微机原理课件8086时序(微机原理)

合集下载

80868088 CPU的工作时序

80868088 CPU的工作时序

微机原理第2章8086/8088系统结构8086/8088 的工作时序1. 时钟周期、总线周期、指令周期微机原理时钟周期:是CPU的基本时间单位,记为T,其值为计算机主频的倒数。

微机原理时钟周期:是CPU 的基本时间单位,记为T ,其值为计算机主频的倒数。

总线周期:CPU 通过总线对存储器或I/O 进行1次访问所需要的时间。

它至少包含4个T ,记为T 1,T 2,T 3,T 4.1. 时钟周期、总线周期、指令周期1. 时钟周期、总线周期、指令周期微机原理的时间,它包含一个或多个总线周期。

常采用MIPS(Million Instructions Per Second)作单位。

微机原理(1) 8086读总线周期T 1T 2T3T 4一个总线周期CLK A 19~A 16S 6~S 3A 19/S 6 ~ A 16/S 3DATA INAD 15 ~ AD 0ALE 低=I/O ,高=MM/IORD DT/R DENA 15~A 02. 读/写工作时序微机原理(2) 8086写总线周期T 1T 2T 3T 4一个总线周期CLK A 19 ~ A 16S 6 ~ S 3A 19/S 6 ~ A 16/S 3DATA OUTAD 15 ~ AD 0ALE 高=I/O ,低=MM/IOWRDT/R DENA 15~A 0微机原理(3)8086具有等待状态的读总线周期T 1T 2T 3T W 一个总线周期CLK A 19~A 16A 19/S 6 ~ A 16/S 3DATA INAD 15 ~ AD 0ALE 低=I/O ,高=MM/IORD DT/RDEN A 15~A 0T 4READYWAITREADYS 6~S 3微机原理(4) 8088读总线周期T 1T 2T 3T 4一个总线周期CLK A 19~A 16S 6~S 3A 19/S 6 ~ A 16/S 3DATA INAD 7 ~ AD 0ALE 高=I/O ,低=MIO/MRD DT/R DENA 7~A 0A 15 ~ A 8A 15~A 8微机原理例1:在8088 CPU 中对存储器进行读操作时,CPU 引脚的IO/M 、RD 、WR 、DT/R 的输出电平分别是什么?例2:在若在1个总线周期中,插入了3个T W ,请问在该总线周期中对READY 信号进行了几次采样?低电平低电平高电平低电平4微机原理下次课见。

8086总线时序

8086总线时序
微机原理与接口技术
8086总线时序
1.1 总线周期的概念
微处理器在运行过程中是在时钟脉冲的控制下执行每一个操作的。每个时钟脉冲的持续时间称为一 个时钟周期,其频率称为主频(时钟频率)。时钟周期是CPU的基本时间单位。时钟周期越短,CPU执行 的速度就越快。例如,8086 CPU的主频为5 MHz,则其时钟周期为200 ns(纳秒)。
时钟周期与时钟频率互为倒数,即时钟周期(s)=1/时钟频率(Hz)。 此外,1 MHz=103 kHz=106 Hz,故5 MHz=5×106 Hz;1 s=103 ms=106 µs =109 ns。因此,若主频为5 MHz,则时钟周期=1/(5×106 Hz)=0.2×10-6 s= 0.2 µs=200 ns。
8086最小模式下的总线读时序
8086总线时序
在T1状态,输出高电平。在T2状 态变为低电平,利用地址锁存器的下 降沿将20位地址信息和 BHE 信号锁存。
在T2~T4状态输出低电平,表示 从存储器或I/O端口读出数据。
整个周期内输出低电平,表示是 总线读周期,CPU是接收数据。
在T2~T3状态输出低电平,表示 允许数据传送。
复位时CPU内部各寄存器的初始状态
8086总线时序
在复位状态时,状态标志寄存器被清0,所以系统对来自INTR的请求是屏蔽的。因此,系统初始化时应使 用STI指令执行中断。CPU内部是用时钟脉冲来同步外部的RESET信号的,所以内部的RESET信号是在外部 RESET信号有效后的时钟的上升沿有效的。RESET信号变为高电平后的一个时钟周期,三态门就被置成高阻状 态,并且一直维持高阻状态,直到CPU脱离复位状态。在进入高阻状态的前半个时钟周期,三态门不起作用, 直到CLK遇到一个上升沿进入高阻状态。

