高中数学-知识讲解-函数及其表示方法-基础---
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数及其表示方法
【学习目标】
(1) 会用集合与对应的语言刻画函数,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. (2) 能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中, 会根据不同的需要选择恰当的方法表示函数.
(3) 求简单分段函数的解析式;了解分段函数及其简单应用. 【要点械理】 要点一、函数的概念 1.
函数的定义
设A 、B 是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B 中都有 唯一确定的数f (x)和它对应,那么就称f: A-B 为从集合A 到集合B 的一个函数.
记作:y=f (x), xG A.
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集 合{f(x)|xeA }叫做函数的值域.
要点诠释:
(1) A 、B 集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3) A 中元素的无剩余性;(4) B 中元 素的可剩余性。
2.
构成函数的三要素:定义域、对应关系和值域
① 构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两 个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数);
② 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.
2.分段函数:
分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别 注明各部分的自变量的取值情况.
要点三、映射与函数 1.
映射定义:
设A 、B 是两个非空集合,如果按照某个对应法则f,对于集合A 中的任何一个元素,在集合B 中都有唯一的 元素和它对应,这样的对应叫做从A 到B 的映射;记为f : A-B.
象与原彖:如果给定一个从集合A 到集合B 的映射,那么A 中的元素a 对应的B 中的元素b 叫做a 的彖,a 叫做b 的原彖.
3.区间的概念 (1) 区间的分类:开区间、
(2) 无穷区间; (3) 区间的数轴表示.
闭区间、半开半闭区间;
{x\a {x\a {x\ a = 要点二、函数的表示法 1.函数的三种表示方法: 解析法:用数学表达式表示两个变量之间的对应关系. 图彖法:用图象表示两个变量之间的对应关系. 列表法:列出表格来表示两个变量之间的对应关系. 优点:简明,给自变量求函数值. 优点:直观形象,反应变化趋势. 优点:不需计算就可看出函数值. 要点诠释: (1)A中的每一个元素都有彖,且唯一; (2)B中的元素未必有原象,即使有,也未必唯一; (3)a的象记为f(a). 2.如何确定象与原象 对于给出原象要求象的问题,只需将原彖代入对应关系中,即可求出彖.对于给出彖,要求原彖的问题,可先假设原象,再代入对应关系中得已知的彖,从而求出原象;也可根据对应关系,由象逆推出原彖. 3.函数与映射的区别与联系: 设A、B是两个非空数集,若f: A-B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数, 记为 y=f(x). 要点诠释: (1)函数一定是映射,映射不一定是函数: (2)函数三要素:定义域、值域、对应法则; (3)B中的元素未必有原象,即使有原彖,也未必唯一; (4)原象集合二定义域,值域二象集合. 4.函数定义域的求法 (1)当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幕的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件. (2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义. (3)求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示. 5.函数值域的求法 实际上求函数的值域是个比较复杂的问题,虽然给定了函数的定义域及其对应法则以后,值域就完全确定了, 但求值域还是特别要注意讲究方法,常用的方法有: 观察法:通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数的图象的“最高点”和“最 低点”,观察求得函数的值域; 配方法:对二次函数型的解析式可先进行配方,在充分注意到自变量取值范围的情况下,利用求二次函数的值域方法求函数的值域; 判别式法:将函数视为关于自变量的二次方程,利用判别式求函数值的范围,常用于一些"分式”函数等;此外,使用此方法要特别注意自变量的取值范围; 换元法:通过对函数的解析式进行适当换元,将复杂的函数化归为几个简单的函数,从而利用基本函数的取值范围来求函数的值域. 求函数的值域没有通用的方法和固定的模式,除了上述常用方法外,还仃最值法、数形结合法筹•总之,求函数的值域关键是重视对应法则的作用,还要特别注意定义域对值域的制约. 【典型例题】 类型一、函数的概念 例1:下列式子是否能确定y是x的函数? (1)x2 + y2 = 2; (2)yjx—l + Jy-1 = 1; (3)y = y/x—2 + . 【答案】(1)不能(2)能(3)不能 【解析】(1)由A-=+r=2,得),=±启=,因此由它不能确定y是尤的函数,如当x = l时,由它所确定的y 值有两