高速铁路轨道精调

合集下载

高速铁路轨道精调作业论述

高速铁路轨道精调作业论述

高速铁路轨道精调作业论述高速鐵路轨道精调是确保线路开通高速运营安全的重要保证,轨道精调效果的好坏决定着线路开通条件。

轨道精调的目的旨在消除轨道病害,保证轨道的平顺性要求,满足列车高速行驶的需要。

高速铁路轨道调整是在联调联试之前根据轨道小车静态测量数据对轨道进行全面、系统地调整,将轨道几何尺寸调整到允许范围内,对轨道线型(轨向和轨面高程)进行优化调整,消除施工造成的缺陷,合理控制轨距变化率和水平变化率,使轨道静态精度满足350km/h及以上高速行车条件。

无缝线路铺设完成,长钢轨应力放散、锁定后即可开展轨道精调工作。

2 施工流程轨道精调作业程序为:轨道精调准备→CPⅢ平面高程复测→钢轨焊接、放散及锁定→轨道几何状态检查确认→轨道测量(数据采集、格式为CSV)→模拟试算调整→现场位置确定复核→更换扣件及调整→轨道几何状态验收检查确认。

3 轨道精调施工3.1轨道精调外业测量3.1.1全站仪设站作业前进行正倒镜检查全站仪水平角和竖角偏差,如果超过3秒,在气象条件较好的情况下进行组合校准及水平轴倾斜误差(α)校准;检查全站仪ATR照准是否准确,有无ATR的偏差也应少于3秒。

控制好设站精度、棱镜的安装等,自由设站的精度应符合要求,每一测站不大于70m。

全站仪和小车的测量设置次数应该不小于两次,然后取平均值。

全站仪测量设站尽可能设在墩顶位置。

对于连续梁地段要尽量缩短设站距离,如中跨为48米现浇梁,选择大约45米左右为一测站,测量出的数据较70m设站数据的离散性明显减少。

3.1.2轨道状态数据采集组装好轨检小车后,在厂家安装的轨道小车标定器进行标定,每天开始测量前校准一次,气温变化迅速时,需要再次进行校准;校准后在同一点进行正反两次测量,测量值之差应在0.3mm以内。

按精调小车操作程序对轨道逐个承轨台进行测量,观察数据变化,如果出现突变则检查全站仪各项指标是否超限,轨道小车是否异常,钢轨扣件是否拧紧,小车轮子是否沾染杂物,如果确实存在突变,则要记录清楚,以备后查。

高速铁路轨道精调

高速铁路轨道精调

浅谈高速铁路轨道精调摘要: 无砟轨道对线路平顺性、稳定性要求很高,因此线路必须具备准确的几何线性参数,大大提高轨道精调作业精度及工作效率,实现轨道平顺性要求。

关键词:轨道精调静态调整轨检小车数据采集优化调整削峰填谷中图分类号: u238 文献标识码: a 文章编号:轨道几何状态是衡量轨道铺设精度的关键指标,在轨道应力放散及锁定后,应对轨道的几何状态进行精细调整,是轨道的几何状态满足设计及规范要求。

为确保轨道的高平顺性,满足高速行车安全性和舒适性的要求,需要对轨道进行精细调整。

轨道精调的目的是控制轨道平面和高程位置的高精度及很小的轨距和水平变化率,确保直线顺直、曲线圆顺、过渡顺畅,实现动车组的平稳和舒适度。

要实现上述目标,首先是要转变既有的轨道调整理念,通过轨道测量数据和纸上作业,形成调整方案,而不是固有的以弦线道尺为主要手段的局部调整手段。

其次是采用科学的分析调整方法,在波形平顺的前提下,削峰填谷,消除超限处所。

轨道精调目前分为静态调整和联调联试期间的动态调整,静态调整是在联调联试之前根据轨检小车静态测量数据对轨道进行全面、系统地调整,将轨道几何尺寸调整到允许范围内,对轨道线型(轨向和轨面高程)进行优化调整,合理控制轨距变化率和水平变化率,使轨道静态精度满足350km/h及以上高速行车条件。

轨道静态精调流程:准备工作→轨道状态测量→调整量计算→现场标示→轨道调整→轨道复检准备工作cpiii复测对cpiii控制点进行全面复测,对缺损点进行恢复,过程中加以保护。

静态调整很关键,是轨道精调的重心,所以我们一定要重视,静态调整主要分为数据采集和现场实调两步,数据采集就是利用绝对轨检小车采集每个承轨台的空间位置与其实际空间位置的差值,然后利用软件对数据进行处理和优化得出最佳调整方案,现场实调就是技术人员根据调整方案对号入座对扣件进行调整使其达到设计空间位置。

现场实调完以后还得进行复测然后在进行现场扣件调整,直至满足联调联试的条件。

高铁轨道精调课件

高铁轨道精调课件
自动化检测设备
采用自动化检测设备对轨道进行全面、快速、准确的检测,为精 调提供可靠的数据支持。
机器人技术应用
利用机器人技术进行轨道精调作业,减轻人工劳动强度,提高作 业安全性和效率。
行业标准更新与提升
精调标准不断完善
随着高铁技术的不断发展,轨道精调标准也在不 断完善,对精调作业的要求越来越高。
标准化作业流程
的调整和完善。
04 高铁轨道精调注意事项
安全防护措施
01
02
03
04
严格遵守安全操作规程, 确保施工人员人身安全。
设立明显的安全警示标 志,划定安全作业区域。
配备齐全的安全防护设 施,如安全帽、安全带、 防护网等。
定期对施工人员进行安 全教育和培训,提高安 全意识。
质量控制标准
01
02
03
04
调整策略及实施步骤
调整策略
根据测量结果和误差分析,制定 针对性的轨道调整策略,包括调 整量、调整方式和调整顺序等。
实施步骤
按照调整策略,采用专业的调整 工具和设备,对轨道进行精细调 整,确保轨道几何尺寸和平顺性
满足设计要求。
复查验收
在轨道精调完成后,进行复查验 收,检查轨道几何尺寸和平顺性 是否达到设计要求,并进行必要
合理安排施工时间和进度,降低噪音、 振动等对周边居民的影响。
加强施工现场环境管理,保持现场整 洁卫生。
05 高铁轨道精调案例分析
案例一:某高铁线路轨道精调实践
线路概况
介绍某高铁线路的基本情况, 包括线路长度、设计速度、轨
道类型等。
精调方案
详细介绍针对该线路问题制定 的轨道精调方案,包括测量方 案、调整方法、作业流程等。