微机原理(杭州电子科技大学【4】8086系统结构[2-3]

微机原理(杭州电子科技大学【4】8086系统结构[2-3]

15:28
22
二、系统的复位与启动
【8086CPU时序】
① 复位信号:通过RESET引脚上的触发信号来引起8086系统复位和启
动,RESET至少维持4个时钟周期的高电平。
② 复位操作:当RESET信号变成高电平时,8086/8088CPU结束现行
操作,各个内部寄存器复位成初值。
标志寄存器
清零
指令寄存器 CS寄存器 DS寄存器 SS寄存器 ES寄存器
的比例倍频后得到CPU的主频,即: CPU主频 = 外频 × 倍频系数
⑥ PC机各子系统时钟(存储系统,显示系统,总线等)是由系统频率按 照一定的比例分频得到。
15:28
5
内频 550MHz Pentium III
倍频系数5.5
L1 Cache
L2 550MHz Cache
处理机总线 100MHz
微机原理与接口技术
第四讲
15:28
第二章 8086系统结构
内容提要
z微型计算机的发展概况 z8086CPU内部结构 z8086CPU引脚及功能 z8086CPU存储器组织 z8086CPU系统配置 z8086CPU时序
15:28
2
※有关概念介绍
z 主频,外频,倍频系数 z T状态 z 总线周期 z 指令周期 z 时序 z 时序图
总线操作
读存储器操作 (取操作数)
写存储器操作 (将结果存放到内存)
读 I/O 端口操作 (取 I/O 端口中的数)
写 I/O 端口操作 (往 I/O 端口写数)
中断响应操作
总线周期
存储器读周期 存储器写周期 I/O 端口读周期 I/O 端口写周期 中断响应周期
15:28

微机原理第5章80868088CPU总线操作与时序

微机原理第5章80868088CPU总线操作与时序

读周期
CPU从内存或I/O设备读取数据的过程,包括地 址发送、数据读取和数据返回三个阶段。
写周期
CPU向内存或I/O设备写入数据的过程,包括地址发送、数据写入和数据返回三 个阶段。
03
数据传输过程
读周期
总结词
在读周期中,CPU从内存中读取数据。
详细描述
读周期是CPU从内存中读取数据的过程。在读周期开始时,CPU通过地址总线发送要读取的内存地址,然后通过 数据总线从内存中读取数据。这个过程需要多个时钟周期,具体取决于数据的存储位置和CPU的速度。
然而,随着总线技术的不断发展,也 面临着一些技术挑战。例如,如何提 高总线的传输效率、降低能耗以及优 化系统性能等。为了解决这些问题, 需要不断进行技术创新和改进。
展望
未来,CPU总线技术将继续发挥其在 微机原理中的重要作用。随着技术的 不断进步和应用需求的增加,总线技 术将更加成熟和多样化。同时,随着 人工智能、大数据等新兴技术的发展 ,总线技术也将与这些领域进行更深 入的融合,为解决实际问题提供更多 可能性。
8086/8088 CPU的总线结构
地址总线
用于传输地址信息,确定要访问的内存单元或I/O 端口。
数据总线
用于传输数据信息,实现数据在CPU和内存或I/O 设备之间的传输。
控制总线
用于传输控制信号,控制CPU和内存或I/O设备之 间的操作。
总线操作时序
时钟信号
用于同步总线上的操作,确保数据传输的正确 性。
中断源
指引发中断的事件或异常情况,如输入/输出设备、定时器、故障等。
中断向量
指中断处理程序的入口地址。
中断响应过程
保存程序计数器
当发生中断时,CPU会自动将当前的程序计数器(PC)值保存到堆栈 中,以便在中断处理完毕后能够正确返回到原程序。

