第一章线性规划与单纯形法(运筹学教程)
运筹学
11
目录
(三)LP问题的标准型
1.为了讨论LP问题解的概念和解的性质以及对LP问题求 解方便,必须把LP问题的一般形式化为统一的标准型:
minz=c1x1+c2x2+…+cnxn
j =1 a11 x2 + a12 x2 + + a1n xn = b1 a x + a x + + a x = b n 2n n 2 21 2 22 2 简 aij x j = bi (i = 1,2, L , m) s.t 化 j =1 x j ≥ 0( j = 1,2,L , n) am1 x2 + am 2 x2 + + amn xn = bm x1 , x2 , , xn ≥ 0
A ( 0 ,3 ) 10 15 , ) B( 7 7 5 C ( ,0 ) 2
max
Z = 5 x1 + 4 x 2
3 x 1 + 5 x 2 ≤ 15 2 x1 + x 2 ≤ 5 2 x 1 + 2 x 2 ≤ 11 x1 , x 2 ≥ 0
Z=
110 7
2x1+2x2=11
C 2.5
5x1+4x2=0 红线为目标函数的等值线 等值线. 红线为目标函数的等值线
j i= 1
j
(1.4) (1.5) (1.6)
ì n a ij x j = s .t . j = 1 í 1.从代数的角度看: x j 0 1.
b
i
可行解(Feasible Solution): 满足约束条件(1.5)和(1.6)的 解X=(x1,x2,…,xn)T称为可行解。所有可行解构成可行解集, 即可行域。 最优解(Optimal Solution): 而使目标函数达到最大值的可 行解称为最优解,对应的目标函数值称为最优值。 求解LP问题就是求其最优解和最优值,但从代数的角 17 度去求是困难的。 目录
运筹学线性规划与单纯形法
整理课件
16
Max Z= x1-2x2+3x3' -3x3" + 0x4 +0x5 s.t. x1+x2+ x3' - x3" +x4 =7
x1-x2+ x3' - x3" -x5=2
-3x1+x2+2x3' -2x3" =5 x1, x2,x3',x3", x4,x5 0
第一节小结:建立模型;三个组成要素;四种形式; 化为标准形(4个条件5点)
.
9x1+4x2 ≤ 360
90 80 60 40 20
4x1+5x2 ≤200
B C
HI G
Z=70x1+120x2 3x1+10x2 ≤300
0
20 D40 E 60
80 1F00 x1
整理课件
30
二、解的几种可能情况
1.唯一最优解。目标函数直线与凸多边形只有 一个切点; 2.无穷多最优解,目标函数图形与某个约束条 件平行。 3.无界解(无最优解)----可行域无界。一般是 漏了一些约束条件。 4.无可行解----可行域为空。
Ⅰ
Ⅱ 计划期可用能力
2
2
12
1
2
8
4
0
16
0
4
12
2
3
问:应如何安排生产计划,才能使总利润最大?
整理课件
3
解:用数学的语言进行描述:
1.决策变量:设产品I、II的产量分别为 x1、x2 2.目标函数:问题要求获取利润最大,该公司获取
利润为2 x1 + 3 x2,令z = 2 x1 + 3 x2,则max z = 2 x1 + 3 x2, max z 是该公司获取利润的目标 值,它是变量x1、 x2的函数,称为目标函数。
运筹学 第一章 线性规划 清华
① ② ③
x2
②
Q3 Q2
Q4
③
3
①
o
4 Q1
x1
*
6
首先取z = 0,然后,使z逐 渐增大,直至找到最优解所对 应的点。
x2
②
Q3
Q4
③
Q2(4,2)
3
①
*
4 Q1
x1
可见,在Q2点z取到最大值。 因此, Q2点所对应的解为最优解。 Q2点坐标为(4,2)。 即: x1 = 4,x2 = 2
5
1.2 图解法 eg. eg. [eg.3]用图解法求eg.1。 max z = 2x1 + 3x2 1x1 + 2x2 ≤ 8 4x1 ≤ 16 4x2 ≤ 12 x1 ,x2 ≥ 0 解: (1)建立x1 - x2坐标; x (2)约束条件的几何表示; (3)目标函数的几何表示; z = 2x1 + 3x2
15
1.4 线性规划解的概念 设线性规划为 max z = CX ① AX = b ② X≥0 ③ 矩阵, (A为行满秩矩阵) A为m × n矩阵, n > m, Rank A = m (A为行满秩矩阵) 为行满秩矩阵 1、可行解:满足条件②、③的X; 可行解:满足条件② 2、最优解:满足条件①的可行解; 最优解:满足条件①的可行解; 条件 子矩阵, 则称B 3、基:取B为A中的m × m子矩阵,Rank B = m,则称B为线性 中的m 规划问题的一个基。 规划问题的一个基。 取B = (P1,P2,,Pm) ,P Pj = (a1j,a2j,,amj)T ,a 则称x1,x2,,xm为基变量,其它为非基变量。 则称x ,x 为基变量,其它为非基变量。
运筹学第一章
30
1.1.3解的概念
概念: 1、可行解:满足所有约束条件的解。 2、可行域:即可行解的集合。所有约束条件的交 集,也就是各半平面的公共部分。满足所有约 束条件的解的集合,称为可行域。 3、凸集:集合内任意两点的连线上的点均属于这 个集合。如:实心球、三角形。线性规划的可 行域是凸集。
OR1
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
请问该 医院至 少需要 多少名 护士?
