微机原理课件8086时序(微机原理)
80868088 CPU的工作时序

微机原理第2章8086/8088系统结构8086/8088 的工作时序1. 时钟周期、总线周期、指令周期微机原理时钟周期:是CPU的基本时间单位,记为T,其值为计算机主频的倒数。
微机原理时钟周期:是CPU 的基本时间单位,记为T ,其值为计算机主频的倒数。
总线周期:CPU 通过总线对存储器或I/O 进行1次访问所需要的时间。
它至少包含4个T ,记为T 1,T 2,T 3,T 4.1. 时钟周期、总线周期、指令周期1. 时钟周期、总线周期、指令周期微机原理的时间,它包含一个或多个总线周期。
常采用MIPS(Million Instructions Per Second)作单位。
微机原理(1) 8086读总线周期T 1T 2T3T 4一个总线周期CLK A 19~A 16S 6~S 3A 19/S 6 ~ A 16/S 3DATA INAD 15 ~ AD 0ALE 低=I/O ,高=MM/IORD DT/R DENA 15~A 02. 读/写工作时序微机原理(2) 8086写总线周期T 1T 2T 3T 4一个总线周期CLK A 19 ~ A 16S 6 ~ S 3A 19/S 6 ~ A 16/S 3DATA OUTAD 15 ~ AD 0ALE 高=I/O ,低=MM/IOWRDT/R DENA 15~A 0微机原理(3)8086具有等待状态的读总线周期T 1T 2T 3T W 一个总线周期CLK A 19~A 16A 19/S 6 ~ A 16/S 3DATA INAD 15 ~ AD 0ALE 低=I/O ,高=MM/IORD DT/RDEN A 15~A 0T 4READYWAITREADYS 6~S 3微机原理(4) 8088读总线周期T 1T 2T 3T 4一个总线周期CLK A 19~A 16S 6~S 3A 19/S 6 ~ A 16/S 3DATA INAD 7 ~ AD 0ALE 高=I/O ,低=MIO/MRD DT/R DENA 7~A 0A 15 ~ A 8A 15~A 8微机原理例1:在8088 CPU 中对存储器进行读操作时,CPU 引脚的IO/M 、RD 、WR 、DT/R 的输出电平分别是什么?例2:在若在1个总线周期中,插入了3个T W ,请问在该总线周期中对READY 信号进行了几次采样?低电平低电平高电平低电平4微机原理下次课见。
8086总线时序

8086总线时序
1.1 总线周期的概念
微处理器在运行过程中是在时钟脉冲的控制下执行每一个操作的。每个时钟脉冲的持续时间称为一 个时钟周期,其频率称为主频(时钟频率)。时钟周期是CPU的基本时间单位。时钟周期越短,CPU执行 的速度就越快。例如,8086 CPU的主频为5 MHz,则其时钟周期为200 ns(纳秒)。
时钟周期与时钟频率互为倒数,即时钟周期(s)=1/时钟频率(Hz)。 此外,1 MHz=103 kHz=106 Hz,故5 MHz=5×106 Hz;1 s=103 ms=106 µs =109 ns。因此,若主频为5 MHz,则时钟周期=1/(5×106 Hz)=0.2×10-6 s= 0.2 µs=200 ns。
8086最小模式下的总线读时序
8086总线时序
在T1状态,输出高电平。在T2状 态变为低电平,利用地址锁存器的下 降沿将20位地址信息和 BHE 信号锁存。
在T2~T4状态输出低电平,表示 从存储器或I/O端口读出数据。
整个周期内输出低电平,表示是 总线读周期,CPU是接收数据。
在T2~T3状态输出低电平,表示 允许数据传送。
复位时CPU内部各寄存器的初始状态
8086总线时序