微机原理 第5章 处理器总线时序和系统总线

微机原理 第5章 处理器总线时序和系统总线
存器、IP、DS、SS、ES寄存器及指令队列进行
清零操作,而将CS设置为0FFFFH。
⑨ CLK 时钟信号(输入) 8086的标准时钟频率为8MHZ。
第5章 功能相同的32个引脚的含义(续)
⑩ VCC 电源引脚,8086CPU采用单一的+5V电源
11
GND 接地引脚,有两个。 MN/MX 最小/最大组态控制(输入)
两种组态下,名称和功能相同的32个引脚的含义 同一引脚在不同时刻传送不同的信息,称为 分时复用引脚 ① AD15~AD0(Address Data Bus) 地址/数据复用引脚 (输入/输出,三态) 在DMA方式,此线浮空。
第5章
功能相同的32个引脚的含义(续)
地址/状态复用引脚
② A19/S6~A16/S3(Address/Status) (输出,三态)
数据
8288主要控制总线的含义(续)
MRDC(Memoy Read Command):存储器读命令 MWTC(Memoy Write Command):存储器写命令 IORC(I/O Read Command):I/O读命令 IOWC(I/O Write Command):I/O写命令 这4个信号全是低电平有效的输出信号。
也就是一个总线操作即将结束,另一个总线周期还未
开始时,称为无源状态,很显然,这时 S2 S1 S0中任一 信号的改变,都意味着一个新的总线周期的开始。
第5章
8288主要控制总线的含义
ALE(Address Latch Enable) 地址锁存允许信号 (输出)
高电平有效。这是8288总线控制器提供给地址 锁存器8282/8283的控制信号,把当前地址/数
注意:在I/O操作时,这些地址不用,全为低电平。

微机原理课件第二章 8086系统结构

微机原理课件第二章 8086系统结构

但指令周期不一定都大于总线周期,如MOV AX,BX
操作都在CPU内部的寄存器,只要内部总线即可完成,不 需要通过系统总线访问存储器和I/O接口。
2021/8/17
17
• 8086CPU的典型总线时序,充分体现了总 线是严格地按分时复用的原则进行工作的。 即:在一个总线周期内,首先利用总线传 送地址信息,然后再利用同一总线传送数 据信息。这样减少了CPU芯片的引脚和外 部总线的数目。
• 执行部件(EU)
• 功能:负责译码和执行指令。
2021/8/17
5
• 联系BIU和EU的纽带为流水指令队列
• 队列是一种数据结构,工作方式为先进先出。写入的指令 只能存放在队列尾,读出的指令是队列头存放的指令。
2021/8/17
6
•BIU和EU的动作协调原则 BIU和EU按以下流水线技术原则协调工作,共同完成所 要求的任务: ①每当8086的指令队列中有空字节,BIU就会自动把下 一条指令取到指令队列中。 ②每当EU准备执行一条指令时,它会从BIU部件的指令 队列前部取出指令的代码,然后译码、执行指令。在执 行指令的过程中,如果必须访问存储器或者I/O端口, 那么EU就会请求BIU,完成访问内存或者I/O端口的操 作; ③当指令队列已满,且EU又没有总线访问请求时,BIU 便进入空闲状态。(BIU等待,总线空操作) ④开机或重启时,指令队列被清空;或在执行转移指令、 调用指令和返回指令时,由于待执行指令的顺序发生了 变化,则指令队列中已经装入的字节被自动消除,BIU会 接着往指令队列装入转向的另一程序段中的指令代码。 (EU等待)
•CF(Carry Flag)—进位标志位,做加法时最高位出现进位或 做减法时最高位出现借位,该位置1,反之为0。

6时序逻辑电路微机原理课件

6时序逻辑电路微机原理课件

0001 0011 0110
1101 1010
经过4个移位脉冲后,串行输入的数据,并行输出。
串行 输出
Q
3
D
Q2 D
Q1 D
Q0 D
DI(1101)
Q
Q
Q
Q
CP
移位
设初态 Q3Q2Q1Q0 = 0000
脉冲
Q3Q2Q1Q0 D3D2D1D0
D3 = Q2 D2 = Q1 D1 = Q0
D0 = DI
如何写状态转换表或图?
Q* Q
1
1
Q* 2
A
Q Q
1
2
A Q2 Q1 Q2* Q1* Y
00 0 0 1 0
YA Q 1Q 2A Q 1Q 2 0 0 1 1 0 0
Q2Q1
A 00 01 11 10
01 0 01 1
11 0 00 1
0 01/0 10/0 00/1 11/0
10 0 11 1
FF
FF
FF
FF 输出
输 并入-串出 入 多个输入端,一个输出端


