常用温度传感器介绍

合集下载

三类常用的温度传感器

三类常用的温度传感器

温度传感器对于环境温度的测量非常准确,广泛应用于农业、工业、车间、库房等场所。

对于温度传感器的种类非常多,不同的感温元件不同的型号,在国内比较常用的温度传感器型号有哪些呢,下面九纯健为大家简单介绍一下常用的温度传感器。

通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。

1:铂热电阻温度传感器
铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。

利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。

可测温度:温度范围在-200摄氏度到150摄氏度,-50摄氏度到850度。

主要应用了需要温度误差小的行业或者是精密仪器仪表。

2:热电偶温度传感器
热电偶温度传感器主要是通过两根不同的金属材料焊接在一起的,主要温度发生改变,那么两端就会有不同的电势产生,通过电势的变化来得出相应的温度变化。

可测温度:最高达到2300度,在高温段比较准用的K 型正级
3:热敏电阻
由金属氧化物陶瓷组成,是低成本、灵敏度最高的温度传感器
测温范围:温度范围小-50到200度左右,体积小,响应时间快。

因为价格低廉所以在很多家用电器上都被应用到了。

以上就是常用的三类温度传感器型号以及它们的测温范围,许多常用的温度传感器大部分都是利用的它们作为感温元件来制作的,比如测量轴承用的JCJ100TLB温度传感器用的是铂热电阻作为核心。

各种温度传感器分类及其原理

各种温度传感器分类及其原理

各种温度传感器分类及其原理温度传感器是一种集成电路或器件,用于测量环境或物体的温度。

根据其工作原理和分类,常见的温度传感器包括热敏电阻、热电偶、热电阻、红外线传感器以及半导体温度传感器等。

1. 热敏电阻(Thermistor)热敏电阻是一种元件,其电阻值随温度的变化而变化。

根据电阻与温度之间的关系,热敏电阻分为两种类型:负温度系数(NTC)热敏电阻和正温度系数(PTC)热敏电阻。

NTC热敏电阻的电阻值随温度的升高而下降,常用于测量环境温度。

PTC热敏电阻的电阻值随温度的升高而增加,常用于过载保护和温度控制。

2. 热电偶(Thermocouple)热电偶是由两种不同金属线组成的开路回路。

当热电偶的两个接头处于不同温度下时,会产生温差电势。

该电势与两个接头之间的温差成正比。

通过测量温差电势,可以计算出温度值。

热电偶具有广泛的测温范围和较高的准确性,因此被广泛应用于工业领域。

3.热电阻(RTD)热电阻是一种利用材料的电阻与温度之间的关系来测量温度的传感器。

常见的热电阻材料是铂(Pt),因为铂的电阻与温度之间的关系比较稳定和预测性好。

热电阻的工作原理是利用热电阻材料的电阻随温度的变化而变化,通过测量电阻值来计算温度。

4. 红外线传感器(Infrared Sensor)红外线传感器是利用物体释放的热辐射来测量温度的传感器。

红外线传感器可以通过测量物体辐射的红外线能量来计算出物体的温度。

红外线传感器常用于非接触式测温,特别适用于测量高温、移动对象或远距离测温。

5. 半导体温度传感器(Semiconductor Temperature Sensor)半导体温度传感器是利用半导体材料的电特性随温度变化而变化的传感器。

根据不同的半导体材料和工作原理,半导体温度传感器可以分为基于PN结的温度传感器(比如二极管温度传感器)、基于电压输出的温度传感器(比如温度传感器芯片)以及基于电流输出的温度传感器(比如恒流源温度传感器)等。

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类 温度传感器应用大全

温度传感器的常见分类温度传感器应用大全温度传感器在我们的日常生活中扮演着十分重要的角色,同时它也是使用范围最广,数量最多的传感器。

关于它你了解多少呢?本文主要介绍的就是各种温度传感器的分类及其原理,温度传感器的应用电路。

温度传感器从17世纪温度传感器首次应用以来,依次诞生了接触式温度传感器,非接触式温度传感器,集成温度传感器,近年来在智能温度传感器在半导体技术,材料技术等新技术的支持下,温度传感器发展迅速,由于智能温度传感器的软件和硬件的合理配合既可以大大增强传感器的功能、提高传感器的精度,又可以使温度传感器的结构更为简单和紧凑,使用也更加方便。

1、热电偶传感器:两种不同导体或半导体的组合称为热电偶。

热电势EAB(T,T0)是由接触电势和温差电势合成的,接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关,当有两种不同的导体和半导体A和B组成一个回路,其相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端,另一端温度为TO,称为自由端,则回路中就有电流产生,即回路中存在的电动势称为热电动势,这种由于温度不同而产生电动势的现象称为塞贝克效应。

2、热敏电阻传感器:热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变,与一般的固定电阻不同,属于可变电阻的一类,广泛应用于各种电子元器件中,不同于电阻温度计使用纯金属,在热敏电阻器中使用的材料通常是陶瓷或聚合物,正温度系数热敏电阻器在温度越高时电阻值越大,负温度系数热敏电阻器在温度越高时电阻值越低,它们同属于半导体器件,热敏电阻通常在有限的温度范围内实现较高的精度,通常是-90℃〜130℃。