在复位状态时,状态标志寄存器被清0,所以系统对来自INTR的请求是屏蔽的。因此,系统初始化时应使 用STI指令执行中断。CPU内部是用时钟脉冲来同步外部的RESET信号的,所以内部的RESET信号是在外部 RESET信号有效后的时钟的上升沿有效的。RESET信号变为高电平后的一个时钟周期,三态门就被置成高阻状 态,并且一直维持高阻状态,直到CPU脱离复位状态。在进入高阻状态的前半个时钟周期,三态门不起作用, 直到CLK遇到一个上升沿进入高阻状态。
微机原理(杭州电子科技大学【4】8086系统结构[2-3]
![微机原理(杭州电子科技大学【4】8086系统结构[2-3]](https://img.taocdn.com/s3/m/3b8cd1f4f90f76c661371a65.png)
15:28
22
二、系统的复位与启动
【8086CPU时序】
① 复位信号:通过RESET引脚上的触发信号来引起8086系统复位和启
动,RESET至少维持4个时钟周期的高电平。
② 复位操作:当RESET信号变成高电平时,8086/8088CPU结束现行
操作,各个内部寄存器复位成初值。
标志寄存器
清零
指令寄存器 CS寄存器 DS寄存器 SS寄存器 ES寄存器
的比例倍频后得到CPU的主频,即: CPU主频 = 外频 × 倍频系数
⑥ PC机各子系统时钟(存储系统,显示系统,总线等)是由系统频率按 照一定的比例分频得到。
15:28
5
内频 550MHz Pentium III
倍频系数5.5
L1 Cache
L2 550MHz Cache
处理机总线 100MHz
微机原理与接口技术
第四讲
15:28
第二章 8086系统结构
内容提要
z微型计算机的发展概况 z8086CPU内部结构 z8086CPU引脚及功能 z8086CPU存储器组织 z8086CPU系统配置 z8086CPU时序
15:28
2
※有关概念介绍
z 主频,外频,倍频系数 z T状态 z 总线周期 z 指令周期 z 时序 z 时序图
总线操作
读存储器操作 (取操作数)
写存储器操作 (将结果存放到内存)
读 I/O 端口操作 (取 I/O 端口中的数)
写 I/O 端口操作 (往 I/O 端口写数)
中断响应操作
总线周期
存储器读周期 存储器写周期 I/O 端口读周期 I/O 端口写周期 中断响应周期
15:28
微机原理第5章80868088CPU总线操作与时序

读周期
CPU从内存或I/O设备读取数据的过程,包括地 址发送、数据读取和数据返回三个阶段。
写周期
CPU向内存或I/O设备写入数据的过程,包括地址发送、数据写入和数据返回三 个阶段。
03
数据传输过程
读周期
总结词
在读周期中,CPU从内存中读取数据。
详细描述
读周期是CPU从内存中读取数据的过程。在读周期开始时,CPU通过地址总线发送要读取的内存地址,然后通过 数据总线从内存中读取数据。这个过程需要多个时钟周期,具体取决于数据的存储位置和CPU的速度。
然而,随着总线技术的不断发展,也 面临着一些技术挑战。例如,如何提 高总线的传输效率、降低能耗以及优 化系统性能等。为了解决这些问题, 需要不断进行技术创新和改进。
展望
未来,CPU总线技术将继续发挥其在 微机原理中的重要作用。随着技术的 不断进步和应用需求的增加,总线技 术将更加成熟和多样化。同时,随着 人工智能、大数据等新兴技术的发展 ,总线技术也将与这些领域进行更深 入的融合,为解决实际问题提供更多 可能性。
8086/8088 CPU的总线结构
地址总线
用于传输地址信息,确定要访问的内存单元或I/O 端口。
数据总线
用于传输数据信息,实现数据在CPU和内存或I/O 设备之间的传输。
控制总线
用于传输控制信号,控制CPU和内存或I/O设备之 间的操作。
总线操作时序
时钟信号
用于同步总线上的操作,确保数据传输的正确 性。
中断源
指引发中断的事件或异常情况,如输入/输出设备、定时器、故障等。
中断向量
指中断处理程序的入口地址。
中断响应过程
保存程序计数器
当发生中断时,CPU会自动将当前的程序计数器(PC)值保存到堆栈 中,以便在中断处理完毕后能够正确返回到原程序。