FF
FF
FF
FF
输 并入-并出 入 多个输入端,多个输出端
1. 四位串入 - 串出的左移寄存器
D0 = DI D1 = Q0
D2 = Q1 D3 = Q2
并行输 出
串行
输出 DO
Q 3
D
清零 Q 脉冲 RD
CLR
Q2 D Q
Q1 D Q
右移寄存器:
D0 = Q1
D1 = Q2
D2 = Q3
= D3
DIR
左移寄存器:
= D0

第2章-28086典型时序

第2章-28086典型时序
L、W、Q命令演示
2018/7/30
6、汇编命令 A
-A↙ -A地址 ↙
《微机原理与应用》赵春华
R命令演示
A命令演示
16
补充
7、反汇编命令 U
-U ↙
当前地址CS:IP反汇编32字节指令 -U 地址 ↙
9、 文件装入命令L
10、写文件命令W
BX:文件长度的高16位
CX:文件长度的低16位
U命令演示
11、退出DEBUG回到DOS状态命 令Q
《微机原理与应用》赵春华 7
总线周期

指令周期

2018/7/30
读操作(存储器或I/O)
2018/7/30
《微机原理与应用》赵春华
IN AL, 21H
8
读操作(存储器或I/O)
T1 CLK T2 T3 T4
A19/S6~A16/S3
AD15~AD0
ALE
M/IO RD
DT/R
DEN
2018/7/30 《微机原理与应用》赵春华 9
微机原理及应用
第二章 8086/8088微处理器(2)
8086/8088的内部结构图
EU
20位AB
BIU
AH AL BH BL CH CL DH DL SP BP SI DI
ALU16位DB
地址加法器

16位DB
CS DS SS ES IP
总线 控制 电路
8086总线
16位DB
暂存寄存器
EU控 制电路
CPU
DB CB AB
主 存 I/O I/O 设备
最大工作模式 :
(1)MN/MX =0 (2)控制总线由8288总线控 制器产生。 (3)用于构成多处理机和数 学协处理器大型系统。

微机原理与接口第3章2—8086微处理器总线周期及引脚资料

微机原理与接口第3章2—8086微处理器总线周期及引脚资料
第3章 80x86微处理器
3.2.3 8086微处理器的总线时序 1. 总线时序
⑴ 指令周期
每条指令的执行由取指令、译码和执行 等操作组成,执行一条指令所需要的时间 称为指令周期(Instruction Cycle),不同 指令的指令周期是不等长的,一个指令周 期由一个或若干个总线周期组成。
1
第3章 80x86微处理器
– 4个时钟周期编号为T1、T2、T3和T4 – 总线周期中的时钟周期也被称作“T状态” – 时钟周期的时间长度就是时钟频率的倒数
• 当需要延长总线周期时插入等待状态Tw • CPU进行内部操作,没有对外操作时,其引脚就处
于空闲状态Ti
12
第3章 80x86微处理器
第3章:3.2 8088的总线时序(续3)
(c)
3
第3章 80x86微处理器
⑴ 总线读操作时序
当8086 CPU 进行存储器或I/O端口读操作 时,总线进入读周期。基本的读周期由4个时 钟周期组成:T1、T2、T3和T4。CPU在T3到T4之间 从总线上接收数据。当所选中的存储器和外设 的存取速度较慢时,则在T3和T4之间将插入1个 或几个等待周期TW。图3.3是8086最小方式下的 总线读操作时序图。下面对图中表示的读操作 时序进行说明。
⑵ 总线周期
8086CPU与外部交换信息总是通过总线进行的 。CPU的每一个这种信息输入、输出过程所需要 的时间称为总线周期(BusCycle),一般一个总线 周期由四个时钟周期组成。
⑶ 时钟周期
时钟脉冲的重复周期称为时钟周期 (Clock Cycle)。时钟周期是CPU的时间基准,由计算机 的主频决定。如8086的主频为5MHz,1个时钟周 期就是200ns。
11