5
例题2建模
目标函数:min Z=x1+x2+x3+x4+x5+x6 约束条件: x1+x2 ≥70
x2+x3 ≥60 x3+x4 ≥ 50 x4+x5 ≥20 x5+x6 ≥30 非负性约束:xj ≥0,j=1,2,…6
OR1
6
例题3:运输问题
三个加工棉花的加工厂,并且有三个仓库供应棉花,各 供应点到各工厂的单位运费以及各点的供应量与需求量 分别如下表所示:问如何运输才能使总的运费最小?
OR1
14
总
结
从以上 5 个例子可以看出,它们都属于优化问题,它们 的共同特征: 1 、每个问题都用一组决策变量表示某一方案;这组决 策变量的值就代表一个具体方案,一般这些变量取值是 非负的。 2 、存在一定的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示。 3 、都有一个要求达到的目标,它可用决策变量的线性 函数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。
第一章 线性规划与单纯形法
第一章线性规划与单纯形法线性规划的英文名称为“Linear Programming”,简称LP,它是运筹学中发展最早、理论与计算方法最成熟的分支,应用十分广泛。
线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好(如产量最多,利润最大,成本最小)。
简单地讲,也就是资源的最优利用问题。
这类问题是在生产管理和经营活动中经常会遇到的。
早在1823年法国数学家傅里叶(Fourier)就提出了与线性规划有关的问题。
1939年,前苏联的经济学家康托洛维奇(Канторович)发表了重要著作《生产组织与计划中的数学方法》,书中针对生产的组织、分配、上料等一系列问题,提出了线性规划的模型,并给出了“解乘数法”的求解方法。
当时这个工作未引起足够的重视。
1947年美国数学家丹捷格(Dantzig)提出了线性规划的一般数学模型和求解线性规划问题的通用方法——单纯形法(Simplex method),这标志着线性规划这一运筹学的重要分支的诞生。
此后,对线性规划的研究日渐受到关注。
1960年康托洛维奇再次发表了《最佳资源利用的经济计算》一书,受到国内外的重视,为此他获得了诺贝尔经济学奖。
此外,阿罗、萨缪尔逊、西蒙、多夫曼和胡尔威茨等一批经济学家也因在线性规划研究中的贡献而获得了诺贝尔奖。
在这批经济学家的努力下,线性规划的理论得到了不断的完善,已发展成为一门成熟的理论。
今天,它已成为一个标准的工具,被广泛地应用于工业、农业、交通运输、军事和经济等各种决策领域,为世界上许多具有相当规模的公司和商业企业节省了数千乃至数百万美元的成本。
本章首先通过几个应用实例,引出线性规划问题并建立其数学模型,介绍线性规划的一些基本概念以及简单情形下的几何解法图解法,然后介绍线性规划的基本理论,讨论它的一般求解方法单纯形法,最后,介绍运用软件WinQSB解线性规划问题。
第一节线性规划问题的数学模型一、线性规划问题的实例在生产管理和经营活动中,通常需要对“有限的资源”寻求“最佳”的利用或分配方案。
第一章线性规划及单纯形法
第一章线性规划及单纯形法6.6单纯形法小结Drawingontheexampl,thetwoaxisinterceptsareplotted.2、求初始基可行解并进行最优性检验Cj比值CBXBb 检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000令非基变量x1=0,x2=0,找到一个初始基可行解:x1=0,x2=0,x3=8,x4=12,x5=36,σj>0,此解不是最优(因为z=3x1+5x2+0x3+0x4+0x5)即X0=(0,0,8,12,36)T,此时利润Z=03、寻找另一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9主元首先确定入基变量再确定出基变量检验数?j81010060101/2012300-21x3x2x5050-30300-5/20Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9令x1=0,x4=0,得x2=6,x3=8,x5=12,即得基可行解X1=(0,6,8,0,12)T此时Z=30σ1=3>0,此解不是最优迭代4、寻找下一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010060101/2012300-21x3x2x5050-30300-5/208-4检验数?j40012/3-1/360101/204100-2/31/3x3x2x1053-42000-1/2-1令x4=0,x5=0,得x1=4,x2=6,x3=4,即X0=(4,6,4,0,0)T?j<0最优解:X=(4,6,4,0,0)T最优值:Z=42小结:单纯形表格法的计算步骤①将线性规划问题化成标准型。