微机原理 第5章 处理器总线时序和系统总线

清零操作,而将CS设置为0FFFFH。
⑨ CLK 时钟信号(输入) 8086的标准时钟频率为8MHZ。
第5章 功能相同的32个引脚的含义(续)
⑩ VCC 电源引脚,8086CPU采用单一的+5V电源
11
GND 接地引脚,有两个。 MN/MX 最小/最大组态控制(输入)
两种组态下,名称和功能相同的32个引脚的含义 同一引脚在不同时刻传送不同的信息,称为 分时复用引脚 ① AD15~AD0(Address Data Bus) 地址/数据复用引脚 (输入/输出,三态) 在DMA方式,此线浮空。
第5章
功能相同的32个引脚的含义(续)
地址/状态复用引脚
② A19/S6~A16/S3(Address/Status) (输出,三态)
数据
8288主要控制总线的含义(续)
MRDC(Memoy Read Command):存储器读命令 MWTC(Memoy Write Command):存储器写命令 IORC(I/O Read Command):I/O读命令 IOWC(I/O Write Command):I/O写命令 这4个信号全是低电平有效的输出信号。
也就是一个总线操作即将结束,另一个总线周期还未
开始时,称为无源状态,很显然,这时 S2 S1 S0中任一 信号的改变,都意味着一个新的总线周期的开始。
第5章
8288主要控制总线的含义
ALE(Address Latch Enable) 地址锁存允许信号 (输出)
高电平有效。这是8288总线控制器提供给地址 锁存器8282/8283的控制信号,把当前地址/数
注意:在I/O操作时,这些地址不用,全为低电平。
微机原理课件第二章 8086系统结构

但指令周期不一定都大于总线周期,如MOV AX,BX
操作都在CPU内部的寄存器,只要内部总线即可完成,不 需要通过系统总线访问存储器和I/O接口。
2021/8/17
17
• 8086CPU的典型总线时序,充分体现了总 线是严格地按分时复用的原则进行工作的。 即:在一个总线周期内,首先利用总线传 送地址信息,然后再利用同一总线传送数 据信息。这样减少了CPU芯片的引脚和外 部总线的数目。
• 执行部件(EU)
• 功能:负责译码和执行指令。
2021/8/17
5
• 联系BIU和EU的纽带为流水指令队列
• 队列是一种数据结构,工作方式为先进先出。写入的指令 只能存放在队列尾,读出的指令是队列头存放的指令。
2021/8/17
6
•BIU和EU的动作协调原则 BIU和EU按以下流水线技术原则协调工作,共同完成所 要求的任务: ①每当8086的指令队列中有空字节,BIU就会自动把下 一条指令取到指令队列中。 ②每当EU准备执行一条指令时,它会从BIU部件的指令 队列前部取出指令的代码,然后译码、执行指令。在执 行指令的过程中,如果必须访问存储器或者I/O端口, 那么EU就会请求BIU,完成访问内存或者I/O端口的操 作; ③当指令队列已满,且EU又没有总线访问请求时,BIU 便进入空闲状态。(BIU等待,总线空操作) ④开机或重启时,指令队列被清空;或在执行转移指令、 调用指令和返回指令时,由于待执行指令的顺序发生了 变化,则指令队列中已经装入的字节被自动消除,BIU会 接着往指令队列装入转向的另一程序段中的指令代码。 (EU等待)
•CF(Carry Flag)—进位标志位,做加法时最高位出现进位或 做减法时最高位出现借位,该位置1,反之为0。
6时序逻辑电路微机原理课件

0001 0011 0110
1101 1010
经过4个移位脉冲后,串行输入的数据,并行输出。
串行 输出
Q
3
D
Q2 D
Q1 D
Q0 D
DI(1101)
Q
Q
Q
Q
CP
移位
设初态 Q3Q2Q1Q0 = 0000
脉冲
Q3Q2Q1Q0 D3D2D1D0
D3 = Q2 D2 = Q1 D1 = Q0
D0 = DI
如何写状态转换表或图?