3、模拟温度传感器:HTG3515CH是一款电压输出型温度传感器,输出电流1~3.6V,精度为±3%RH,0~100%RH相对湿度范围,工作温度范围-40~110℃,5s响应时间,0±1%RH迟滞,是一个带。

常用传感器的原理和应用

常用传感器的原理和应用

常用传感器的原理和应用1. 温度传感器•原理:温度传感器主要通过测量物体的热量来确定温度。

常见的温度传感器包括热敏电阻、热敏电阻和热电偶等。

•应用:温度传感器广泛应用于工业生产、环境监测、医疗设备和消费电子等领域。

在工业生产中,温度传感器可用于监测设备的温度,以保证工作的稳定性和安全性。

在环境监测中,温度传感器可用于气象站和建筑物等场所。

在医疗设备中,温度传感器被用于测量人体温度。

在消费电子中,温度传感器可用于智能手机、电脑和家用电器等。

2. 湿度传感器•原理:湿度传感器主要通过测量空气中的水分含量来确定湿度。

常见的湿度传感器包括电容式、电阻式和电化学式湿度传感器等。

•应用:湿度传感器广泛应用于气象观测、农业、工业制造和智能家居等领域。

在气象观测中,湿度传感器可用于测量大气湿度,以预测天气变化。

在农业中,湿度传感器可用于控制温室和灌溉系统,以提高农作物的产量和质量。

在工业制造中,湿度传感器可用于控制生产环境的湿度,以确保产品质量。

在智能家居中,湿度传感器可用于智能空调和除湿机等家电。

3. 压力传感器•原理:压力传感器主要通过测量物体受力后的变形量来确定压力。

常见的压力传感器包括电阻式、电容式和压电式压力传感器等。

•应用:压力传感器广泛应用于工业控制、航空航天、汽车制造和医疗设备等领域。

在工业控制中,压力传感器可用于监测管道的压力,以保证流体的正常运行。

在航空航天中,压力传感器可用于监测飞机和火箭的压力,以保证飞行的安全性。

在汽车制造中,压力传感器可用于监测轮胎的胎压,以提高行驶的安全性。

在医疗设备中,压力传感器可用于监测血压和呼吸机等设备。

4. 光电传感器•原理:光电传感器主要通过测量光的强度和光的反射来确定物体的位置、距离和颜色。

常见的光电传感器包括光电开关、光电二极管和光电三极管等。

•应用:光电传感器广泛应用于工业自动化、机器人、安防和电子游戏等领域。

在工业自动化中,光电传感器可用于检测物体的位置和距离,并控制设备的运行。

温度传感器分类及特点

温度传感器分类及特点

温度传感器分类及特点温度传感器是用于测量物体温度的设备,通常由敏感元件和转换元件组成。

根据工作原理的不同,温度传感器可以分为热电偶、热敏电阻、热电阻、热辐射传感器等。

下面将对这几种温度传感器进行详细介绍。

一、热电偶热电偶是一种常见的温度传感器,其工作原理是基于塞贝克效应(Seebeck effect)。

当两种不同材料的导体接触时,在温度差异的作用下,会在接触点产生电动势,这种现象称为塞贝克效应。

热电偶就是利用这种效应来测量温度的。

热电偶具有精度高、稳定性好、测量范围广等优点,因此在工业生产和科研领域得到广泛应用。

常用的热电偶材料有铜-镍、镍铬-镍铝等,可以根据不同的测量温度和环境选择合适的热电偶。

二、热敏电阻热敏电阻是一种半导体材料制成的温度传感器,其电阻值会随着温度的变化而变化。

热敏电阻可以分为正温度系数(PTC)和负温度系数(NTC)两种类型。

PTC热敏电阻的阻值随着温度的升高而增大,而NTC热敏电阻的阻值随着温度的升高而减小。

热敏电阻具有体积小、响应速度快、灵敏度高等优点,因此在自动控制、测温仪表等领域得到广泛应用。

同时,热敏电阻的缺点是精度较低,稳定性较差,容易受到环境因素的影响。

三、热电阻热电阻是一种金属导体材料制成的温度传感器,其电阻值会随着温度的变化而变化。

常用的热电阻材料有铜、镍、铂等。

在常温下,热电阻的阻值会随着温度的升高而增大,但在高温下,其阻值会受到金属的磁化效应影响而发生变化。

热电阻具有精度高、稳定性好、耐腐蚀等优点,因此在低温测量领域得到广泛应用。

同时,热电阻的缺点是响应速度较慢,容易受到金属导体材料本身特性的影响。

四、热辐射传感器热辐射传感器是一种利用物体辐射的热量来测量温度的传感器,其工作原理是基于普朗克辐射定律(Planck's law)。

当物体受到辐射时,其辐射的热量与物体的温度和波长有关。

热辐射传感器通过测量物体辐射的热量来推算物体的温度。

热辐射传感器具有非接触、无损、高精度等优点,因此在高温、高压、腐蚀等恶劣环境下得到广泛应用。

物理实验中常用的温度传感器及其使用方法

物理实验中常用的温度传感器及其使用方法

物理实验中常用的温度传感器及其使用方法在物理实验中,温度传感器是不可或缺的工具之一。

它能够测量物体的温度,提供重要的数据支持,帮助科学家进行实验研究。

本文将介绍一些常用的温度传感器及其使用方法,以帮助读者更好地了解这一领域。