京沪高速铁路轨道精调专项方案

京沪高速铁路轨道精调专项方案

京沪高速铁路轨道精调专项方案一、背景与意义京沪高速铁路是我国重要的高速铁路干线之一,连接着首都北京和经济中心上海,是国家重点发展的高铁项目。

为了确保铁路运营的安全和稳定,进一步提升铁路的运行效率和服务质量,京沪高速铁路轨道精调工作显得尤为重要。

本方案旨在对京沪高速铁路进行轨道精调,优化轨道结构,提高列车行驶的平稳性和稳定性,从而提升京沪高速铁路的运行水平。

二、工作内容与方法1.数据收集与分析:对京沪高速铁路各站点的轨道数据进行收集和整理,包括轨道末端、道岔、轨距等参数,以及列车运行数据。

对收集的数据进行分析,了解当前轨道状况和存在的问题。

2.轨道测量与检测:利用现代化的测量设备对京沪高速铁路进行轨道测量,检测轨道的偏差、高低差等问题。

通过精确的测量数据,为后续的轨道优化工作提供科学依据。

3.轨道精调方案设计:基于数据分析和测量检测结果,针对京沪高速铁路的具体情况,制定轨道精调方案。

方案包括对不平顺的轨道进行调整与修正,合理设置轨道补偿装置,优化道岔结构,提高轨距的一致性等。

4.轨道精调实施与监测:根据轨道精调方案,组织专业团队对京沪高速铁路进行实际的轨道精调工作,包括轨道调整、轨距调整、道岔优化等。

同时,建立全面的监测体系,对精调后的轨道进行跟踪监测,确保轨道精调效果的稳定和持久。

5.效果评估与改进:针对轨道精调后的效果,进行评估验证。

通过与之前的运行数据进行对比分析,评估轨道精调对列车运行平稳性和稳定性的影响。

同时,根据评估结果,对方案进行改进和优化,以进一步提高铁路运行水平。

三、预期成果与效益1.提升列车行驶的平稳性和稳定性:通过轨道精调工作,优化轨道结构,减小偏差和高低差等问题,提高列车行驶的平稳性和稳定性,降低列车运行时的颠簸和震动,为乘客提供更舒适的出行体验。

2.提高铁路运行效率和服务质量:轨道精调能够使列车在运行过程中减少摇晃和震动,提高运行的稳定性和可靠性,从而提高铁路的运行效率和服务质量,缩短行车时间,提升列车班次,满足旅客出行需求。

高速铁路轨道精调讲解

高速铁路轨道精调讲解
浅谈高速铁路轨道精调
目录
I. 概 念 II. 标 准 III.静态、动态精调方法 IV. 需要注意的几个问题
Ⅰ. 概 念
1、轨道精度 可分为绝对精度和相对精度。 绝对精度:是指轨道的绝对空间坐标,即实测
坐标与设计坐标值的偏差。偏差越小,精度越高。 相对精度:是指轨道各测点坐标的相对偏差。
偏差越小,轨道越平顺。
Ⅰ. 概 念
2、轨道精调 轨道精调不仅是技术问题,也是经济问题。 轨道精调质量对动车的运行品质具有重要影响,
甚至影响安全。 轨道精调工作应引起高度重视。
Ⅱ. 标 准
1、Ⅰ型板施工标准
钢筋砼底座施工标准
项 目 允许偏差(mm)
顶面高程
0/-5
宽度
±5
中线位置
3
平整度
10/3
凸型挡台施工标准
项 目 允许偏差(mm)
1mm/3m 1 5 1 1 5 0.5
0.5mm/2.5m
Ⅱ. 标 准
7、轨道动态验收标准
速度等级
200 ~250km/h
300 ~ 350km/h
标准等级
验收I 验收II III
IV
验收I
验收 II
III
IV
高低(mm)
4
42m波长
轨向(mm)
4
5
11
14
3
5
10
11
5
8
10
3
5、轨道静态几何尺寸允许偏差
项目 轨距(mm)
水平(mm) 轨距变化率
扭曲(三角坑)
高低(mm)
弦长10m 弦长30m
弦长300m
轨向(mm)
弦长10m 弦长30m 弦长300m