②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。
管理运筹学 易错判断题整理
× 5 如果运输问题或者转运问题模型中,Cij 都是产地i到销地j的最小 运输费用,则运输问题同转运问题将得到相同的最优解。
√
第三章:目标规划
主要内容: 1 描述目标规划建模的思路以及他的数学模型同一般线性 数学模型的相同和不同点。 2 解释下列变量:1正负偏差变量 2绝对约束和目标约束 3 优先因子与权系数。 3 目标规划图解法的步骤。 4 目标规划 目标函数特点。 判断题: 1 目标规划模型中,可以不含有绝对约束但是必须含有目 标约束。
第一章:线性规划及单纯形法
2.1单纯形法和两阶段法大M法 主要内容
1 线性规划数学模型的结构及各要素的特征。 2 求解线性规划时可能出现哪几种结果。 3 叙述线性规划问题的可行解、基解、基可行解、最优解 的概念及上述解之间的关系。
4 单纯性法的计算步骤,如何在单纯性表中判别问题是具 有唯一最优解、无穷多最优解、无界解。
√ 4 动态规划的基本方程保证各阶段内决策的独立进行,可以不考虑这之前和之后 决策的如何进行。
√
第六章:网络规划
主要内容:
6.1 1 通常用G=(v,e)表示一个图,试描述符号V,E及表达式的含义。 2 解释下列名词,说明区别。1 端点,相邻,关联边, 2 环,多重边,简单图 3链,初等链 4. 圈,初等圈,简单圈。 5.回路,初等路6.节点的次,悬挂点,悬挂边,孤立点 7. 连通图,连通分图 ,支撑子图8. 有向图,基础图,赋权图 3 描述树,图的支撑树,最小支撑树的概念。 4 描述Dijkstra算法的基本思想和步骤。 5 最大流问题是线性规划问题,说明其线性形式。 6 什么是增光链,为什么不存在关于可行流f的增广链,就是最大流。 7截集,截量以及最大流最小截量定理。 8 最小费用最大流的概念。
运筹学[第一章线性规划与单纯形法]山东大学期末考试知识点复习
第一章线性规划与单纯形法1.线性规划问题的数学模型(1)一般形式(2)标准型式]2.数学模型化为标准型(1)若目标函数实现最小化,则min z=-max z'(令z'=-z)(2)若约束方程为不等式,则若约束方程为“≤”不等式左端+松驰变量(≥0)=右端若约束方程为“≥”不等式左端-剩余变量(≥0)=右端(3)若存在取值无约束的变量x k(1≤k≤咒),则在标准型中x k=x'k-x"k(其中x k=x',x"k≥0)3.线性规划的解线性规划问题:(1)可行解:满足约束条件②和③的解X=(x1,x2,…,x n)T。
(2)最优解:使目标函数①达到最大值的可行解。
(3)基:设A为约束方程组②的m×n阶系数矩阵,设n>m,其秩为m,B 为矩阵A中的一个m×m阶的满秩子矩阵,则称B为线性规划问题的一个基。
不失一般性,设B中每一个列向量P j(j=1,2,…,m)称为基向量,与基向量PJ对应的变量x j称为基变量。
除基变量以外的变量为非基变量。
(4)基本解:在约束方程组②中,令所有非基变量x m+1=x m+2=…=x n=0,此时方程组②有唯一解X B=(x1,x2,…,x m)T,将此解加上非基变量取0的值有X=(x1,x2,…,x m,0,0…,0)T,称X为线性规划问题的基本解。
(5)基本可行解:满足非负条件③的基本解。
(6)可行基:对应于基本可行解的基。
4.初始基可行解的确定(1)直接从A中观察到存在一个初始可行基。
(2)对所有约束条件是“≤”形式的不等式,可利用化为标准型的方法,在每个约束条件左端加上一个松弛变量,这m个松弛变量就构成一个基变量,则对应的m个向量组成的单位矩阵B就是线性规划问题的一个可行基。
(3)对所有约束条件是“≥”形式的不等式以及等式约束情况,采用人造基的方法。
即对不等式约束的左端减去一个非负的剩余变量后,再加上一个非负的人工变量;对于等式约束的左端再加上一个非负的人工变量。
运筹学基础及应用第五版胡运权第一章
xi 0
aij
aLj
xL 0
i
∴ P1 , P2,······,PL-1, PL+1,······ Pm, Pj 线性无关。
∴ X1 也为基本可行解。
四、最优性检验和解的判别
令
,其中 随基的改变而改变
X1 = (x1 0- a1j ,x2 0- a2j ,···,xm 0- amj ,0,···,,···,0)T