1. 热电偶(Thermocouple)热电偶是最常见和广泛使用的温度传感器之一。

它是由两种不同金属材料组成的电偶,根据热电效应来测量温度。

当两种金属连接在一起时,在温度变化时会产生电压变化。

通过测量这个电压变化,就可以计算出温度的变化。

热电偶的使用方法相对简单。

首先,将热电偶与待测物体的接触部分连接。

然后,使用一个电压计或温度计测量电压变化,并将其转化为相应的温度值。

需要注意的是,热电偶对环境的干扰比较敏感,因此要保证实验环境的稳定性。

2. 铂电阻温度计(Platinum Resistance Thermometer)铂电阻温度计是一种基于电阻与温度之间的关系进行测量的传感器。

它使用铂金作为感测元件,根据铂电阻随温度的变化而变化来测量温度。

使用铂电阻温度计时,首先需要将它与待测物体接触的部分固定。

然后,将一个稳定的电流通过铂电阻,测量电阻的变化。

通过已知的电阻-温度关系,可以得出相应的温度值。

铂电阻温度计具有较高的精度和稳定性,广泛应用于工业和科学领域。

然而,它的价格较高,所以在一些低成本的实验中可能不太适用。

3. 热敏电阻(Thermistor)热敏电阻是一种电阻随温度变化而变化的传感器。

它通常由陶瓷或半导体材料制成,灵敏度较高。

热敏电阻主要分为正温度系数(PTC)和负温度系数(NTC)两种类型。

使用热敏电阻时,需要将它与待测物体的接触部分连接。

然后,通过测量电阻的变化来计算温度的变化。

由于热敏电阻的电阻-温度关系是非线性的,因此需要使用特定的校准曲线来将电阻值转化为温度值。

热敏电阻在实验室和工业领域都有广泛的应用。

由于其较低的成本和高精度,它成为许多实验室中常用的温度传感器之一。

常用温度传感器

常用温度传感器

医疗健康:监测人体体温辅 助诊断疾病
农业种植:监测土壤和空气 温度优化种植环境
Prt Three
热电偶温度传感器
热电偶工作原理
热电偶由两种不同的金属或金属合金组成 当两种金属或金属合金的温度不同时会产生电压 电压的大小与温度差成正比 热电偶通过测量电压来测量温度
热电偶种类及材料
热电偶种类:K型、J型、T型、E型等 K型热电偶:镍铬-镍硅适用于高温环境 J型热电偶:铁-康铜适用于中低温环境 T型热电偶:铜-康铜适用于低温环境 E型热电偶:镍铬-康铜适用于中低温环境 热电偶材料:镍铬、镍硅、铁、康铜等
汽车电子:发动机温度监测、 空调温度控制等
Prt Six
红外线温度传感器
红外线温度传感器工作原理
红外线辐射: 物体温度越高 辐射的红外线
越多
传感器接收: 红外线温度传 感器接收物体 辐射的红外线
信号处理:传 感器将接收到 的红外线信号 转换为电信号
显示温度:将 电信号处理后 显示为物体温

红外线温度传感器种类及特点
热敏电阻工作原理
热敏电阻是一种半导体器件其电阻随温度变化而变化 热敏电阻的电阻随温度升高而减小随温度降低而增大 热敏电阻的电阻变化率与温度变化率成正比 热敏电阻的电阻变化率可以通过测量电阻值来计算从而得到温度值
热敏电阻种类及材料
正温度系数热敏电阻(PTC):由半导体材料制成电阻随温度升高而增大 负温度系数热敏电阻(NTC):由金属氧化物制成电阻随温度升高而降低 临界温度系数热敏电阻(CTR):由半导体材料制成电阻随温度升高而减小 热敏电阻材料:包括陶瓷、金属氧化物、半导体等
红外线温度传感器应用场景及注意事项
应用场景:工业生产、医 疗健康、环境监测等领域

常用温度传感器

常用温度传感器

常用温度传感器可以分成三大类:热敏电阻、热电阻、热电偶。

电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。

热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。

正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。

热敏电阻可作为电子线路元件用于仪表线路温度补偿和温差电偶冷端温度补偿等。

利用NTC热敏电阻的自热特性可实现自动增益控制,构成RC振荡器稳幅电路,延迟电路和保护电路。

在自热温度远大于环境温度时阻值还与环境的散热条件有关,因此在流速计、流量计、气体分析仪、热导分析中常利用热敏电阻这一特性,制成专用的检测元件。

PTC热敏电阻主要用于电器设备的过热保护、无触点继电器、恒温、自动增益控制、电机启动、时间延迟、彩色电视自动消磁、火灾报警和温度补偿等方面。

阻顾名思义,它的电阻的阻值是随着温度变化而变化的,比如,用线性比较好的铂丝、铜丝作的电阻。

工业用热电阻一般采用Pt100,Pt10,Pt1000、Cu50,Cu100,铂热电阻的测温的范围一般为零下200-800摄氏度,铜热电阻为零下40到140摄氏度。