高速铁路长钢轨精调施工工法

高速铁路长钢轨精调施工工法

高速铁路长钢轨精调施工工法高速铁路长钢轨精调施工工法一、前言高速铁路长钢轨精调施工工法是用于高速铁路的道砟轨道调整,确保铁轨在运行中的平顺性和稳定性。

本文将介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施和经济技术分析,以及工程实例。

二、工法特点该工法具有以下特点:1. 精细调整:通过对铁轨底盘的调整,实现对铁轨的精细调整,使之符合设计要求。

2. 高效快速:采用机械化作业,大大提高了施工效率,缩短了施工周期。

3. 灵活性强:可根据实际情况进行细致调整,适应不同地质条件和线路特点。

4. 节约成本:采用先进的施工设备和技术,降低了施工成本,提高了工程质量。

三、适应范围该工法适用于高速铁路建设中的铁轨调整工程,可以发挥其实用性和效益性。

四、工艺原理该工法基于实际工程要求和铁路调整的原理,采取一系列技术措施来实现铁轨的精细调整。

其中包括:1.铁轨标高调整:根据设计要求和地质条件,通过调整铁轨的标高高度,保证铁轨在正常使用情况下的均衡和平稳。

2. 轨向调整:通过调整轨枕或者采取轨向改正器,使铁轨在水平和垂直方向上保持适当的线形。

3. 轨距调整:通过调整道岔间隔和道岔角度,使铁轨间的距离符合设计要求,确保列车行驶的平稳和安全。

五、施工工艺1. 施工准备:进行工地勘察和设计,在施工前对施工道路进行平整和修整,准备所需的机具设备和材料。

2. 铺砟层处理:对铺设砟石层的轨道进行整平处理,确保道砟层的平整度。

3. 铁轨安装:安装铁轨,按照设计要求进行标高、轨向和轨距的调整,同时进行检查和调整,确保安装准确。

4. 铺设道砟:将砟石料覆盖在铁轨上,用振动板进行压实和整平,形成稳定的道砟轨道。

5. 精调施工:利用精调车进行铁轨的微调和修整,密切关注轨道的平顺性和稳定性。

6. 质量检验:对施工过程中的质量进行检查和监控,确保施工质量符合设计要求。

六、劳动组织在施工中,需要配备合适的劳动力和技术人员,根据施工工艺的要求进行分工协作,确保施工顺利进行。

高速铁路轨道精调

高速铁路轨道精调
4.测量方案制定要采取相对测量+传统复核+绝对测量的方案。轨检车动 态检查,轨检小车进行全面精密测量,道尺和弦线用于现场调整前后的复 核和标示,通过扣件进行调整,并再次利用传统测量方式和相对测量进行 复核和确认。最后应用绝对测量进行验收。
四、我国高速铁路扣件类型
WJ-7型扣件——无挡肩/轨道板 WJ-8型扣件——有挡肩/轨道板 SFC型扣件 ——无挡肩/轨道板 300型扣件 ——有挡肩/轨道板 Ⅴ型扣件——有挡肩/轨枕
② 导曲线下股高于上股的限值:18号及以上道岔作业验收为0mm,经常 保养为2 mm,临时补修为3 mm。
③轨距偏差不含构造轨距加宽量。
长弦测量作业验收容许偏差管理值
项目 高低 方向
基线长(m) 300 30 300 30
测点间距(m)
容许偏差(mm)
150
≤10
5
≤2
150
≤10
5
≤2
注:当弦长为30m时,相距5m的任意两测点实际矢度差与设计矢度差的 偏差不得大于2mm;当弦长为300m时,相距150m的任意两测点实际矢 度差与设计矢度差的偏差不得大于10mm。
2.相对几何参数是指轨距、水平(超高)及其偏差和变化率,轨向 和高低偏差。偏差越小,轨道越平顺。
相对几何参数控制除了轨距、水平、高低、轨向、三角坑等轨道几 何尺寸外,还包括变化率、线型和长短波不平顺等是轨道状态表述的基 本元素,也是轨道状态控制的关键元素。
二、轨道不平顺
1.轨道不平顺的分类
①五大不平顺:扭曲、高低、水平、轨距、方向。 ②复合不平顺:在轨道同一位置,垂向和横向不平顺共存形成的双 向不平顺。 ③曲线头尾:曲线圆缓点区、缓直点区、超高、正矢、轨距顺坡起 点、终点不一致或不匹配形成的几何偏差。 ④周期性不平顺:多波连续,基频波的波长相同,幅值具有随机性。 尤其是方向连续三波以上不平顺,对晃车和舒适性影响很大。

高速铁路无砟轨道精调应注意的几个问题

高速铁路无砟轨道精调应注意的几个问题
择 的“ 点 ” 起 点 , 零 为 采用 “ 袖子 ” 弦 的方 法 , 弦 向作 用 套 拉 逐
由于 受扣 件 安装 状态 、工程 遗 留 的各类 异 物等 影 响 , 无 砟 轨道 只进 行 一遍 平推 精 调难 以达 到较 高 的平顺 性 , 建议 在 联 调联试 前 至少 进行 两遍及 以上 平推 精调 。 4 道岔 、 曲线 等关 键地 段精调 作业应 注 意 的问题 竖 ( ) 岔 精调 作 业 实 行单 元 管 理 。 即道 岔两 端 各 20m 1道 0 直 线段 从测 量 数据 采集 到数 据 分析 纳入 道岔 区管理 , 保证 线 岔结 合 部平 顺 性 达 到标 准 , 一 端 正 线有 多 组 道 岔 , 将 一 若 应 个 行别 全部 道岔 纳入 一个单 元进 行测 量 、 作业 。 精调 ( ) 道 岔 区 进行 精 确 测 量 、 2在 制定 调 整 方 案 时 应综 合 考
整, 防止道 岔 中线 与线路 出现偏高 、 矢严 格按 理 论计 算均 匀 递减 , 缓 正 并加 工 部 分 0 m级 的调 高 垫板 和轨 距 块 , “ 缺 陷” .m 5 按 零 调 整。 二是基 于 目前我 国高 速铁路 运 营动车 组轴距 一般 在 2 ~ . 5
称 “ 点 ” 拉 2 ~ 01 长 弦 ( 长 过长 会 影 响 精 度 )校 核 每 零 ) 0 3 I T 弦 ,
个 承 轨 台调 整 量 , 弦线 和 道尺 实 际检 查 数 据 为 主 , 定 最 以 确 终调 整量 , 调整 基 准轨 ; 准轨 调整 到位 , 基 再依 据轨 距 和轨 距 递减 率 调 整另 外 一 股钢 轨 ; 该处 平 面 调 整完 成 后 , 以上 述 选
() 轨 、 轨 降低值 的调 整 。尖轨 、 3尖 心 心轨 的降低 值若 超 出允 许 范 围 , 速 列 车走 行 轨迹 发 生 变化 , 接 影 响 尖轨 与 高 直 基本轨 、 心轨 与翼 轨 受力 的合 理过 渡 , 至影 响 高 速 列 车 的 甚 运 行 平稳 和安 全 。 因此 高 速道 岔轨 道几 何 尺寸 精调 时 , 对 应

哈大客运专线高速铁路轨道精调作业指导书

哈大客运专线高速铁路轨道精调作业指导书

精调作业指导书一、工程概况哈大客运专线TJ-1标无砟轨道采用CRTS-Ⅰ型板式无砟轨道结构,扣件采用WJ-7B(G)轨道扣件系统。

直属大队无砟轨道精调自鞍辽特大桥0#台开始,到鞍辽特大桥586#台结束,全段总长19.178双线公里。

静态调整计划工期10月初开始至11月中旬,动态调整结合动车试验进行。

二、施工方案轨道精调工作在长钢轨铺设完成,并在设计轨温范围内放散、锁定后开展,哈大TJ-1标设计锁定轨温分区间和里程从12±3℃~25±5 ℃不等。

轨道精调分为静态调整和动态调整两个阶段。

静态调整阶段主要根据轨检小车静态测量数据对轨道几何状态进行不断完善的调整过程,包括对轨道线型(轨向和高低)进行优化调整,合理控制轨距变化率和水平变化率,使轨道静态精度满足规范要求。

动态调整阶段主要通过对动检车的数据进行分析,利用静态调整的方式对轨道进行调整。

通过两个阶段的调整,最终使得无砟轨道轨道状态满足动车组高速运行的舒适性和安全性要求。

无砟轨道静态平顺度允许偏差三、准备工作轨道精调前的准备工作主要包括轨道板的复测、扣件安装、CP Ⅲ的复测。

3.1轨道板的复测3.1.1轨道板复测流程图为保证后期钢轨的铺设及轨道精调,轨道板灌浆后7天或砂浆强度达到0.7MPa后,及时对轨道板进行复测,复测内容包括:高程、中线位置、CA砂浆四角离缝。