Q* Q
1
1
Q* 2
A
Q Q
1
2
A Q2 Q1 Q2* Q1* Y
00 0 0 1 0
YA Q 1Q 2A Q 1Q 2 0 0 1 1 0 0
Q2Q1
A 00 01 11 10
01 0 01 1
11 0 00 1
0 01/0 10/0 00/1 11/0
10 0 11 1
FF
FF
FF
FF 输出
输 并入-串出 入 多个输入端,一个输出端
输
出
FF
FF
FF
FF
输 并入-并出 入 多个输入端,多个输出端
1. 四位串入 - 串出的左移寄存器
D0 = DI D1 = Q0
D2 = Q1 D3 = Q2
并行输 出
串行
输出 DO
Q 3
D
清零 Q 脉冲 RD
CLR
Q2 D Q
Q1 D Q
右移寄存器:
D0 = Q1
D1 = Q2
D2 = Q3
= D3
DIR
左移寄存器:
= D0
第2章-28086典型时序

2018/7/30
6、汇编命令 A
-A↙ -A地址 ↙
《微机原理与应用》赵春华
R命令演示
A命令演示
16
补充
7、反汇编命令 U
-U ↙
当前地址CS:IP反汇编32字节指令 -U 地址 ↙
9、 文件装入命令L
10、写文件命令W
BX:文件长度的高16位
CX:文件长度的低16位
U命令演示
11、退出DEBUG回到DOS状态命 令Q
《微机原理与应用》赵春华 7
总线周期
指令周期
2018/7/30
读操作(存储器或I/O)
2018/7/30
《微机原理与应用》赵春华
IN AL, 21H
8
读操作(存储器或I/O)
T1 CLK T2 T3 T4
A19/S6~A16/S3
AD15~AD0
ALE
M/IO RD
DT/R
DEN
2018/7/30 《微机原理与应用》赵春华 9
微机原理及应用
第二章 8086/8088微处理器(2)
8086/8088的内部结构图
EU
20位AB
BIU
AH AL BH BL CH CL DH DL SP BP SI DI
ALU16位DB
地址加法器
∑
16位DB
CS DS SS ES IP
总线 控制 电路
8086总线
16位DB
暂存寄存器
EU控 制电路
CPU
DB CB AB
主 存 I/O I/O 设备
最大工作模式 :
(1)MN/MX =0 (2)控制总线由8288总线控 制器产生。 (3)用于构成多处理机和数 学协处理器大型系统。
微机原理与接口第3章2—8086微处理器总线周期及引脚资料

3.2.3 8086微处理器的总线时序 1. 总线时序
⑴ 指令周期
每条指令的执行由取指令、译码和执行 等操作组成,执行一条指令所需要的时间 称为指令周期(Instruction Cycle),不同 指令的指令周期是不等长的,一个指令周 期由一个或若干个总线周期组成。
1
第3章 80x86微处理器
– 4个时钟周期编号为T1、T2、T3和T4 – 总线周期中的时钟周期也被称作“T状态” – 时钟周期的时间长度就是时钟频率的倒数
• 当需要延长总线周期时插入等待状态Tw • CPU进行内部操作,没有对外操作时,其引脚就处
于空闲状态Ti
12
第3章 80x86微处理器
第3章:3.2 8088的总线时序(续3)
(c)
3
第3章 80x86微处理器
⑴ 总线读操作时序
当8086 CPU 进行存储器或I/O端口读操作 时,总线进入读周期。基本的读周期由4个时 钟周期组成:T1、T2、T3和T4。CPU在T3到T4之间 从总线上接收数据。当所选中的存储器和外设 的存取速度较慢时,则在T3和T4之间将插入1个 或几个等待周期TW。图3.3是8086最小方式下的 总线读操作时序图。下面对图中表示的读操作 时序进行说明。
⑵ 总线周期
8086CPU与外部交换信息总是通过总线进行的 。CPU的每一个这种信息输入、输出过程所需要 的时间称为总线周期(BusCycle),一般一个总线 周期由四个时钟周期组成。
⑶ 时钟周期