铂丝做成的热电阻,其分度号称Pt100。

就是说它的阻值在0度时为100欧姆,负200度时为18.52欧姆,200度时为175.86欧姆,800度时为375.70欧姆。

比如用铜丝作的热电阻,分度号Cu50。

它在0度时,阻值是50欧姆,100度时是71.400欧姆。

热电阻公式都是Rt=Ro(1+A*t+B*t*t);Rt=Ro[1+A*t+B*t*t+C(t-100)*t*t*t] 的形式,t表示摄氏温度,Ro 是零摄氏度时的电阻值,A、B、C都是规定的系数,对于Pt100,Ro就等于100.热电偶是温度测量中应用最广泛的温度器件,他的主要特点就是测吻范围宽,性能比较稳定,同时结构简单,动态响应好,更能够远传 4-20mA电信号,便于自动控制和集中控制。

常用温度传感器

常用温度传感器
9
热电阻测温系统一般由热电阻、连接导线和显示仪表等
组成,电路装在指示仪表、置于控制室中,热电阻装在金属
护套内置于现场被测介质中,由导线将两者连接起来。
热电阻两线测量桥路:热电阻的两端 各引出一根导线与指示仪表连接, 称为二线制接法,二线制接法仅适 用于热电阻与指示仪表距离较近、 连接导线较短或精度不高的场合。
模块2 常用温度传感器
学习要点
常用温度传感器 热电阻温度传感器
1
2.1 温度传感器概述
温度传感器有3个发展阶段:即传统的分 立式温度传感器、模拟集成温度传感器、 智能温度传感器。目前,国际上新型温度 传感器正从模拟式向数字式、由集成化向 智能化、网络化的方向发展。
2
一、温度与温标
温度是衡量物体(或物质)冷热程度的物 理量,能够把温度的变化转化为电量(电压、 电流或阻抗等)变化的传感器称为温度传感 器。
R2 R110 Rt R3
二、热电阻材料、结构及参数
1、热电阻材料 对电阻体材料的基本要求:
➢电阻温度系数大----提高灵敏度 ➢电阻率尽可能大----减小电阻尺寸 ➢材料的化学、物理性质稳定----减小误差 ➢材料易于加工----提高工艺性
较为广泛应用的电阻体材料有: 铂、铜、镍、铁等,而常用的是铂、铜 。
➢铜的机械强度较差,一般用双绕法:
先将铜丝对折,两根丝平行绕制,1两4 个端头处于支架的同一端。
热电阻式传感器的结构:由电阻体(感温元件)、引出线、绝缘套管和接线 盒等部件组成。其中,电阻体(感温元件)是主要部件。
玻璃骨架铂热 电阻感温元件
云母骨架铂热电阻
普通工业用热电阻基型产品结构
铜热电阻感温元件
机械强度较差,热惯性较大,在温度高于100℃时,易氧化,稳定性较差。

盘点四种常用的温度传感器

盘点四种常用的温度传感器

盘点四种常用的温度传感器温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。

温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

设计中最常用的温度传感器有:热电偶传感器、热敏电阻传感器、铂电阻传感器(RTD)、集成(IC)温度传感器。

下图给出代表性的实物照片。

1. 热电偶传感器热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,由该原理可知热电偶的一个优势是其无需外部供电。