其中高程、中线位置复测采用螺栓孔速调标架的方法(与精调方式同)。

3.1.2轨道板复测结果轨道板复测后,应与前期精调数据及时进行分析对比,发现有下列情况者,必须揭板重新灌浆。

⑴轨道板横向或高程偏差;⑵凸台树脂厚度、CA砂浆四角离缝超标时。

3.2扣件安装WJ-7型扣件最大特点是对轨道方向及轨距无级调整。

但也因此带来了安装、调整的不便,增加了调整的工作量。

根据哈大公司要求,铺轨到达前7天,线下单位应完成除轨下橡胶垫板和绝缘块以外所有扣件的安装工作。

3.2.1扣件组成部分WJ-7型扣件由T型螺栓、螺母、平垫圈、弹条、绝缘块、铁垫板、轨下垫板、绝缘缓冲垫板、重型弹簧垫圈、平垫块、锚固螺栓和预埋套管组成,此外为了钢轨调高需要,还包括轨下调高垫板和铁垫板下调高垫板。

高速铁路轨道精调-PPT

高速铁路轨道精调-PPT
3)仪器的校核。
24
Ⅲ. 静态、动态精调方法
3、轨道精调前应做的工作
4)CPⅢ测量网的复合。 5)线路设计平纵断面资料核对。重点复核轨面高程、 中线、坡度、竖曲线、平面曲线、超高等关键参数。 6)调整扣件的准备。 7)扣件系统安装情况的检查。包括:安装的正确性、 扭矩是否达到标准。
25
Ⅲ. 静态、动态精调方法
(5)宜选择阴天、无风、日落2小时、日出前、气候条 件稳定的时段进行;
(6)测距应根据气候条件修正。
27
Ⅲ. 静态、动态精调方法
4、轨道精调方法
(7)一次测量长度不宜大于60m;两站重叠不少于10根轨 枕;横向、高程偏差不应大于2mm,否则应采用线性或函 数方式进行顺接,变化率应小于1mm/10m。 (8)一天测量长度不宜超过600m。
18
Ⅱ. 标 准
项目
轨距(mm)
轨距变化率
水平(mm)
三角坑(水平变化率)
5m/30m
高低(mm)
150m/300m
10m弦线
5m/30m
轨向(mm)
150m/300m
10m弦线
正矢(mm)
20m弦线
6、沪杭线作业标准
验收标准 ±1
1/1500 1
2mm/3m 2 10 2 2 10 2
作业标准 -1~0 1/3000 1
21
Ⅲ. 静态、动态精调方法
1、轨道静态精调的时机
1)轨道精调应在长钢轨铺设、应力放散、锁定形成 无缝线路,焊接接头打磨后开始。 2)道岔精调应在直、侧股与正线、到发线焊联、接 头打磨后进行。
22
Ⅲ. 静态、动态精调方法
2、轨道动态精调的时机
轨道动态精调是在联调联试期间,根据轨道动态检测、 人工添乘情况对轨道个别晃车处所进行几何尺寸调整,以 进一步提高动车的安全性、平稳性和舒适性。

高速铁路有砟轨道精调施工工法

高速铁路有砟轨道精调施工工法

高速铁路有砟轨道精调施工工法高速铁路有砟轨道精调施工工法一、前言近年来,高速铁路建设取得了飞速的发展,有砟轨道作为铁路线路建设的主要形式之一,对于保证列车行驶的平稳性和安全性具有重要意义。

本文将介绍一种高速铁路有砟轨道精调施工工法,该工法具有以下几个特点。

二、工法特点• 精确调整:该工法采用先进的技术手段和精密的设备,能够实现对有砟轨道的精确调整,确保轨道线路的水平度和平顺度。

• 施工效率高:相比传统的调整工法,该工法在减少施工时间的同时,提高了施工效率,节约了人力和物力资源。

• 技术要求低:该工法操作简单,技术要求相对较低,能够降低施工人员的技能门槛,提高工人的施工效率。

三、适应范围该工法适用于高速铁路等有砟轨道的精细调整,尤其适用于有砟轨道弯道段、特殊地质条件下的轨道实施、轨道道床沉降调整等情况。

四、工艺原理该工法通过利用激光测量仪、数控机械设备等先进工具,结合实际工程情况,采取多种技术措施进行轨道线路的精确调整。

1. 第一步:激光测量仪测量轨道线路的水平度和高程。

2. 第二步:根据测量结果,通过调整道床、轨枕等方式对轨道线路进行调整,确保轨道线路的水平度和平顺度。

3. 第三步:使用数控机械设备对轨道进行修整,确保轨道的几何形状符合设计要求。

4. 第四步:经过若干次的测量和调整,达到设计要求的高速铁路有砟轨道。

五、施工工艺1. 准备工作:确定施工区域,清理施工现场,安装激光测量仪和数控机械设备。

2. 水平度测量:利用激光测量仪对轨道线路进行水平度测量,记录测量结果。

3. 调整工程:根据测量结果,调整轨道道床和轨枕,使轨道线路达到水平状态。

4. 数控机械修整:使用数控机械设备对轨道进行修整,确保轨道几何形状的符合设计要求。

5. 反复测量和调整:重复进行水平度测量、调整工程和数控机械修整,直至轨道达到高速铁路的施工要求。

六、劳动组织施工过程中,需要组织技术人员、激光测量员、机械操作工、助理人员等,确保施工工艺质量和施工进度。

高速铁路无砟轨道精调技术讲座

高速铁路无砟轨道精调技术讲座

五、轨道精调作业分类
轨道精调 六、轨道精调技术 (一)轨道精调作业程序及要领 (二)轨道质量分析适算表 (三)轨道WJ-7型扣件精调技术 七、总结
3
培训对象: (1)高铁精测精调人员适应性培训 (2)高铁线路维修岗位人员任职资格培训 课时安排:1课时 课程重点:轨道精调作业程序及要领、WJ-7型扣件 精调技术 课程难点:WJ-7型扣件精调技术
轨道水平是指两股钢轨的顶面,在直线地段应保持在同一水平面。
项目 轨距(mm) 水平 (mm) mm) 水平( 作业验收 容许偏差 高低(mm)
轨向(mm) 扭曲 (mm/3m)
容许误差2mm
轨距变化率
1/1500
高低为钢轨沿纵向高低偏差,用10米弦测量最大矢度值。
项目
轨距(mm) 水平(mm) mm) 高低( 高低 (mm) 轨向(mm) 扭曲 (mm/3m) 轨距变化率
普速铁路
高速铁路运行速
度快,平顺性要求高,
因此,轨道精度要求
也很高。
对高速铁路相应的检测、维修手段也必须改变。
光靠一双眼睛、一根弦线、一把道尺为主要检测手
段的“普铁”方式,在高铁时代是远远达不到精度
要求的。
一双眼睛 一根弦线 一把道尺
三、高速铁路无砟轨道静态几何尺寸容许偏差
200~250km/h线路轨道静态几何尺寸容许偏差管理值
2.调整量
从轨道调整量表看出,精调作业的主要内容为 (1)调整左、右轨的高程 (2)调整左、右轨的平面
(三)轨道精调作业程序
1.班前安全教育、技术交底
2.进网前清点机具材料
3.作业方案标识
(1)高程调整标示:统一标识在钢轨轨顶上, “+”表示抬 道,“-”表示落道,当钢轨调高量大于15mm时,用S3型螺旋