微机原理第二章8086微处理器

微机原理第二章8086微处理器
▪ 表面上看来,微处理器的外部就是数量有限的输入输出 引脚。但是,正是依靠这些引脚与其它逻辑部件相连接, 才能组成多种型号的微型计算机系统。
▪ 这些引脚就是微处理器级总线。微处理器通过微处理器 级总线沟通与外部部件和设备之间的联系。这些总线及 其信号必须完成以下功能:
▪ (1)和存储器之间交换信息; ▪ (2)和I/O设备之间交换信息; ▪ (3)为了系统工作而接收和输出必要的信号,如输入
▪ 时钟信号输入端。19 CLK(输入) ▪ 8086和8088为5MHz。 ▪ 8086/8088的CLK信号必须由8284A时钟发生器产生。 ▪ 微处理器是在统一的时钟信号CLK控制下,按节拍进行
工作的。
2021/6/12
16
8086/8088微处理器——微处理器的引脚功能
▪ 工作方式控制线 33
指令执行示例
2021/6/12
1
第二章:8086/8088微处理器
1. 微处理器ห้องสมุดไป่ตู้结构 2. 微处理器的内部寄存器 3. 微处理器的引脚功能 4. 微处理器的存储器组织 5. 最大模式和最小模式 6. 微处理器的时序
2021/6/12
2
2021/6/12
▪ 存储器分段
▪ 由于CPU内部的寄存器都是16位的,为了
2021/6/12
7
第二章:8086/8088微处理器
1. 微处理器的结构 2. 微处理器的内部寄存器 3. 微处理器的引脚功能 4. 微处理器的存储器组织 5. 最大模式和最小模式 6. 微处理器的时序
2021/6/12
8
8086/8088微处理器——微处理器的引脚功能
▪ 一、微处理器的外部结构
时钟脉冲、复位信号、电源和接地等。

微机原理 第2章_8086系统结构

微机原理 第2章_8086系统结构

8086 CPU的引脚及其功能

8086 CPU的两种工作模式


最小模式:用于单机系统,系统所需要的控 制信号由8086直接提供,MN/MX=1,CPU 工作于最小模式 最大模式:用于多处理机系统,系统所需的 控制信号由总线控制器8288提供, MN/MX=0,CPU工作于最大模式

8086 CPU在最小模式下的引脚定义 8088与8086的区别
通 用 寄 存 器
AX BX CX DX SP BP SI DI
8086 CPU结构框图
20位地址总线
Σ
数据 总线 16位
ALU数据总线 (16位) 暂存器
队列 总线 (8位)
CS DS SS ES IP 内部寄存器 指令队列
总线 控制 电路 8086 总线
ALU
标志寄存器
EU 控制器
1 3 4 5 6
PSW
存放状态标志、控制标志和系统标 志
PSW格式:
15 11 10
OF DF
9 IF
8
7
6
4 AF
2 PF
0 CF
TF SF ZF
状态标志




状态标志用来记录程序中运行结果的状态信息,它们根据有关指 令的运行结果由CPU自动设置,这些状态信息往往作为后续条件 转移指令的转移控制条件,包括6位: OF:溢出标志,在运算过程中,如操作数超出了机器数的表示范 围,称为溢出,OF=1,否则OF=0 SF:符号标志,记录结果的符号,结果为负SF=1,否则SF=0 ZF:零标志,运算结果为0,ZF=1,否则ZF=0 CF:进位标志,进行加法运算时从最高位产生进位,或减法运算 从最高位产生借位CF=1,否则CF=0 AF:辅助进位标志:本次运算结果,低4位向高4位产生进位或借 位,AF=1,否则AF=0 PF:奇偶标志,用来为机器中传送信息时可能产生的代码出错情 况提供检验条件,当结果操作数中低8位中1的个数为偶数时PF=1, 否则PF=0