必要性:X非基本可行解 X非凸集顶点 不失一般性,设X=(x1,x2,······,xm,0,0,······,0)T,为非基本可行解, ∵ X为可行解,
证:等价于 X非基本可行解X非凸集顶点
又 X是非基本可行解, ∴ P1,P2,······,Pm线性相关,即有 1P1+2P2+······+mPm=0, 其中1,2,······,m不全为0,两端同乘≠0,得 1P1+2P2+······+mPm=0,······(2)
∵ >0, 1->0 ,当xj=0, 必有yj=zj=0
∴
pjyj =
j=1
n
pjyj=b ······(1)
j=1
r
pjzj =
j=1
n
pjzj=b ······(2)
运筹学第一章
第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。
取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。
目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。
2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。
第1章线性规划与单纯形法
线性规划问题的数学模型
7. 线性规划问题的解
线性规划问题
n
max Z cj xj (1) j 1
s.t
n j 1
aij
xj
bi
(i 1, 2,
, m) (2)
x
j
0,
j
1, 2,
, n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
解: Max z = 3x1–5x2’+5x2”–8x3 +7x4 s.t. 2x1–3x2’+3x2”+5x3+6x4+x5= 28 4x1+2x2’-2x2”+3x3-9x4-x6= 39 -6x2’+6x2”-2x3-3x4-x7 = 58 x1 ,x2’,x2”,x3 ,x4 ,x5 ,x6 ,x7 ≥ 0
x1 , x2 0, x3无约束
解:(1)因为x3无符号要求 ,即x3取正值也可取负值,标准 型中要求变量非负,所以
用 x3 x3 替换 x3 ,且 x3 , x3 0
20
线性规划问题的数学模型
(2) 第一个约束条件是“≤”号,在“≤”左端加入松驰变量x4, x4≥0,化为等式;
(3) 第二个约束条件是“≥”号,在“≥”左端减去剩余变量x5, x5≥0;
11
线性规划问题的数学模型
3. 建模条件 (1) 优化条件:问题所要达到的目标能用线型函数描述,且 能够用极值 (max 或 min)来表示;
(2) 限定条件:达到目标受到一定的限制,且这些限制能够 用决策变量的线性等式或线性不等式表示;
(3) 选择条件:有多种可选择的方案供决策者选择,以便找 出最优方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上页 下页 返回
1914,nchester战斗方程 1935,Bawdsey雷达站的研究 1942,大西洋反潜作战 P.W.Morse协助英国打破德国对英吉利海峡的 封锁:
将反潜攻击由潜艇投掷水雷,改为飞机投掷深水炸 弹。起爆深度由100米改为25米。
运筹学
Operational research
主讲 朱兴亮
上页 下页 返回
绪论
运筹帷幄,决胜千里
运筹=谋划(规划)
上页 下页 返回
第一节 运筹学释义和发展简史
运筹学是一门应用科学,它广泛应 用现有的科学技术知识和数学方法,
解决生产和管理过程中提出的专门
问题,为决策者选择最优方案提供 定量依据。
运筹学——管理科学
可行域中使目标 满足约束条件的决 函数达到最优的 策变量的取值范围 决策变量的值
上页 下页 返回
建立线性规划数学模型的步骤
1、选择适当的决策变量
设决策变量的原则
2、用决策变量表达目标函数
收入或利润极大化 成本或支出极小化
3、用决策变量表达所有的约束条件 4、注意变量的符号约束返回
上页 下页 返回
上页 下页 返回
第三节 运筹学的主要分支
线性规划 非线性规划 动态规划 图论与网络分析 存储论 排队论 对策论 决策论
上页 下页 返回
运筹学的主要内容
第一章 线性规划与单纯形法 第二章 对偶理论与灵敏度分析 第三章 运输问题 第四章 目标规划 第五章 整数规划 第十章 图与网络分析 第十二章 排队论
例 2 环境保护问题
上页 下页 返回
工厂1(工业污水2万m3 )治污成本
长江
1000元/万m3
500万m3
20%自然净化 嘉陵江
朝天门
200万m3 工厂2
(工业污水1.4万m3 ) 治污成本800元/万m3
要求污水含量不大于0.2%(步骤)
?