浅谈高速铁路无砟轨道精调技术

浅谈高速铁路无砟轨道精调技术

浅谈高速铁路无砟轨道精调技术高速铁路轨道内、外部几何形态是保证动车组安全舒适运行的基础,因此无缝线路铺设后必须通过静态和动态检测来进行轨道精调工作,在运营期间,也需要按照一定周期检查轨道的几何形态,对轨道结构进行维修以达到轨道平顺度的允许偏差要求。

标签:高速铁路;无砟轨道;静态精调;动态精调高速铁路无砟轨道施工是个多工序过程,在众多工序中,精调工序是其中关键的工序。

轨道精调工作在无缝线路铺设完成后,长钢轨应力放散、锁定后即可开展。

轨道精调可分为静态调整和动态调整两个阶段。

1 静态精调静态调整是在联调联试之前,根据轨道静态测量数据将轨道几何尺寸调整到允许范围内。

合理控制轨距、水平、轨向、高低等变化率,对轨道线型进行优化调整,使轨道静态精度满足高速行车条件。

轨道精调主要采用精调小车进行检测,主要分为以下几个步骤:轨道控制网复测——轨道静态测量——轨道平顺度模拟试算——现场位置确定及复核——轨道静态调整——轨道状态检查确认。

1.1 CPⅢ控制网复测及使用经过了整个施工阶段,由于构筑物的沉降、箱梁的徐变,以及环境温度的变化,都会影响CPⅢ控制网的精度,所以在静态精调以前,必须复测整个CPⅢ控制网,重新审核评估。

CPⅢ平面控制网的复测工作主要以下几项内容:检查CPⅢ点有没有破坏、用全站仪对全线的CPⅢ点进行复测、对所测数据进行分析是否满足精度要求。

先对CPⅢ控制网标志进行全面检查,若有松动、损坏及埋设位置不正确的重新埋设并记录。

CPⅢ控制网应与原测网一致,采用自由设站交会网(后方交会)的方法测量。

复测宜联测与原测相同的高等级CPⅠ、CPⅡ控制点。

对于CPⅢ控制网复测成果存在系统性偏差或超限控制点超过20%的路段,应报设计院重新评估。

1.2 静态精调技术1.2.1 现场调整施工流程根据轨检小车采集的数据及软件调整的情况计算挡块及轨垫板材所需的规格,根据轨枕编号进行挡块及轨垫板的散放、松扣件、安装调整组件、放回并锁紧钢轨、重新测量;如有不合格的地方再进行一次调整。

项目2 高速铁路无砟轨道精测精调《高速铁路线路养护维修》

项目2 高速铁路无砟轨道精测精调《高速铁路线路养护维修》

2.1 高速铁路轨道不平顺修理
3. 波长评价
波长评价能够从“波长变化区域”及“敏感波长”两部分对设备进行补充评价,使得评价体系更 全面、更有可操作性。 1 建立数据库:为了更真实地反应波谱,弃开TQI200m区段采用0.25m单点进行数据建立。 2统计分析:利用数理统计方法剔除异常点并进行期望均值处理,进而找出期望波谱变化区域 及 敏感波长。 3波长评价:利用期望波谱线同下次波谱进行的对比,判断波域及敏感波长,进而结合峰值评 价 、均值评价准确判断病害原因。同时利用敏感波长指导试算模拟调整及现场作业避开敏感波长。
2 “先整体后局部” 可先基于整体曲线图,大致标出期望的线路走线或起伏状态,先整体上分析区间调整量 再局部精调。
3 “先轨向后轨距” 轨向的优化通过调整高轨的平面位置来实现,低轨的平面位置通过轨距及轨距变化率来控制。
2.1 高速铁路轨道不平顺修理
4)“先高低后水平” 高低的优化通过调整低轨(基准轨)的高程来实现,高轨的高程利用超高和超高变化率来控制。
2.1 高速铁路轨道不平顺修理
2.1.2 轨道状态不平顺分析(动、静态结合)
通过对设备进行轨道状态动态不平顺分析,根据生产作业能力进行分级管理,制定年、月、 旬、日维修计划。从宏观上近似准确地判断了病害地点,但实际静态精测情况能否很好吻 合,则需进行静态精密测量验证,动、静态结合分析、验证最终决定精调地点。
04
根据“削峰填谷、平顺性”的原理 进 行模拟调整,并生成模拟调整量表

05
根据扣件系统、轨道类型结合模拟调整 量表制定精调作业指导书。
2.1 高速铁路轨道不平顺修理
2. 轨道精调基本原则
1 明确基准轨 Slabrep报表中,导向轨为“-1”表示右转曲线,平面位置以左轨(高轨)为基准,高程 以右轨(低轨)为基准;导向轨为“1”表示左转曲线,平面位置以右轨(高轨)为基准, 高程以左轨(低轨)为基准。