时钟脉冲的重复周期称为时钟周期 (Clock Cycle)。时钟周期是CPU的时间基准,由计算机 的主频决定。如8086的主频为5MHz,1个时钟周 期就是200ns。
11
微机原理第二章8086微处理器

▪ 这些引脚就是微处理器级总线。微处理器通过微处理器 级总线沟通与外部部件和设备之间的联系。这些总线及 其信号必须完成以下功能:
▪ (1)和存储器之间交换信息; ▪ (2)和I/O设备之间交换信息; ▪ (3)为了系统工作而接收和输出必要的信号,如输入
▪ 时钟信号输入端。19 CLK(输入) ▪ 8086和8088为5MHz。 ▪ 8086/8088的CLK信号必须由8284A时钟发生器产生。 ▪ 微处理器是在统一的时钟信号CLK控制下,按节拍进行
工作的。
2021/6/12
16
8086/8088微处理器——微处理器的引脚功能
▪ 工作方式控制线 33
指令执行示例
2021/6/12
1
第二章:8086/8088微处理器
1. 微处理器ห้องสมุดไป่ตู้结构 2. 微处理器的内部寄存器 3. 微处理器的引脚功能 4. 微处理器的存储器组织 5. 最大模式和最小模式 6. 微处理器的时序
2021/6/12
2
2021/6/12
▪ 存储器分段
▪ 由于CPU内部的寄存器都是16位的,为了
2021/6/12
7
第二章:8086/8088微处理器
1. 微处理器的结构 2. 微处理器的内部寄存器 3. 微处理器的引脚功能 4. 微处理器的存储器组织 5. 最大模式和最小模式 6. 微处理器的时序
2021/6/12
8
8086/8088微处理器——微处理器的引脚功能
▪ 一、微处理器的外部结构
时钟脉冲、复位信号、电源和接地等。
微机原理 第2章_8086系统结构

8086 CPU的引脚及其功能
8086 CPU的两种工作模式
最小模式:用于单机系统,系统所需要的控 制信号由8086直接提供,MN/MX=1,CPU 工作于最小模式 最大模式:用于多处理机系统,系统所需的 控制信号由总线控制器8288提供, MN/MX=0,CPU工作于最大模式
8086 CPU在最小模式下的引脚定义 8088与8086的区别
通 用 寄 存 器
AX BX CX DX SP BP SI DI
8086 CPU结构框图
20位地址总线
Σ
数据 总线 16位
ALU数据总线 (16位) 暂存器
队列 总线 (8位)
CS DS SS ES IP 内部寄存器 指令队列
总线 控制 电路 8086 总线
ALU
标志寄存器
EU 控制器
1 3 4 5 6
PSW
存放状态标志、控制标志和系统标 志
PSW格式:
15 11 10
OF DF
9 IF
8
7
6
4 AF
2 PF
0 CF
TF SF ZF
状态标志
状态标志用来记录程序中运行结果的状态信息,它们根据有关指 令的运行结果由CPU自动设置,这些状态信息往往作为后续条件 转移指令的转移控制条件,包括6位: OF:溢出标志,在运算过程中,如操作数超出了机器数的表示范 围,称为溢出,OF=1,否则OF=0 SF:符号标志,记录结果的符号,结果为负SF=1,否则SF=0 ZF:零标志,运算结果为0,ZF=1,否则ZF=0 CF:进位标志,进行加法运算时从最高位产生进位,或减法运算 从最高位产生借位CF=1,否则CF=0 AF:辅助进位标志:本次运算结果,低4位向高4位产生进位或借 位,AF=1,否则AF=0 PF:奇偶标志,用来为机器中传送信息时可能产生的代码出错情 况提供检验条件,当结果操作数中低8位中1的个数为偶数时PF=1, 否则PF=0
微机原理及应用课件第2章

四、内部寄存器
内部寄存器的类型
含14个16位寄存器,按功能可分为三类
8个通用寄存器 4个段寄存器 2个控制寄存器
深入理解:每个寄存器中数据的含义
28
1. 通用寄存器
数据寄存器(AX,BX,CX,DX) 地址指针寄存器(SP,BP) 变址寄存器(SI,DI)
29
数据寄存器
8088/8086含4个16位数据寄存器,它们又可分为8个 8位寄存器,即:
DX:
