电机数字控制系统集成设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H a r b i n I n s t i t u t e o f T e c h n o l o g y

课程学术报告

课程名称:电机数字控制系统的集成设计设计题目:无刷直流电机数字控制系统集

成设计的分析

班号:电气五班

姓名:逄锦有

学号:10S106033

指导教师:杨贵杰教授

时间:2011.5.10

哈尔滨工业大学

无刷直流电机数字控制系统集成设计的分析

摘要:本文以“方波原理”无刷直流电动机系统为例,分析电机数字控制系统的集成设计思想、原理、结构特点和驱动控制方法。其中,驱动控制方法主要分传统的位置传感器和无位置传感器控制技术。传统方法主要是采用基于TI公司的TMS320F2812 DSP控制系统,包括了硬件电路和软件电路的设计。无位置传感技术这里主要介绍反电动势检测法,并且用基于数字信号控制器DSPIC30F6010的实例进行了分析总结。

1无刷直流电机的背景

无刷直流电机是近年来随着电力电子的发展和新型永磁材料的出现而迅速发展成熟的一种新型电机。无刷直流电机以电子换向器代替机械电刷和换向器实现直流电机的换相,它既具备交流电动机的结构简单、运行可靠、维护方便等一系列优点,又具备直流电动机的运行效率高、调速性能好等诸多特点,同时克服了有刷直流电机由于机械电刷和换向器的存在所带来的噪声、火花、无线电干扰以及寿命短等弊病。无刷直流电机还具备诸多独特优点,如重量轻、体积小、动态性能好、输出力矩大、设计简便等特点,故其应用遍及各个领域。

电力电子技术、计算机技术和控制理论的发展使得电机调速技术得到很快的发展。新的电力电子器件、高性能的数字集成电路以及先进的控制理论的应用,使得控制部件功能日益完善,所需的控制器件越来越少,控制器件的体积也日益减小,控制器的可靠性提高而成本日益降低,原来使用有刷直流电机的场合,逐渐由无刷直流电机所代替。在仪器仪表中采用的小型交流异步电机风扇,目前已有很大一部份被结构简单、尺寸紧凑、效率更高的无刷直流电机风扇所代替。随着家用电器的竞争越来越激烈,使得对其性能、质量的要求越来越高提高,对大量应用的电动机也提出了低噪声、高性能、长寿命、小型化、高效节能的要求,这也促使采用无刷直流电机来代替性能差、效率较低的异步电机。无刷直流电机的发展已经与大功率开关器件、专用集成电路、稀土永磁材料、微机、新型电机控制理论和电机理论的发展紧密结合,体现着当今应用科学的许多最新成果,因而显示出广泛的应用前景和强大的生命力。

2无刷直流电机数字控制系统发展现状

无刷直流电动机的控制有别于有刷直流电动机或交流感应电机,它需要一些位置传感信息来选择正确的换流顺序。传统的无刷直流电动机通过位置传感器信息来选择正确的换流顺序。但是位置传感器的存在,增加了无刷直流电动机的重量和结构尺寸,不利于电机小型化;同时,传感器的安装精度和灵敏度直接影响电机的运行性能。另一方面,由于传输线太多,容易引入干扰信号;由于是硬件采集信号,更降低了系统的可靠性。针对位置传感器所带来的种种不利影响,

为适应无刷直流电动机的进一步发展,无位置传感器控制技术应运而生。

近年来,无刷直流电动机的无位置传感器控制一直是国内外较为热门的研究课题。无位置传感器无刷直流电机的控制是指不依赖位置传感器,通过另外的方式得到转子的位置信号、确定逆变器功率管的切换,进而对定子绕组进行换相,保持定子电流和反电势在相位上的严格同步的一种控制方式。在无位置传感器的控制方式中,研究的核心问题主要是如何通过软件和硬件的方法,构建转子状态量的检测电路。由于可以直接测量到的一般只有相电压和相电流两个量,因此,国内外目前所提出的控制方法绝大部分是基于以上两个观测量的。

有多种算法可以实现无位置传感器控制。反电势法和状态观测器法都能比较方便、直观的得到转速信号和位置信息,这两种方法也是目前使用最为广泛的控制方法。尤其是反电势过零点检测法,其原理简单,易于实现,在无位置传感器直流无刷电机控制系统中得到了普遍的应用。此外,国内外还提出了许多新的方法与技术,如涡流法,电流法以及矢量法等控制方法。但这些方法实现起来难度较大,应用条件比较苛刻,只适用于特定的应用场合,因此应用不是很广泛。

智能控制包括矢量控制、模糊算法、人工神经元网络和专家系统等,是目前学术界研究的热点。由于智能控制无需对象的精确数学模型并具有较强的鲁棒性,因而许多学者将智能控制方法引入了电机控制系统的研究。其中,经典PID 控制与模糊算法结合所组成的Fuzzy-PID控制、人工神经元网络和模糊控制相结合的复合控制以及人工神经元网络与数字滤波相结合的自适应控制等控制方法代表着当前智能控制的研究方向。

无刷直流电动机控制器的使用经历了分立元件的模拟电路,专用集成电路和以微型计算机为核心的数模混合控制与全数字化控制几个阶段。DSP器件的出现,使得电机控制系统的处理能力有了很大的提高。DSP具有强大的运算能力,和普通的MCU相比,运算及处理能力增强了10~50倍,因此在其控制策略中可以使用先进的实时算法,如Kalman滤波、自适应控制、模糊控制和神经元控制等,从而可以进一步提高系统的控制精度和实时性。近年来,国外一些大公司纷纷推出比MCU性能更加优越的DSP(数字信号处理器),如ADI公司的ADMC3xx 系列,TI公司的C2000系列及Motorola公司的DSP56F8xx系列。它们都是将DSP内核配以电机控制所需的外围功能电路集成在单一芯片内,使设计的硬件成本大大降低且体积缩小。从而使DSP器件及技术更容易使用,价格也能为广大用户接受。

目前,采用DSP实现无位置传感器控制成为电机控制研究的热点,低成本DSP无位置传感器无刷电动机,成为无刷直流电动机的发展方向。集成控制芯片由于它的经济性也是广泛应用的方向。

3无刷直流电机的原理和结构特点

3.1 永磁无刷直流电机的运行原理

一般的直流电动机由于电刷的换向,使得定子磁场在电机运行过程中始终保持与电枢磁场垂直从而产生最大转矩,使电机运转。无刷直流电动机的运行原理和有刷直流电动机基本相同,即在一个具有恒定磁通密度分布的磁极下,保证电枢绕组中通入的电流总量恒定,以产生恒定的转矩,且转矩只与电枢电流的大小有关。无刷电机的运行还需依靠转子位置传感器检测出转子的位置信号,通过换相驱动电路驱动与电枢绕组连接的各功率开关管的导通与关断,从而控制定子绕组的通电,在定子上产生旋转磁场,拖动转子旋转。随着转子的转动,位置传感器不断地送出信号,以改变电枢的通电状态使得在同一磁极下的导体中的电流方向不变,因此,就可产生恒定的转矩使无刷直流电动机运转起来。

无刷直流电机的工作原理以图1来进行说明。反电势和电流波形如图2所示。

图1 无刷直流电机系统框图

图2 无刷直流电机反电势和电流波形图

它的运行原理简述如下:当转子处于图3(a)所示的位置时,功率开关管T1、T6导通,定子磁势Fa和转子磁场Br1的夹角为120度电角度,定子磁势于转子磁场相互作用产生电磁转矩。该转矩使转子向定子磁势轴线方向旋转。随着定子

相关文档
最新文档