高速铁路无砟轨道钢轨精调过程控制关键技术

高速铁路无砟轨道钢轨精调过程控制关键技术

高速铁路无砟轨道钢轨精调过程控制关键技术随着高速铁路建设的发展,无砟轨道钢轨的精调过程受到越来越多的关注。

在铁路运输中,无砟轨道钢轨经常会出现一些问题,例如不平整、曲率偏差、轨距不准等。

这些问题不仅会影响列车的运行稳定性和安全性,而且还会缩短钢轨的寿命,增加维修成本。

因此,针对高速铁路无砟轨道钢轨的精调过程进行控制是非常重要的,可以提高铁路运输的效率和安全性。

1. 轨道测量技术的应用在精调无砟轨道钢轨的过程中,轨道测量技术是非常重要的。

通过使用高精度的测量仪器和相应的软件,可以对钢轨的几何形状和位置进行精确测量,并对其进行分析和评估。

例如,可以测量轨距、曲率、高度差等参数,并根据实际情况调整钢轨的位置和高度。

通过轨道测量技术,可以达到精确控制无砟轨道钢轨的目的,提高铁路运输的效率和安全性。

2. 实时监控系统的使用3. 自动化控制技术的应用自动化控制技术是指利用计算机系统和控制器实现对无砟轨道钢轨自动化控制的技术。

通过将轨道测量技术和实时监控系统与自动化控制技术相结合,可以实现无砟轨道钢轨的自动化控制和调整,并且可以实现钢轨位置的精确控制和调整。

例如,可以根据列车的速度、载重等参数动态调整无砟轨道钢轨的高度和位置,保证列车的稳定性和安全性。

通过自动化控制技术,可以实现无砟轨道钢轨精调过程的自动化和智能化,提高其运输效率和安全性。

二、总结无砟轨道钢轨精调是高速铁路运输中非常重要的一环。

通过轨道测量技术、实时监控系统和自动化控制技术的应用,可以实现无砟轨道钢轨的精确控制和调整,提高铁路运输的效率和安全性。

在未来的高速铁路建设中,无砟轨道钢轨精调过程的控制将愈加重要,推动铁路运输的智能化、自动化和可持续发展。

高速铁路轨道精调施工技术

高速铁路轨道精调施工技术

高速铁路轨道精调施工技术摘要:高速铁路要求轨道具有高平顺性,除了在轨道施工期间保证精度以外,钢轨应力放散、锁定后的轨道精调是建设高平顺性轨道的关键环节。

轨道精调是铁路安全运营的基础环节,其质量对列车安全、平稳、高速行驶至关重要。

本文针对高速铁路轨道精调目标及施工技术进行分析,以供参考。

关键词:高速铁路;轨道精调施工技术一、高速铁路轨道精调对于高速铁路轨道精调施工来说,先进行整体调整,后进行局部调整,先进行轨向调整,后进行轨距调整,先进行高低调整,后进行水平调整是施工中必须遵守的处理原则。

在无砟轨道长轨铺设完毕且铁路线路锁定之后一直到铁路开通运营的期间,应用铁路轨道的几何状态测量仪器对铁路线路进行微小的、局部的状态调整,确保列车后续处于高速平稳的运行状态,这也就是高速铁路轨道精调的主要工作内容。

高速铁路的轨道精调施工可以分为两个部分,第一部分为静态精调施工,第二部分为动态精调施工,其中主要内容集中在静态调整这一部分,静态精调施工是指,在高速铁路轨道网络进行正式联合调试之前,对高速铁路轨道的静态数据收集分析,根据数据分析结果判断轨道中存在的各类状态缺陷,然后制定对应的调整方案,优化铁路轨道状态。

静态精调施工达标之后,才能开展后续的联合调试工作。

铁路精调动态调整过程是指根据对于联合调试阶段轨道相关动态数据进行收集分析之后,判断其中是否有无存在异常,然后将数据进行比对,采取调整措施消除轨道存在的异常问题,通过轨道精调施工能够充分保证其平顺性,确保高速列车运行期间能够满足舒适度要求,达到相应的安全运行标准。

二、高速铁路轨道精调目标分析之所以要进行轨道精调施工,主要目标就是确保轨道平面和其高程位置处于精准状态,保证轨道具有较小的轨距及水平变化率。

使得高速铁路轨道曲线处于圆滑状态、直线处于顺直状态、过渡区域流畅,满足平顺运行的标准。

想要实现这一目标的,需要优化固有的轨道调整理念,借助轨道的测量数据和纸上模拟等方式明确轨道调整方案,而不是应用传统的局部调整方式。

高速铁路轨道平顺性检测及精调技术浅析

高速铁路轨道平顺性检测及精调技术浅析

高速铁路轨道平顺性检测及精调技术浅析摘要:轨道平面形状的舒适度对高铁线路的精细调整起着非常重要的作用,是高铁施工和行车安全的主要影响因素。

在此基础上,完善高铁轨面平面度的理论与计算模型,并针对轨面平面度的要求,建立适合高铁轨面平面度的精调式全站仪轨面平面度的优化设计模型。

关键词:高速铁路;轨道几何平顺性;轨道精调目前,国内多条正在建设或正在运行的旅客干线,其运行时速均可超过250 km/h,对其安全性、平顺性及舒适度提出了更高的要求。

本项目以检测轨台精调为核心,基于检测轨台精调检测结果及平稳性控制目标,通过对轨台精调检测结果及平稳性的分析,实现对轨台直线度的最优,实现车轮与钢轨的最优配合,从而提升行车安全性、平稳性及舒适性。

从这一点上,在精密调整中,轨道的几何舒适性是其关键。

但实际应用中发现,采用该方式对高速铁路进行精细调节时,常需经过多轮的反复调节,方能达到预期的效果。

以提升铁路精调工程建设的品质与速度为目标,重点开展基于理论分析与数值模拟的铁路精调线设计与优化、铁路工程建设与运营管理等方面的理论与技术创新、工程建设与管理创新等方面的工作与理论技术支撑等方面的深入研究。

1轨道平顺性指标1.1静态指标按照TB10754-2010 《高速铁路轨道工程施工质量验收标准》中规定的线路静舒适性的主要技术参数,绘制了线路静舒适性的曲线。

在舒适性指数中,高低与轨向是最为关键的两项,高低与轨向是指轨道在纵向上的高低与轨向之间的偏差。

图1 高速铁路轨道平顺性指标1.2动态指标铁路的动态平顺性指数由两个主要的因素组成,一个是由动力探测得到的铁路几何状况,另一个是由列车的动力反应得到的铁路几何状况,这两个因素都是由铁路的动力探测得到的。

动态响应的常规检测内容包括了:轮轨垂直和横向作用力、脱轨系数、轮重减载率和轮轴横向力、转向架构架和轴箱的横向和竖向加速度等车辆动态响应稳定性指标、车体横向和竖向加速度、车体平稳性指标、车体横向加速度变化率等。

高速铁路有砟轨道精调施工工法(2)

高速铁路有砟轨道精调施工工法(2)

高速铁路有砟轨道精调施工工法高速铁路有砟轨道精调施工工法一、前言随着高速铁路建设的不断推进,有砟轨道精调施工工法在铁路施工中起着重要的作用。

该工法能够有效改善铁路线路的平整度和稳定性,提高列车运行的舒适性和安全性。

本文将详细介绍有砟轨道精调施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及相关的工程实例。

二、工法特点有砟轨道精调施工工法通过调整砟石的厚度、布放密度和固结度,使轨道线路达到设计要求,具有以下特点:1. 精确度高:能够精确控制砟石的厚度和布放密度,保证轨道线路的平整度和强度。