数据寄存器。在间接寻址的I/O指令中存放I/O端口地址;在 32位乘除法运算时,存放高16位数。
地址指针寄存器
SP:堆栈指针寄存器,其内容为栈顶的偏移地址; BP:基址指针寄存器,常用于在访问内存时存放内存单
元的偏移地址。
BP与BX的区别:
作为通用寄存器,二者均可用于存放数据; 作为基址寄存器,用BX表示所寻找的数据在数据段;用
┇
操作数
35
状态标志位(1)
CF(Carry Flag)
进位标志位。加(减)法运算时,若最高位有进(借)位则CF=1
OF(Overflow Flag)
溢出标志位。当算术运算的结果超出了有符号数的可表达范 围时,OF=l
ZF(Zero Flag)
零标志位。当运算结果为零时ZF=1
SF(Sign Flag)
欲实现对1MB内存空间的正确访问,每个内
存单元在整个内存空间中必须具备20位字长
的惟一地址
物理地址
XXXXXH
12H
00H
内存地址变换:
…
如何将直接产生的16位编码变换
…
为20位物理地址?
┇
内存单元的编址(1)
内存每个单元的地址在逻辑上都由两部分组成:
微机原理ch2

第二章第二章 8086 8086系统结构系统结构主要内容:§2-1 8086CPU 系统结构§2-2 8086CPU 的引脚功能和系统配置 §2-3 8086存储器组织 §2-4 8086CPU 时序 §2-1 1 8086CPU 8086CPU 系统结构系统结构 一、引言1、8086:Intel 系列的16位微处理器,16条数据线、20条地址线,可寻址地址范围220=1MB,8086工作时,只要一个5V 电源和一个时钟,时钟频率分别有5MHz,8MHz 和10MHz。
2、8088:内部与8086兼容,也是一个16位微处理器,只是外部数据总线为8位,所以称为准16位微处理器。
8088有20条地址线,所以可寻址的地址空间达220即1M 字节。
图2-1 8086CPU 内部结构框图(★)二、8086CPU 的内部结构1、总线接口部件BIU(Bus Interface Unit)它是8086CPU 与外部(存储器和I/O 端口)数据交换的接口。
它提供了16位双向数据总线和20位地址总线,通过它们完成所有外部总线操作。
图2-2 总线接口部件(★)(1)总线接口部件的功能地址形成、取指令、指令排队、读/写操作数和总线控制。
(2)组成部分① 四个段地址寄存器(主要用于存放各段的首地址) CS:16位代码段寄存器; DS:16位数据段寄存器; ES:16位附加段寄存器; SS:16位堆栈段寄存器。
② 16位指令指针寄存器IP(PC)。
存放下一条要执行指令的偏移地址。
③ 20位的地址加法器。
将16位的逻辑地址转换成访问存储器的20位的物理地址。
④ 六字节的指令队列缓冲器。
功能:可存储6字节指令代码,在执行指令的同时,将取下一条指令,当指令队列有2个或2个以上的字节空余时,BIU自动将指令取到指令队列中。
CPU执行完一条指令后,可以指向下一条指令(流水线技术)。
微机原理_8088(8086)工作原理

8088/8086寄存器结构 8088/8086寄存器结构
15 AH BH CH DH 8 7 AX AL BX BL CX CL DX DL SP BP DI SI IP FLAGS CS DS ES SS 0 累加器 基址变址 计数 数据 堆栈指针 基址指针 目的变址 源变址 指令指针 标志 代码 数据
AX(Accumulator BX(Base
CX(Count DX(Data
指针寄存器
堆栈指针SP(Stack Pointer): 堆栈指针SP(Stack Pointer):用于实现内存中的堆栈
存储方式(FILO),指示栈顶的偏移地址; ),指示栈顶的偏移地址 存储方式(FILO),指示栈顶的偏移地址;
总线接口部件 (Bus Interface Unit)
执行部件 用来存放计算的中间结果, 用来存放计算的中间结果, (Execution Unit) CPU从寄存器中存取数据比从 CPU从寄存器中存取数据比从