另外,热电偶还有测温范围宽、价格便宜、适应各种大气环境等优点,但其缺点是测量精度不高,故在高精度的测量和应用中不宜使用热电偶。

热电偶两种不同成份的材料连接是标准的,根据采用材料不同可分为K型热电偶、S型热电偶、E型热电偶、N型热电偶、J 型热电偶等等。

2. 热敏电阻传感器热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变。

按照温度系数不同分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。

正温度系数热敏电阻(PTC)在温度越高时电阻值越大,负温度系数热敏电阻(NTC)在温度越高时电阻值越低,它们同属于半导体器件,被广泛应用于各种电子元器件中。

热敏电阻通常在有限的温度范围内可实现较高的精度,通常是-90℃〜130℃。

3. 铂电阻传感器铂电阻,又称为铂热电阻,它的阻值会随着温度的变化而改变。

并且铂电阻阻值会随着温度的升高匀速有规律的变大。

铂电阻可分为PT100和PT1000等系列产品,PT100即表示它在0℃时阻值为100欧姆,PT1000即表示它在0℃时阻值为1000欧姆。

铂电阻具有抗振动、稳定性好、准确度高、耐高压等优点,被广泛应用于医疗、电机、工业、温度计算、卫星、气象、阻值计算等高精温度设备中。

4. 集成(IC)温度传感器集成(IC)温度传感器是将温度传感器集成在一个芯片上、可完成温度测量及信号输出功能的专用IC。

常用温度传感器

常用温度传感器

一、 热电阻的测温原理
热电阻效应:
物质的电阻率随温度变化而变化的物理现象。
热电阻温度传感器是利用物质的电阻率随温度变化而变化的特 性来进行温度测量的。
金属的电阻温度系数为正值,如图。
因为:在金属中,载流子为自由电子, 当温度升高时,每个自由电子的动能 将增加,因而在一定的电场作用下, 要使这些杂乱无章的电子作定向运动 就会遇到更大的阻力,导致金属电阻 值随温度的升高而增加 。
➢当介质流动时,由于介质流动要带走热 量, Rt1所耗散的热量与被测介质的平均 流速成正比。因而Rt1温度下降,引起电阻 下降,电桥失去平衡,检流计有相应指示, 可用流量或流速标定。
突断型温度传感器
➢ 电热水壶接通电源加热 后,水温逐步上升到100度, 水开始沸腾,蒸汽冲击蒸 汽开关上面的双金属片, 由于热胀冷缩的作用,双 金属片膨胀变形,顶开开 关触点断开电源。 ➢ 如果蒸汽开关失效,壶 内的水会一直烧下去,直 到水被烧干,发热元件温 度急剧上升,位于发热盘 底部的有两个双金属片, 会因为热传导作用温度急 剧上升,膨胀变形,断开 电源。
R2 R1 Rt R3
二、热电阻材料、结构及参数
1、热电阻材料 对电阻体材料的基本要求:
➢电阻温度系数大----提高灵敏度 ➢电阻率尽可能大----减小电阻尺寸 ➢材料的化学、物理性质稳定----减小误差 ➢材料易于加工----提高工艺性
较为广泛应用的电阻体材料有: 铂、铜、镍、铁等,而常用的是铂、铜 。
如果热电阻安装的位置与仪表相距较远, 当环境温度变化时,其连接导线电阻也要 变化。为消除连接导线电阻变化带来的测 量误差,测量时采用三线制连接法。除了 三线制接法,另外还有四线制接法,主要 用于精密测量。
(Rt 2r)R2 R1R3 R2 R1

常用的热敏、光敏、气敏、力敏和磁敏传感器及其敏感元件介绍

常用的热敏、光敏、气敏、力敏和磁敏传感器及其敏感元件介绍

常用的热敏、光敏、气敏、力敏和磁敏传感器及其敏感元件介绍做迎:翼彳传感器由敏感元器件(感知元件)和转换器件两部分组成,有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。

敏感元器件品种繁多,就其感知外界信息的原理来讲,可分为①物理类,基于力、热、光、电、磁和声等物理效应。

②化学类,基于化学反应的原理。

③生物类,基于酶、抗体、和激素等分子识别功能。

通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将传感器分46类)。

下面对常用的热敏、光敏、气敏、力敏和磁敏传感器及其敏感元件介绍如下。

一、温度传感器及热敏元件温度传感器主要由热敏元件组成。

热敏元件品种教多,市场上销售的有双金属片、铜热电阻、铂热电阻、热电偶及半导体热敏电阻等。

以半导体热敏电阻为探测元件的温度传感器应用广泛,这是因为在元件允许工作条件范围内,半导体热敏电阻器具有体积小、灵敏度高、精度高的特点,而且制造工艺简单、价格低廉。

1、半导体热敏电阻的工作原理按温度特性热敏电阻可分为两类,随温度上升电阻增加的为正温度系数热敏电阻,反之为负温度系数热敏电阻。

⑴正温度系数热敏电阻的工作原理此种热敏电阻以钛酸钡(BaTio3)为基本材料,再掺入适量的稀土元素,利用陶瓷工艺高温烧结尔成。

纯钛酸钡是一种绝缘材料,但掺入适量的稀土元素如镧(La)和铌(Nb)等以后,变成了半导体材料,被称半导体化钛酸钡。

它是一种多晶体材料,晶粒之间存在着晶粒界面,对于导电电子而言,晶粒间界面相当于一个位垒。

当温度低时,由于半导体化钛酸钡内电场的作用,导电电子可以很容易越过位垒,所以电阻值较小;当温度升高到居里点温度(即临界温度,此元件的‘温度控制点一般钛酸钡的居里点为120℃)时,内电场受到破坏,不能帮助导电电子越过位垒,所以表现为电阻值的急剧增加。

因为这种元件具有未达居里点前电阻随温度变化非常缓慢,具有恒温、调温和自动控温的功能,只发热,不发红,无明火,不易燃烧,电压交、直流3〜440V均可,使用寿命长,非常适用于电动机等电器装置的过热探测。