2. 高效性:采用先进的施工工艺和机具设备,能够快速完成施工任务,提高工作效率。

3. 灵活性强:能够根据不同的设计要求和实际情况进行调整,适应不同地区和不同条件下的施工需求。

4. 成本低:相比于传统施工方法,有砟轨道精调施工工法具有更低的成本,能够降低工程造价。

5. 系统化:引入先进的施工管理技术,实施全过程的质量控制和安全措施,保证施工的质量和安全。

三、适应范围有砟轨道精调施工工法适用于各类高速铁路线路的建设和维护,包括新建线路、改造线路和维修线路。

无论是平原地区、山区还是高寒地区,都能够使用该工法实施精确的轨道调整和修整。

四、工艺原理有砟轨道精调施工工法的理论依据是通过砟石的调整和固结,改善轨道的平整度和稳定性。

在实际工程中,通过以下技术措施实现:1. 砟石调整:根据设计要求,对轨道的砟石进行调整,调整砟石的厚度和布放密度,使轨道线路达到平整度和强度的要求。

2. 砟石固结:通过添加固结剂,提高砟石的固结度和粘结力,增加轨道的稳定性和承载能力。

3. 砟石加固:在轨道的重要部位,采用加固措施,如加设加筋板、增加砟石厚度等,增加轨道的强度和稳定性。

五、施工工艺有砟轨道精调施工工法包括以下几个施工阶段:1. 前期准备:确定施工计划、布置施工场地、组织劳动力和机具设备。

高速铁路轨道精调课件

高速铁路轨道精调课件

案例二:沪杭高铁轨道精调
精调背景
沪杭高铁连接上海和杭州两大城市,是长三角地区交通网络的重 要组成部分。
精调措施
针对沪杭高铁的曲线段轨道进行精调,优化曲线半径和超高,提高 列车过弯的平稳性和安全性。
精调效果
经过精调后的沪杭高铁曲线段轨道,列车过弯更加平稳,减少了轮 轨磨耗和车辆晃动,提高了旅客的舒适度。
轨道几何尺寸调整
轨距调整
根据设计要求,对轨道 的轨距进行精确调整, 确保列车运行的安全性
和稳定性。
水平调整
调整轨道的水平状态, 确保轨道的平直度和列
车的平稳运行。
超高调整
根据设计要求,对轨道 的超高进行精确调整,
提高列车的舒适度。
方向调整
调整轨道的方向,确保 列车的直线运行和曲线
通过的稳定性。
轨道平顺性调整
提高列车运行平稳性
轨道的平顺性和几何尺寸的准确性直 接影响到列车运行的平稳性,精调能 够显著提升旅客乘坐的舒适度。
精调的历史与发展
历史
轨道精调技术随着高速铁路的发展而不断进步,早期的精调方法较为简单,精度和效率较低。随着科技的进步, 现代的精调技术已经实现了高精度、高效率的目标。
发展
未来,高速铁路轨道精调技术将继续向着智能化、自动化、数字化的方向发展,通过引入人工智能、大数据等先 进技术,进一步提高精调的精度和效率。同时,随着高速铁路网络的不断扩展和完善,轨道精调技术的应用范围 也将不断扩大。
短波不平顺调整
消除轨道短波不平顺,提高列 车运行的平稳性和舒适度。
长波不平顺调整
优化长波不平顺,降低列车的 颠簸和振动。
垂向弹性调整
根据需求调整轨道的垂向弹性 ,提高轨道的减震性能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


允许偏差(mm) 2 顶面高程 中线位置 ±2 中心间距 0/2

Ⅱ. 标

Ⅰ型板铺设标准
1、Ⅰ型板施工标准
序号 1 2
中线位置 支撑点处承轨面高程


允许偏差(mm) 2 ±1
3
4 5
与两端凸型挡台间隙之差
相邻轨道板横向偏差 相邻轨道板高程偏差
±5
±2 ±2
Ⅱ. 标

2、Ⅱ型板施工标准
砼底座施工标准
Ⅱ. 标

项目
轨距(mm) 轨距变化率 水平(mm)
6、沪杭线作业标准
验收标准
±1 1/1500 1
作业标准
-1~0 1/3000 1
三角坑(水平变化率)
5m/30m 高低(mm) 150m/300m 10m弦线 5m/30m 轨向(mm) 正矢(mm) 150m/300m 10m弦线 20m弦线
3)脱轨系数:主要原因是横向力过大引起,由于直接危及
行车安全,必须立即处理。
4)横向平稳性:舒适度指标,连续小轨向影响较大。 5)垂向平稳性:舒适度指标,连续小高低影响较大。
Ⅲ. 静态、动态精调方法
7、关于极值管理和均值管理
1)极值管理:根据轨道检测偏差结果,特别是Ⅲ、
Ⅳ级偏差,通过削峰填谷方法,及时处理轨道局部不平
Ⅰ. 概

1、轨道精度 绝对精度控制应包括中线、高程、曲线长度
(包括圆曲线、缓和曲线、竖曲线)控制等。
相对精度控制除轨道几何尺寸外,还应包括 线形,轨向、高低(长、短波)偏差,变化率等。
Ⅰ. 概

1、轨道精度 轨距、水平、高低、轨向、三角坑、变化率是
轨道状态表述的基本元素,也是轨道状态控制的
关键元素。
件稳定的时段进行;
(6)测距应根据气候条件修正。
Ⅲ. 静态、动态精调方法
4、轨道精调方法
(7)一次测量长度不宜大于60m;两站重叠不少于10根轨
枕;横向、高程偏差不应大于2mm,否则应采用线性或函
数方式进行顺接,变化率应小于1mm/10m。 (8)一天测量长度不宜超过600m。
Ⅲ. 静态、动态精调方法
序号 1 2 3


