一条射线与其内角 EAB 的角平分线相交 于点 P ,且 ABP 60 ,则 APB _____度.
解得 k≤ 4 , 3
由于一元二次方程的二次项系数不为零,所以 k≠0,
所以 k 的取值范围为 k≤ 4 且 k≠0, 3
即 k 的非负整数值为 1, 故选 A.
10.A
解析:A 【解析】 【分析】 二次根式有意义,隐含条件 y>0,又 xy<0,可知 x<0,根据二次根式的性质化简. 解答 【详解】
5.B
解析:B 【解析】 【分析】 根据题意可知 DE 是 AC 的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A 和∠B 互 余可求出∠A,由三角形外角性质即可求出∠CDA 的度数. 【详解】 解:∵DE 是 AC 的垂直平分线, ∴DA=DC, ∴∠DCE=∠A, ∵∠ACB=90°,∠B=34°, ∴∠A=56°, ∴∠CDA=∠DCE+∠A=112°, 故选 B. 【点睛】 本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的 性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
一月全月普通椅子的销售量多了 10 a%:实木椅子的销售量比第一月全月实木椅子的销售 3
量多了 a%,这一周两种椅子的总销售金额达到了 251000 元,求 a 的值.
25.如图, ABC 是边长为 4cm 的等边三角形,边 AB 在射线 OM 上,且 OA 6cm ,点 D 从点 O 出发,沿 OM 的方向以 1cm/s 的速度运动,当 D 不与点 A 重合时,将 ACD 绕 点 C 逆时针方向旋转 60°得到 BCE ,连接 DE. (1)如图 1,求证: CDE 是等边三角形;
平分线, CE AN .
(1)求证:四边形 ADCE 为矩形;
(2)当 AD 与 BC 满足什么数量关系时,四边形 ADCE 是正方形?并给予证明
24.某公司销售两种椅子,普通椅子价格是每把 180 元,实木椅子的价格是每把 400 元. (1)该公司在 2019 年第一月销售了两种椅子共 900 把,销售总金额达到了 272000 元,求两 种椅了各销售了多少把? (2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降 30 元后销售,实 木椅子每把降价 2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上
4.D
解析:D 【解析】 【分析】 先通过加权平均数求出 x 的值,再根据众数的定义就可以求解. 【详解】 解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3 ∴该组数据的众数是 80 分或 90 分.
故选 D. 【点睛】 本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列 出方程.通过列方程求出 x 是解答问题的关键.
∵四边形 OABC 是菱形, ∴AC⊥OB.
∵点 A 在反比例函数 y= 2 的图象上, x
物线与 y 轴的交点在 x 轴上方,∴c>0,∴abc>0,所以①正确; ②∵抛物线与 x 轴有 2 个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;
③∵b=2a,∴2a﹣b=0,所以③错误; ④∵x=﹣1 时,y>0,∴a﹣b+c>2,所以④正确. 故选 C.
8.D
解析:D 【解析】 【分析】 【详解】
2.通过如下尺规作图,能确定点 D 是 BC 边中点的是( )
A.
B.
C.
D.
3.下列命题正确的是( ) A.有一个角是直角的平行四边形是矩形 B.四条边相等的四边形是矩形 C.有一组邻边相等的平行四边形是矩形 D.对角线相等的四边形是矩形 4.下表是某学习小组一次数学测验的成绩统计表:
分数/分
70
3.A
解析:A 【解析】 【分析】 运用矩形的判定定理,即可快速确定答案. 【详解】 解:A.有一个角为直角的平行四边形是矩形满足判定条件;B 四条边都相等的四边形是菱 形,故 B 错误;C 有一组邻边相等的平行四边形是菱形,故 C 错误;对角线相等且相互平分 的四边形是矩形,则 D 错误;因此答案为 A. 【点睛】 本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线 互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的 平行四边形是矩形.
相关文档
最新文档