常用温度传感器解析,温度传感器的原理、分类及应用

常用温度传感器解析,温度传感器的原理、分类及应用

常用温度传感器解析,温度传感器的原理、分类及应用温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。

温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

温度传感器的分类接触式接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。

温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。

一般测量精度较高。

在一定的测温范围内,温度计也可测量物体内部的温度分布。

但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。

它们广泛应用于工业、农业、商业等部门。

在日常生活中人们也常常使用这些温度计。

随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。

低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。

利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量 1.6~300K范围内的温度。

非接触式它的敏感元件与被测对象互不接触,又称非接触式测温仪表。

这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。

最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。

辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。

各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。

只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。

如欲测定物体的真实温度,则必须进行材料表面发射率的修正。

常用传感器介绍范文

常用传感器介绍范文

常用传感器介绍范文传感器是指能够对物理量进行检测和感知,并将其转化成可供人类或机器理解的信号或数据的装置。

传感器在日常生活中广泛应用,例如智能手机中的加速度传感器和指南针,汽车中的倒车雷达,以及工业生产中的温度传感器等。

下面将介绍一些常用的传感器。

1.温度传感器:温度传感器用于测量物体或环境的温度,可以感知室内温度、水温、空气温度等。

常见的温度传感器有热敏电阻传感器、热电偶、热电阻等。

2.光敏传感器:光敏传感器用于检测光照的强度或光照的变化。

常见的光敏传感器有光敏电阻传感器、光电二极管等。

3.湿度传感器:湿度传感器用于测量空气中的湿度水分含量。

它们可以用于测量室内湿度、土壤湿度、空气中的湿度等。

4.压力传感器:压力传感器用于测量物体的压力或压强,常见于汽车、工业控制、医学诊断等领域。

常见的压力传感器有压阻式传感器、压电式传感器、电容式传感器等。

5.加速度传感器:加速度传感器用于测量物体的加速度。

它们常被应用于智能手机、运动追踪设备、汽车安全系统等领域。

常见的加速度传感器有压阻式传感器、微机械加速度传感器等。

6.气体传感器:气体传感器用于检测空气中的化学物质或气体的浓度。

常见的气体传感器有氧气传感器、二氧化碳传感器、甲醛传感器等。

7.磁力传感器:磁力传感器用于测量磁场的强度或方向。

它们广泛应用于指南针、地磁测量、磁共振成像等领域。

常见的磁力传感器有霍尔效应传感器、磁阻传感器等。

8.接近传感器:接近传感器用于测量物体与传感器之间的接近距离。

它们被广泛应用于自动门、机器人导航、工业自动化等领域。

常见的接近传感器有红外线传感器、超声波传感器、电磁感应传感器等。

这些传感器只是常见的一部分,随着科技的发展,新型传感器也在不断涌现。

传感器在改善生活质量、提高生产效率和保障安全等方面起着重要的作用。

常见传感器的工作原理及应用总结

常见传感器的工作原理及应用总结

常见传感器的工作原理及应用总结简介传感器是一种用来感知和测量特定环境参数的装置,它可以将感知到的信号转化为数字或模拟信号,以实现对环境的监测和控制。

在现代科技和工业领域中,传感器被广泛应用于各种应用场景中,如工业自动化、医疗设备、智能家居等。

本文将总结几种常见传感器的工作原理和应用。

1. 温度传感器温度传感器是用来测量环境或物体的温度的装置。

常见的温度传感器有热敏电阻、热电偶和红外线温度传感器等。

它们通过测量物体或环境的热量来确定温度。

•热敏电阻:热敏电阻是一种电阻值随温度变化的器件。

当温度升高时,热敏电阻的电阻值下降,反之亦然。

热敏电阻广泛应用于温度控制、气象观测以及生物医学等领域。

•热电偶:热电偶是由两种不同金属材料组成的电极,当两端的温度不同时,会产生一个电压信号。

热电偶具有高精度和广泛的温度测量范围,常用于工业流程控制和热力学测量领域。

•红外线温度传感器:红外线温度传感器利用物体发射的红外线辐射来测量温度。

它适用于非接触测量,能够测量高温、低温和移动物体的温度。

2. 光传感器光传感器是一种用来感知光照强度或光的存在的装置。

它们通过测量光的强度或光的反射来实现对环境的监测和控制。

常见的光传感器包括光敏电阻、光电二极管和光电导轨等。

•光敏电阻:光敏电阻的电阻值随光照强度的变化而变化。

当光照强度增加时,光敏电阻的电阻值下降,反之亦然。

光敏电阻广泛应用于自动照明控制、相机曝光控制以及太阳能电池等领域。

•光电二极管:光电二极管是一种将光能转化为电能的装置。

当光照射到光电二极管上时,会产生电流。

光电二极管适用于光电转换、通信和遥感测量等领域。

•光电导轨:光电导轨是一种集成了光传感器和导轨的装置。

它可以在自动化和工业领域中用于检测物体的位置和速度等参数。

3. 压力传感器压力传感器用于测量气体或液体的压力。

它们可以将压力转化为电信号以实现对压力的监测和控制。

常见的压力传感器包括压阻式传感器、压电传感器和毛细管传感器等。

机舱中常用的传感器

机舱中常用的传感器

机舱中常用的传感器一、温度传感器较低温度场合——用热电阻或热敏电阻式(用半导体材料制成,具有负的电阻温度系数),如冷却水、滑油温度、主轴承温度等。

较高温度场合——热电偶式,如主机排气温度。

1.热电阻式温度传感器热电阻常由铜丝或铂丝用双线并绕在绝缘骨架上,再插入护套内组成。

其电阻与温度成正比(正的电阻温度系数)。

铜热电阻——测温范围-500C~+1200C。

铂热电阻——测温范围-1200C~+8000C(监视系统多用铂电阻)热电阻测温电桥Rt:热电阻; R0:调零(调迁移)电位器W:调桥臂电流(调量程)电位器;R1=R2为固定电阻(R1>> Rt,R2>>R0)i1=i2=i主要取决于R1、R2的大小。