负责指令的译码、 负责指令的译码、 存储器中存取数据要快得多。 存储器中存取数据要快得多。 与微处理器外部总线连接, 与微处理器外部总线连接,负责 执行等。 BIU 执行等。 大量使用寄存器能提高计算机 与存储器、I/O接口进行数据交换 接口进行数据交换, 与存储器、I/O接口进行数据交换, 运行速度, 运行速度,但也提高了成本 存取指令、操作数等。 存取指令、操作数等。
指令指针IP(Instruction Pointer): 指令指针IP(Instruction Pointer):计算机之所以
能自动地一条一条地取出并执行指令,是因为CPU中 能自动地一条一条地取出并执行指令,是因为CPU中 有一个跟踪指令地址的电路,其核心就是指令指针IP, 有一个跟踪指令地址的电路,其核心就是指令指针IP, 它用于指明当前应该调用内存中哪个地址位置的指令 CPU中来运行 中来运行, 到CPU中来运行,从而实现计算机自动运行程序员事 先安排好的软件。 先安排好的软件。
微机原理16位32位CPU(8086)

S6-S3:输出CPU的工作状态。 S6:指示8086/8088当前是否与总线相连, S6=0,表示 8086/8088当前与总线相连。 S5:表明中断允许标志当前的设置。 S5=0,表示CPU中断是关闭的,禁止一切可屏蔽中断源的 中断请求;S5=1,表示CPU中断是开放的,允许一切可屏 蔽中断源的中断申请。
出一个“准备好”信号,之后CPU才会自动脱离TW状态而进入T4状态。
• ⑤在T4状态,总线周期结束。
2.1.2 8086的引脚信号和工作模式
1. 最小模式和最大模式的概念
根据所连的存储器和外设规模的不同,使它们可以在两种模式下工 作: (1)最小模式:
在系统中只有一8086/8088CPU。 (2)最大模式: 有两个或两个以上的CPU,一个为主处理器8086/8088, 另一个为协处理器8087/8089。 数值运算协处理器8087, 输入输出协处理器8089。
奇
进
偶
借
标
位
志
标
志
1-有进Байду номын сангаас借位 0-无进、借位
1-低4位向高4位有进、借位 0-低4位向高4位无进、借位
④标志寄存器
根据功能,标志可以分为两类:状态标志和控制标志 状态标志:表示前面的操作执行后,ALU所处的状态,这种状态像某
种先决条件一样影响后面的操作。 控制标志:表示对某一种特定的功能起控制作用。指令系统中有专门
2.1.1 8086的编程结构
在编程结构图中,从功能上划分,8086分为两大部分:即 总线接口部件BIU(Bus Interface Unit) 执行部件EU(Execution Unit)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ ALE为8088/8086地址锁存允许, 高电平有效, 输出,复用线上出现地址时为高电平
锁存器的DI0-DI7与CPU的地址/数据复用 线相连,STB与ALE相连。ALE为正脉冲 时,输出地址;为低电平时,输出锁存, 与数据无关
A19~A16
S6 ~ S3
BHE A15 ~ A0
S7 D15 ~ D0
最小模式下的时序操作小结
一个基本总线周期由T1~T4组成; T1状态:ALE、M/IO、DT/R有效,分时复用线上传送
地址信息; T2状态:RD、WR、DEN信号有效。对读操作,数据线
呈高阻;对写操作,直接出现输出数据; T3状态:在T3的前沿检测READY,若有效,则读操作出
一、8086通用引脚信号
1
40
VCC
2
39 AD15 INTR可屏蔽中断请求
3 4
38
A16/S3
37
A17/S4
信号(输入、高有效)
5 6
36 35
A18/S5 A19/S6
NMI非屏蔽中断请求
7 8
34
BHE/S7
33
MN/MX
(输入,上升沿触发)
8086
9 10
32 31
RD HOLD*
RESET复位信号(输
DI1
2
19
DO0
DI2
3