微机原理及应用课件第2章

微机原理及应用课件第2章

四、内部寄存器
内部寄存器的类型
含14个16位寄存器,按功能可分为三类
8个通用寄存器 4个段寄存器 2个控制寄存器
深入理解:每个寄存器中数据的含义
28
1. 通用寄存器
数据寄存器(AX,BX,CX,DX) 地址指针寄存器(SP,BP) 变址寄存器(SI,DI)
29
数据寄存器
8088/8086含4个16位数据寄存器,它们又可分为8个 8位寄存器,即:
DX:
数据寄存器。在间接寻址的I/O指令中存放I/O端口地址;在 32位乘除法运算时,存放高16位数。
地址指针寄存器
SP:堆栈指针寄存器,其内容为栈顶的偏移地址; BP:基址指针寄存器,常用于在访问内存时存放内存单
元的偏移地址。
BP与BX的区别:
作为通用寄存器,二者均可用于存放数据; 作为基址寄存器,用BX表示所寻找的数据在数据段;用

操作数
35
状态标志位(1)
CF(Carry Flag)
进位标志位。加(减)法运算时,若最高位有进(借)位则CF=1
OF(Overflow Flag)
溢出标志位。当算术运算的结果超出了有符号数的可表达范 围时,OF=l
ZF(Zero Flag)
零标志位。当运算结果为零时ZF=1
SF(Sign Flag)
欲实现对1MB内存空间的正确访问,每个内
存单元在整个内存空间中必须具备20位字长
的惟一地址
物理地址
XXXXXH
12H
00H
内存地址变换:

如何将直接产生的16位编码变换

为20位物理地址?

内存单元的编址(1)
内存每个单元的地址在逻辑上都由两部分组成:

微机原理ch2

微机原理ch2

第二章第二章 8086 8086系统结构系统结构主要内容:§2-1 8086CPU 系统结构§2-2 8086CPU 的引脚功能和系统配置 §2-3 8086存储器组织 §2-4 8086CPU 时序 §2-1 1 8086CPU 8086CPU 系统结构系统结构 一、引言1、8086:Intel 系列的16位微处理器,16条数据线、20条地址线,可寻址地址范围220=1MB,8086工作时,只要一个5V 电源和一个时钟,时钟频率分别有5MHz,8MHz 和10MHz。

2、8088:内部与8086兼容,也是一个16位微处理器,只是外部数据总线为8位,所以称为准16位微处理器。

8088有20条地址线,所以可寻址的地址空间达220即1M 字节。

图2-1 8086CPU 内部结构框图(★)二、8086CPU 的内部结构1、总线接口部件BIU(Bus Interface Unit)它是8086CPU 与外部(存储器和I/O 端口)数据交换的接口。

它提供了16位双向数据总线和20位地址总线,通过它们完成所有外部总线操作。

图2-2 总线接口部件(★)(1)总线接口部件的功能地址形成、取指令、指令排队、读/写操作数和总线控制。

(2)组成部分① 四个段地址寄存器(主要用于存放各段的首地址) CS:16位代码段寄存器; DS:16位数据段寄存器; ES:16位附加段寄存器; SS:16位堆栈段寄存器。