设Rt=起始电阻Rt0+随温度变化电阻ΔRt,则输出电压:Uab=Ua--Ub=i Rt--i R0=i(Rt0+ΔRt)--iR0当t=00C时,ΔRt=0,则Rt=R0,这时可调整R0使Uab=0(调零)。

如果起始温度为TL,对应热电阻起始电阻为RL,可调整R0=RL,同样可使Uab=0,即将测温始点迁移到TL。

当温度在TL的基础上升时,Rt增大ΔRt,此时Ua↑,而Ub不变,Uab↑,即:Uab=Ua--Ub =i(Rt0+ΔRt)--iR0= iΔRt可见电桥输出Uab与热电阻随测量温度而变化的阻值ΔRt成正比,此即热电阻的温度检测原理。

其量程可由W改变电流值来调整,即t=tmax时,使Uab=Uabmax热电阻的温度修正——热电阻三线制接法热电阻插入需检测的监视点,与测量电桥之间用铜丝线连接,铜丝线的阻值也会随温度而变化,引起测量误差。

实际测量电桥中采用热电阻“三线制”连接法来实现环境温度的补偿,即增加一根电源线LC,将热电阻的两根导线La和Lb分别接在测量桥臂和调零桥臂上Uab=Ua--Ub =i(Rt+Ra)--i(R0+Rb)=i(Rt--R0)+i(Ra--Rb)只要Ra恒等于Rb,则Uab与环境温度无关。