18
DO1
DI0
DI3
4
17
DO2
DI1 OE
DI4
5 8282 16
DO3
DO0
DI5
6
15
DO4
DO1
DI6
7
14
DO5
直通
保持 高阻
DI7 OE
8 9
13
DO6
12
DO7
74LS373的功能与8282相同 GND
10
11
STB
地址锁存功能
STB为高电平期间,输出等于输入;为下 降沿时,输出锁存,与输出无关
件 BIU
20位地 地址加法器 址总线
CS
IP
16
DS
暂存器 位
SS
数
ES
据
总
总
线
控
总 线
功 能
SI
内部总线16位
线制
结
暂存器 E
逻
构 图
U
指令队列
ALU
控 制
8位队 列总线
123
8088
4
5
6
辑
标志寄存器
器
8086
GND AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 NMI INTR CLK GND
最 小 模 式 总 线 连 接
2.5 8086总线时序
时序图:描述某一操作过程中,芯片/总线上有 关引脚信号随时间发生变化的关系图 总线周期:执行一个总线操作所需要的时间 一个基本的总线周期通常包含 4 个T状态
时钟周期
Tw状态用来等待内存或I/O接口的响应
T1
T2
T3 Tw T4
T1
T2 T3 T4
第二章 微处理器与系统结构
2.1 微处理器主要性能指标 2.2 8086/8088微处理器 2.3 8086系统的组成 2.4 存储器组织 2.5 8086总线时序
8086
8086CPU
通用寄存器
AX AH AL BX BH BL CX CH CL DX DH DL
SP BP DI
执总 行线 部接 件口 EU 部
现输入数据;若READY无效,持续其他各控制信号,加 入若干个等待态Tw,并在每个Tw前沿继续检测READY, 直至READY有效为止; T4状态:接收数据,将各控制信号驱动为无效,进入无 源状态,为下一个总线周期做好准备。
11
30
HLDA*
入,高电平有效)
12
29
WR*
13 14
28 27
M/IO* DT/R*
CLK时钟输入端
15 16
26 25
DEN* ALE*
MN/
最小/最大模
17
24
INTA*
18
23
TEST
式控制输入端
19
22
READY
20
21
RESET
地址锁存器
8282引脚信号 DI0 1
20
VCC
STB
A19~A16
S6 ~ S3
BHE/S7 AD15~AD0
ALE RD
DT/R DEN
BHE A15 ~ A0
S7 D15 ~ D0
单CPU系统8086读操作 总线周期时序
最小模式下存储器或I/O的写周期时序
CLK M/IO A19~A16/S6~S3
T1
T2
T3
T4
低:I/O 高: M
A19~A16
总线周期
总线周期
两个总线周期之间 执行空闲周期Ti
读周期——总线读操作(对存储单元或I/O端口) 写周期——总线写操作(对存储单元或I/O端口) 中断响应周期——中断响应操作 空闲周期——总线空操作
最小模式下存储器或I/O的读周期时序
CLK M/IO A19~A16/S6~S3
T1
T2
T3
T4
低:I/O 高: M
Ti Ti
T1
T2 T3
Tw Tw T4
Ti
T1
总线周期
总线周期
典型的8086总线周期序列
在两个总线周期 之间执行空闲周期Ti
典型的总线周期示意
时钟周期
Tw :用于等待内存或 I/O 端口的响应
T1 T2 T3 Tw T4 T1 T2 T3 T4
Ti Ti T1
T2 T3
Tw Tw T4
Ti T1
S6 ~ S3
BHE/S7 AD15~AD0
ALE WR
DT/R DEN
BHE A15 ~ A0
S7 D15 ~ D0
单CPU系统8086写操作 总线周期时序
CLK M/IO A19~A16/S6~S3
BHE/S7 AD15~AD0
ALE RD
READY
等待态Tw的插入
T1
T2
T3
TW
T4
低:I/O 高: M