产品 I
产品 2
上页 下页 返回
第1步 -确定决策变量(设决策变量的 原则)
•设 x1 ——I的产量
x2 ——II的产量
z ——利润
是问题中要确定的未知量, 表明规划中的用数量表示的 方案、措施,可由决策者决 定和控制。
x1
x2
上页 下页 返回
第2步 --定义目标函数
Max Z = x1 + x2
上页 下页 返回
运筹学学习方法
1、课前预习 2、认真听课,适当笔记 3、认真作业
运筹学有一定难度,该课程有一定的研 究性特征;以线性代数和概率论为基础
上页 下页 返回
运筹学 解决问题的主要程序
生产问题 管理问题
建立数学模型 (线性规划数 学模型)
分析求解结果 (对偶问题与 灵敏度分析)
求解数学模型 (图解法与单 纯形法)
上页 下页 返回
第2步 --定义目标函数
Max Z = 2 x1 + 3 x2
上页 下页 返回
对我们有 何限制?
上页 下页 返回
第3步 --表示约束条 件
x1 + 2 x2 8
4 x1
16
4 x2 12
x1、 x2 0
x1
I
设备 1 原材料 A 4 原材料 B 0
利润 2
x2
II 资源限量 2 8 台时 0 16kg 4 12kg
1、资源有限(获成本),要求生 产的产品获得的收入(或利润)最 多。1 2、任务(或产品收入)一定,要 求消耗的资源(或成本)最少。2
上页 下页 返回
线性规划中的两类数学模型1
1、max 总收入或总利润 总成本≤b
返回
上页 下页 返回
线性规划中的两类数学模型2
2、min 总成本 总收入≥b
返回
2)表格单纯形法
上页 下页 返回
1、线性规划问题的提出
将生产经营和管理过程中的决策问题 ——转化成数学模型
上页 下页 返回
•例1: 生产计划问题(步骤)
设备 原材料 A 原材料 B
利润
I x1 II x2 资源限量 1 2 8 台时 4 0 16kg 0 4 12kg
23 上页 下页 返回
如何安排生产 使利润最大
3
上页 下页 返回
该计划 + 3x2
约束条件 x1 + 2x2 8
4x1
16
4x2 12
x1、 x2 0
x1 x2
上页 下页 返回
问题中要确定的未知量,表
•基本概念
明规划中的用数量表示的方 案、措施,可由决策者决定
和控制。
• 决策变量(Decision variables)
上页 下页 返回
第一章 线性规划与单纯形法
§1 线性规划问题及其数学模型 §2 线性规划问题的几何意义 §3 单纯形法 §4 单纯形法的计算步骤与表格单纯形
法
§5 单纯形法的进一步讨论 §6 应用举例
上页 下页 返回
线性规划(运筹学)主要解决两类问题
企业利润=收入-成本 收入由提供产品或服务获得 成本由消耗的资源承担
上页 下页 返回
§1 线性规划问题
及其数学模型
1. 线性规划问题的数学模型 2. 线性规划的数学模型的一般形式 3. 两个自变量线性规划的图解法 4. 线性规划问题的标准形式 5. 线性规划问题的解的概念
继续 返回
1.1 问题的提出
线性规划是运筹学的一个重要分支。线性 规划在理论上比较成熟,在实用中的应用 日益广泛与深入。特别是在电子计算机能 处理成千上万个约束条件和决策变量的线 性规划问题之后,线性规划的适用领域更 为广泛了。从解决技术问题的最优化设计 到工业、农业、商业、交通运输业、军事、 经济计划和管理决策等领域都可以发挥作 用。它已是现代科学管理的重要手段之一。
• 目标函数(Objective functi它on是)决策变量的函数
• 约束条件(Constraint conditions)
• 符号约束
指决策变量取值时受到
• 可行域(Feasible
的各种资源条件的限制
regio,n通) 常表达为含决策变
• 最优解(Optimal solutio量n的) 等式或不等式。
运送物资的船队及护航舰队编队,由小规模多批次, 改为加大规模,减少批次,这样损失率将减少
上页 下页 返回
上页 下页 返回
上页 下页 返回
141
上页 下页 返回
第二节 运筹学研究的基本特征和基本方法
基本特征:
系统的整体观念 多学科的综合 模型方法的应用
研究的基本步骤
分析和表述问题 建立模型 求解模型和优化方案 测试模型及对模型进行必要的修正 建立对解的有效控制 方案的实施