② 16位指令指针寄存器IP(PC)。

存放下一条要执行指令的偏移地址。

③ 20位的地址加法器。

将16位的逻辑地址转换成访问存储器的20位的物理地址。

④ 六字节的指令队列缓冲器。

功能:可存储6字节指令代码,在执行指令的同时,将取下一条指令,当指令队列有2个或2个以上的字节空余时,BIU自动将指令取到指令队列中。

CPU执行完一条指令后,可以指向下一条指令(流水线技术)。

微机原理_8088(8086)工作原理

微机原理_8088(8086)工作原理

8088/8086寄存器结构 8088/8086寄存器结构
15 AH BH CH DH 8 7 AX AL BX BL CX CL DX DL SP BP DI SI IP FLAGS CS DS ES SS 0 累加器 基址变址 计数 数据 堆栈指针 基址指针 目的变址 源变址 指令指针 标志 代码 数据
AX(Accumulator BX(Base
CX(Count DX(Data
指针寄存器
堆栈指针SP(Stack Pointer): 堆栈指针SP(Stack Pointer):用于实现内存中的堆栈
存储方式(FILO),指示栈顶的偏移地址; ),指示栈顶的偏移地址 存储方式(FILO),指示栈顶的偏移地址;
总线接口部件 (Bus Interface Unit)
执行部件 用来存放计算的中间结果, 用来存放计算的中间结果, (Execution Unit) CPU从寄存器中存取数据比从 CPU从寄存器中存取数据比从
负责指令的译码、 负责指令的译码、 存储器中存取数据要快得多。 存储器中存取数据要快得多。 与微处理器外部总线连接, 与微处理器外部总线连接,负责 执行等。 BIU 执行等。 大量使用寄存器能提高计算机 与存储器、I/O接口进行数据交换 接口进行数据交换, 与存储器、I/O接口进行数据交换, 运行速度, 运行速度,但也提高了成本 存取指令、操作数等。 存取指令、操作数等。
指令指针IP(Instruction Pointer): 指令指针IP(Instruction Pointer):计算机之所以
能自动地一条一条地取出并执行指令,是因为CPU中 能自动地一条一条地取出并执行指令,是因为CPU中 有一个跟踪指令地址的电路,其核心就是指令指针IP, 有一个跟踪指令地址的电路,其核心就是指令指针IP, 它用于指明当前应该调用内存中哪个地址位置的指令 CPU中来运行 中来运行, 到CPU中来运行,从而实现计算机自动运行程序员事 先安排好的软件。 先安排好的软件。

微机原理16位32位CPU(8086)

微机原理16位32位CPU(8086)
A19-A16:输出访问存储器的20位地址的高4位地址A19-A16。
S6-S3:输出CPU的工作状态。 S6:指示8086/8088当前是否与总线相连, S6=0,表示 8086/8088当前与总线相连。 S5:表明中断允许标志当前的设置。 S5=0,表示CPU中断是关闭的,禁止一切可屏蔽中断源的 中断请求;S5=1,表示CPU中断是开放的,允许一切可屏 蔽中断源的中断申请。
出一个“准备好”信号,之后CPU才会自动脱离TW状态而进入T4状态。
• ⑤在T4状态,总线周期结束。
2.1.2 8086的引脚信号和工作模式
1. 最小模式和最大模式的概念
根据所连的存储器和外设规模的不同,使它们可以在两种模式下工 作: (1)最小模式:
在系统中只有一8086/8088CPU。 (2)最大模式: 有两个或两个以上的CPU,一个为主处理器8086/8088, 另一个为协处理器8087/8089。 数值运算协处理器8087, 输入输出协处理器8089。









1-有进Байду номын сангаас借位 0-无进、借位
1-低4位向高4位有进、借位 0-低4位向高4位无进、借位
④标志寄存器
根据功能,标志可以分为两类:状态标志和控制标志 状态标志:表示前面的操作执行后,ALU所处的状态,这种状态像某
种先决条件一样影响后面的操作。 控制标志:表示对某一种特定的功能起控制作用。指令系统中有专门
2.1.1 8086的编程结构
在编程结构图中,从功能上划分,8086分为两大部分:即 总线接口部件BIU(Bus Interface Unit) 执行部件EU(Execution Unit)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OE为有效电平(低电平)时,正常输出; 为无效电平(高电平)时,输出高阻
❖ ALE为8088/8086地址锁存允许, 高电平有效, 输出,复用线上出现地址时为高电平
锁存器的DI0-DI7与CPU的地址/数据复用 线相连,STB与ALE相连。ALE为正脉冲 时,输出地址;为低电平时,输出锁存, 与数据无关
A19~A16
S6 ~ S3
BHE A15 ~ A0
S7 D15 ~ D0
最小模式下的时序操作小结
一个基本总线周期由T1~T4组成; T1状态:ALE、M/IO、DT/R有效,分时复用线上传送
地址信息; T2状态:RD、WR、DEN信号有效。对读操作,数据线
呈高阻;对写操作,直接出现输出数据; T3状态:在T3的前沿检测READY,若有效,则读操作出
一、8086通用引脚信号
1
40
VCC
2
39 AD15 INTR可屏蔽中断请求
3 4
38
A16/S3
37
A17/S4
信号(输入、高有效)
5 6
36 35
A18/S5 A19/S6
NMI非屏蔽中断请求
7 8
34
BHE/S7
33
MN/MX
(输入,上升沿触发)
8086
9 10
32 31
RD HOLD*
RESET复位信号(输
DI1
2
19
DO0
DI2
3
18
DO1
DI0
DI3
4
17
DO2
DI1 OE
DI4
5 8282 16
DO3
DO0
DI5
6
15
DO4
DO1
DI6
7
14
DO5
直通
保持 高阻
DI7 OE
8 9
13
DO6
12
DO7
74LS373的功能与8282相同 GND
10
11
STB
地址锁存功能
STB为高电平期间,输出等于输入;为下 降沿时,输出锁存,与输出无关
件 BIU
20位地 地址加法器 址总线
CS
IP
16
DS
暂存器 位
SS