允许偏差(mm) ±5 0/+15 10
顶面高程 宽 度 中线位置
Ⅱ. 标

2、Ⅱ型板施工标准
Ⅱ型板铺设标准
序号
1 2 3 4
中线位置

承轨面高程

允许偏差(mm) 0.5 ±0.5
±0.3 ±0.3
相邻轨道板横向偏差 相邻轨道板高程偏差
Ⅱ. 标

3、双块式施工标准
砼底座施工标准
2mm/3m
2 10 2 2 10 2
1mm/3m
1 5 1 1 5 0.5 0.5mm/2.5m
Ⅱ. 标

速度等级 标准等级 验收I 4 200 验收II 5 III 11
7、轨道动态验收标准
~250km/h
IV 14 验收I 3 300

350km/h III 10 IV 11
验收 II 5
42m波长
Ⅲ. 静态、动态精调方法
3、轨道精调前应做的工作
4)CPⅢ测量网的复合。 5)线路设计平纵断面资料核对。重点复核轨面高程、 中线、坡度、竖曲线、平面曲线、超高等关键参数。 6)调整扣件的准备。 7)扣件系统安装情况的检查。包括:安装的正确性、 扭矩是否达到标准。
Ⅲ. 静态、动态精调方法
4、轨道精调方法
6、轨道动态检测分析
1)减载率:导致减载率超标的主要原因是轨面高低短波不 平顺(波长0.1~3.0m,波幅0.5~1.0mm)。原因:接头不平 顺、扣件缺陷或轨下支撑刚度突变等。
2)横向力:导致横向力偏大的主要原因是轨向连续多波不
平顺、轨向与水平的复合不平顺、接头支嘴等。
Ⅲ. 静态、动态精调方法
6、轨道动态检测分析
Ⅲ. 静态、动态精调方法
9、提高轨道精度的主要措施
2)高度重视轨道测量工作,确保测量数据真实可靠。 3)双块式无砟轨道施工期间要加强对扣件系统的保护, 避免污染、损坏。 4)轨道静态精调之前,应对钢轨、扣件安装状态进行全 面检查,确认后方可进行测量和调整。
Ⅲ. 静态、动态精调方法
4、轨道精调方法
12)道岔精调应建立岔区单元概念。道岔直股应与两
端各不少于250m正线一并测量调整,以控制道岔整体平顺 性。
Ⅲ. 静态、动态精调方法
4、轨道精调方法
13)道岔精调应保直股,顺曲股;先直股,后曲股; 先方向、高低,后轨距、水平。 14)道岔几何尺寸调整好后,再检查调整密贴、棍轮,
浅谈高速铁路轨道精调

I. 概 念

II. 标

III.静态、动态精调方法 IV. 需要注意的几个问题
Ⅰ. 概

1、轨道精度 可分为绝对精度和相对精度。
绝对精度:是指轨道的绝对空间坐标,即实测
坐标与设计坐标值的偏差。偏差越小,精度越高。
相对精度:是指轨道各测点坐标的相对偏差。
偏差越小,轨道越平顺。
最后调整转换和锁闭装置。
15)道岔调整应工电一体,人员固定,形成小组。
Ⅲ. 静态、动态精调方法
5、轨道动态精调方法
1)轨道动态调整,必须坚持“检重于调”的理念。
要根据轨检资料、添乘情况,确定晃车地点。现场必须进
行认真检测,查找问题点、确定调整方案后,方可调整。
否则不能动道。
Ⅲ. 静态、动态精调方法
8、影响轨道精调的主要因素
1)无砟轨道施工过程控制不严,导致施工精度不高。 2)轨道静态测量数据不准确、不真实、不全面。 3)扣件缺陷。扣件清理不彻底、扣件缺损、扣压力不足、 安装不正确、不密贴等。 4)焊缝打磨精度不高。
Ⅲ. 静态、动态精调方法
8、影响轨道精调的主要因素
5)调整方法不当。 6)静态调整标准偏低。 7)动态调整时对检测资料分析不全面、现场查找不 准确、调整不到位。
Ⅰ. 概

2、轨道精调 轨道精调不仅是技术问题,也是经济问题。
轨道精调质量对动车的运行品质具有重要影响,
甚至影响安全。 轨道精调工作应引起高度重视。
Ⅱ. 标

1、Ⅰ型板施工标准
钢筋砼底座施工标准
凸型挡台施工标准
目 允许偏差(mm) 0/-5 顶面高程 宽 度 ±5 中线位置 平整度 3
10/3

-2
4 / 0.8
-3
5 4 1.0
-6
10 8 /
-8
13 10 /
-2
3 3 0.8
-3
5 4 1.0
-5
7 7 /
-6
8 8 /
Ⅱ. 标

8、轨道静态中线、高程允许偏差
1)在满足轨道平顺度要求的情况下,轨面高程允许 偏差为+4/-6mm,靠近站台地段为+4/0mm。 2)轨道中线与设计中线允许偏差为10mm;线间距 允许偏差为+10/0mm。
6)对于测量给出的调整量,现场要用30m弦线、轨距
尺核查,不一致时,以手工测量为准。
Ⅲ. 静态、动态精调方法
4、轨道精调方法
7)现场应采用30m弦线对方向、高低,用轨距尺对轨 距、水平进行核查,之后方可进行轨道状态调整。弦线的 搭接长度应不小于5m。
8)每次松开的扣件不应大于5个,应注意对无缝线
路锁定轨温的影响。
Ⅲ. 静态、动态精调方法
1、轨道静态精调的时机
1)轨道精调应在长钢轨铺设、应力放散、锁定形成
无缝线路,焊接接头打磨后开始。
2)道岔精调应在直、侧股与正线、到发线焊联、接 头打磨后进行。
Ⅲ. 静态、动态精调方法
2、轨道动态精调的时机
轨道动态精调是在联调联试期间,根据轨道动态检测、 人工添乘情况对轨道个别晃车处所进行几何尺寸调整,以 进一步提高动车的安全性、平稳性和舒适性。
5、轨道动态精调方法
2)轨道区段不平顺精调。轨道区段不平顺是指轨道整
体平顺性不良,轨道各项几何参数均存在不同程度的偏差。
⑴轨道质量指数TQI明显偏大(3.6及以上)区段; ⑵成段连续多点出现Ⅰ级偏差;
Ⅲ. 静态、动态精调方法
5、轨道动态精调方法
⑶轨道检测波形图中存在连续多波不平顺区段;
⑷动车添乘成区段连续晃车。
Ⅲ. 静态、动态精调方法
9、提高轨道精度的主要措施
1)加强无砟轨道施工过程控制,确保施工精度。无砟 轨道施工精度是轨道精度的基础,源头,其施工精度对后期 的轨道精调影响巨大,施工精度高,则精调工作量小,调整 件用量少,容易获得较高轨道精度;反之,则精调工作量大, 调整件用量多,难以达到较高轨道精度。
轨距(mm) 水平(mm) 轨距变化率
5、轨道静态几何尺寸允许偏差
允许偏差
±1 1 1/1500 2mm/3m 2/10m 2/15m 10/150m 2/10m 2/5m 10/150m
扭曲(三角坑) 弦长10m 高低(mm) 弦长30m 弦长300m 弦长10m 轨向(mm) 弦长30m 弦长300m
轨道区段不平顺调整必须采用轨道小车进行全面测量, 根据测量结果进行系统、全面调整。
Ⅲ. 静态、动态精调方法
5、轨道动态精调方法
3)区段不平顺地段应安排计划尽快调整。 4)影响行车安全的缺陷必须立即(当天)消除。如 轨道检测Ⅲ、Ⅳ级偏差,动力学指标超限。
5)轨道检测Ⅱ级偏差应安排计划,逐步消除。
Ⅲ. 静态、动态精调方法
动态精调是对轨道状态和精度进一步完善、提高的过
程,使轨道动、静态精度全面达到高速行车条件。
Ⅲ. 静态、动态精调方法
3、轨道精调前应做的工作
相关文档
最新文档