温度传感器:温度传感器的四种类型

温度传感器:温度传感器的四种类型

温度传感器:温度传感器的四种类型温度传感器是一种应用广泛的传感器,用于检测温度。

它们在许多领域中都有用,例如工业、医疗、环境和农业等。

本文将介绍温度传感器的四种常见类型,及其工作原理和应用。

热电偶传感器热电偶传感器是一种基于热电现象的传感器。

它由两种不同的金属制成的导线连接在一起,在一个端子处,形成了一个称为热电极的结构,当温度改变时,它会产生一个电势差,这个电势差与温度成正比。

热电偶传感器可以测量非常高的温度,常用于高温环境中,例如炉膛、熔炉和火箭发动机中。

热敏电阻传感器热敏电阻传感器是一种基于电阻变化的传感器。

它是由一种材料制成,其电阻会随温度的变化而变化。

当物体的温度变化时,电阻值也会随之变化。

通过测量电阻值的变化,可以确定物体的温度。

热敏电阻传感器常用于温度测量和控制中,例如恒温器、温度计和烤箱中。

热电阻传感器热电阻传感器是一种基于电阻变化的传感器,与热敏电阻传感器相似。

它是由金属或合金制成的导线,其电阻会随温度的变化而变化。

当物体的温度变化时,电阻值也会随之变化。

与热敏电阻传感器相比,热电阻传感器更加精确和稳定。

热电阻传感器常用于实验室、工业和医疗设备中。

红外线温度传感器红外线温度传感器是一种基于红外线辐射的传感器。

它测量物体表面的辐射温度,而不是接触温度。

当物体表面的温度变化时,其辐射率也会随之变化。

红外线温度传感器会测量这些变化,并转换成温度值。

与其他传感器相比,红外线传感器可以在不接触物体的情况下测量其温度,因此常用于工业和生活中的非接触式温度测量。

总结以上四种类型的温度传感器在不同的领域中得到了广泛的应用。

热电偶传感器常用于测量高温,热敏电阻传感器和热电阻传感器常用于实验室、工业和医疗设备中,而红外线温度传感器则常用于工业和生活中的非接触式温度测量。

在选择温度传感器时,需要考虑其应用环境、精确度和可靠性等因素。

温度传感器的测温范围及应用条件

温度传感器的测温范围及应用条件

温度传感器的测温范围及应用条件温度传感器是一种测量环境温度的设备,根据工作原理不同,其测温范围和应用条件也有所不同。

下面将针对几种常见的温度传感器进行介绍。

1. 热电阻温度传感器热电阻温度传感器利用热电阻材料的电阻随温度的变化特性来测量温度。

常见的热电阻材料有铂、铜、镍等。

其中,铂热电阻是最常用的材料之一,其测温范围通常为-200至+1000。

应用条件要求传感器与被测体保持良好的接触,避免外部介质或辐射对温度测量的影响。

2. 热敏电阻温度传感器热敏电阻温度传感器利用热敏电阻材料的电阻随温度的变化特性来测量温度。

常见的热敏电阻材料有氧化铁、氧化铜等。

热敏电阻的测温范围较狭窄,一般介于-50至+200之间。

应用条件要求传感器与被测体的表面充分接触,并保持稳定。

3. 热电偶温度传感器热电偶温度传感器是一种利用两个不同金属在不同温度下产生的热电势来测量温度的设备。

常见的热电偶材料有铂铑合金(Pt-Rh)、铜镍合金等。

热电偶的测温范围广,可以达到-200至+2300。

应用条件要求传感器的接点与被测体紧密结合,以确保精确的温度测量。

4. 红外线温度传感器红外线温度传感器是一种利用物体辐射的红外能量来测量温度的设备。

它可以在无需接触被测体的情况下进行测温。

红外线温度传感器的测温范围和精度根据不同的型号和应用场景而有所不同。

例如,一般工业应用中的红外线温度传感器可以测量-40至+550范围内的温度。

应用条件要求传感器与被测体之间没有遮挡物,以保证红外辐射能够准确地被探测到。

需要注意的是,不同温度传感器的测温范围和应用条件也会受到传感器本身的性能和精度等因素的影响。

因此,在选择和使用温度传感器时,需要对具体的应用场景和要求进行综合考虑,以确保测量结果的准确性和可靠性。

Pt100工作原理

Pt100工作原理

Pt100工作原理引言概述:Pt100是一种常用的温度传感器,广泛应用于工业自动化领域。

本文将介绍Pt100的工作原理,包括其基本原理、电阻温度特性、线性度、精度和优缺点。

正文内容:1. 基本原理1.1 热敏电阻Pt100是一种热敏电阻,其电阻值随温度的变化而变化。

当温度升高时,Pt100的电阻值增加;当温度降低时,Pt100的电阻值减小。

1.2 铂电阻Pt100的电阻元件采用铂金材料制成,因为铂金具有较高的电阻温度特性和稳定性,能够在广泛的温度范围内提供准确的测量结果。

2. 电阻温度特性2.1 温度系数Pt100的电阻随温度的变化呈线性关系,其温度系数为0.00385Ω/℃。

这意味着,当温度升高1℃时,Pt100的电阻值将增加0.00385Ω。

2.2 温度范围Pt100的测量范围通常为-200℃至+600℃。

在这个范围内,Pt100能够提供稳定和准确的温度测量结果。

3. 线性度3.1 线性关系Pt100的电阻与温度之间呈线性关系,这意味着在一定温度范围内,Pt100的电阻值与温度变化的关系是稳定的。

3.2 线性度误差Pt100的线性度误差通常在0.1%以内,这意味着在测量过程中,Pt100的电阻值与实际温度之间的偏差较小。

4. 精度4.1 精度等级Pt100的精度通常根据IEC标准进行分类,常见的精度等级有A类、B类和C 类,其中A类精度最高,C类精度最低。

4.2 精度误差Pt100的精度误差通常在±0.15℃以内,这意味着在测量过程中,Pt100的测量结果与实际温度之间的偏差较小。

5. 优缺点5.1 优点Pt100具有较高的测量精度和稳定性,能够在广泛的温度范围内提供准确的测量结果。

此外,Pt100还具有较好的线性度和抗干扰能力。

5.2 缺点Pt100的创造成本较高,且需要专门的测量电路进行信号处理,因此成本相对较高。

此外,Pt100的响应时间较长,不适合于对温度变化要求较高的应用场景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用温度传感器介绍
1、温度传感器(temperature transducer sensor)是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。

温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

2、测试中最常用的温度传感器有:热电偶传感器、热敏电阻传感器、铂电阻传感器(RTD)、集成(IC)温度传感器。

下图给出代表性的实物照片。

3、热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,由该原理可知热电偶的一个优势是其无需外部供电。

另外,热电偶还有测温范围宽、价格便宜、适应各种大气环境等优点,但其缺点是测量精度不高,故在高精度的测量和应用中不宜使用热电偶。

热电偶两种不同成份的材料连接是标准的,根据采用材料不同可分为K型热电偶、S型热电偶、E型热电偶、N型热电偶、J型热电偶等等。

4、热敏电阻是敏感元件的一类,热敏电阻的电阻值会随着温度的变化而改变。

按照温度系数不同分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。

正温度系数热敏电阻(PTC)在温度越高时电阻值越大,负温度系数热敏电阻(NTC)在温度越高时电阻值越低,它们同属于半导体器件,被广泛应用于各种电子元器件中。

热敏电阻通常在有限的温度范围内可实现较高的精度,通常是-90℃〜130℃。

5、铂电阻,又称为铂热电阻,它的阻值会随着温度的变化而改变。

并且铂电阻阻值会随着温度的升高匀速有规律的变大。

铂电阻可分为PT100和PT1000等系列产品,PT100即表示它在0℃时阻值为100欧姆,PT1000即表示它在0℃时阻值为1000欧姆。

铂电阻具有抗振动、稳定性好、准确度高、耐高压等优点,被广泛应用于医疗、电机、工业、温度计算、卫星、气象、
阻值计算等高精温度设备中。

6、集成(IC)温度传感器是将温度传感器集成在一个芯片上、可完成温度测量及信号输出功能的专用IC。

集成(IC)温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控测,不需要进行非线性校准,外围电路简单。

集成(IC)温度传感器按输出信号类型可分为模拟集成温度传感器(LM35) 和数字集成温度传感器(DS18b20)两种。

相关文档
最新文档