ES



线

总 线
功 能
SI
内部总线16位
线制

暂存器 E

构 图
U
指令队列
ALU
控 制
8位队 列总线
123
8088
4
5
6

标志寄存器

8086
GND AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 NMI INTR CLK GND
最 小 模 式 总 线 连 接
2.5 8086总线时序
时序图:描述某一操作过程中,芯片/总线上有 关引脚信号随时间发生变化的关系图 总线周期:执行一个总线操作所需要的时间 一个基本的总线周期通常包含 4 个T状态
时钟周期
Tw状态用来等待内存或I/O接口的响应
T1
T2
T3 Tw T4
T1
T2 T3 T4
第二章 微处理器与系统结构
2.1 微处理器主要性能指标 2.2 8086/8088微处理器 2.3 8086系统的组成 2.4 存储器组织 2.5 8086总线时序
8086
8086CPU
通用寄存器
AX AH AL BX BH BL CX CH CL DX DH DL
SP BP DI
执总 行线 部接 件口 EU 部
现输入数据;若READY无效,持续其他各控制信号,加 入若干个等待态Tw,并在每个Tw前沿继续检测READY, 直至READY有效为止; T4状态:接收数据,将各控制信号驱动为无效,进入无 源状态,为下一个总线周期做好准备。
11
30
HLDA*
入,高电平有效)
12
29
WR*
13 14
28 27
M/IO* DT/R*
CLK时钟输入端
15 16
26 25
DEN* ALE*
MN/
最小/最大模
17
24
INTA*
18
23
TEST
式控制输入端
19
22
READY
20
21
RESET
地址锁存器
8282引脚信号 DI0 1
20
VCC
STB
A19~A16
S6 ~ S3

BHE/S7 AD15~AD0
ALE RD
DT/R DEN
BHE A15 ~ A0
S7 D15 ~ D0
单CPU系统8086读操作 总线周期时序
最小模式下存储器或I/O的写周期时序
CLK M/IO A19~A16/S6~S3
T1
T2
T3
T4
低:I/O 高: M
A19~A16
总线周期
总线周期
两个总线周期之间 执行空闲周期Ti
读周期——总线读操作(对存储单元或I/O端口) 写周期——总线写操作(对存储单元或I/O端口) 中断响应周期——中断响应操作 空闲周期——总线空操作
最小模式下存储器或I/O的读周期时序
CLK M/IO A19~A16/S6~S3
T1
T2
T3
T4
低:I/O 高: M
Ti Ti
T1
T2 T3
Tw Tw T4
Ti
T1
总线周期
总线周期
典型的8086总线周期序列
在两个总线周期 之间执行空闲周期Ti
典型的总线周期示意
时钟周期
Tw :用于等待内存或 I/O 端口的响应
T1 T2 T3 Tw T4 T1 T2 T3 T4
Ti Ti T1
T2 T3
Tw Tw T4
Ti T1
S6 ~ S3
BHE/S7 AD15~AD0
ALE WR
DT/R DEN
BHE A15 ~ A0
S7 D15 ~ D0
单CPU系统8086写操作 总线周期时序
CLK M/IO A19~A16/S6~S3
BHE/S7 AD15~AD0
ALE RD
READY
等待态Tw的插入
T1
T2
T3
TW
T4
低:I/O 高: M
相关文档
最新文档