数字图像处理图像分割
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2
1
2 3 2
常用的平滑滤波器Biblioteka Baidu高斯(Gauss)函数:
2gx,y2Gx,yfx,y2Gx,yfx,y
两种方法是互补的。有时将它们地结合起来,以求得到 更好的分割效果。
人眼图像示例
分类—连续性与处理策略
连续性:
不连续性:边界 相似性:区域
处理策略:早期处理结果是否影响后面的处理
并行:不 串行:结果被其后的处理利用
四种方法
并行边界;串行边界;并行区域;串行区域
问题
不同种类的图像、不同的应用要求所要求提取的区 域是不相同的。分割方法也不同,目前没有普遍适 用的最优方法。
边缘检测
边缘上的这种变化可以通过微分算子进行检测:
一阶导数:通过梯度来计算 二阶导数:通过拉普拉斯算子来计算
边界图像 截面图
xfi,jfi,jfi1,j yfi,jfi,jfi,j1
边缘检测
一阶导数:用梯度算子来计算
特点:对于亮的边,边的变化起点是正的,结束是负 的。对于暗边,结论相反。常数部分为零。 用途:用于检测图像中边的存在
形式化的定义
形式化定义
令集合R代表整个图像区域,对R的分割可看作将R分成 若干个满足以下条件的非空子集(子区域) R1, R2, R3,… Rn:
分类—分割依据
相似性分割:将相似灰度级的像素聚集在一起。形成图 像中的不同区域。这种基于相似性原理的方法也称为基 于区域相关的分割技术
非连续性分割:首先检测局部不连续性,然后将它们连 接起来形成边界,这些边界把图像分以不同的区域。这 种基于不连续性原理检出物体边缘的方法称为基于点相 关的分割技术
区域内部的相似性 • 通过选择阈值,找到灰度值相似的区域 • 区域的外轮廓就是对象的边
用空域的高通滤波器来检测 孤立点:
R= (-1 * 8 * 8 + 128 * 8)/9=106
可以设置阈值T = 64
若R=0,则说明?
若R > T,则说 明?
888
8 128 8
888 图像
点检测
-1 -1 -1 -1 8 -1 -1 -1 -1
111111111
555555555
111111111
边缘检测
物体的边缘是以图像局部特性的不连续性的形式出现 的,从本质上说,边缘意味着一个区域的终结和另一 个区域的开始。 图像边缘信息在图像分析和人的视觉中都是十分重要 的,是图像识别中提取图像特征的一个重要属性。 是一种并行边界技术
边缘导数
阶跃型 凸缘型 房顶型
模板
点检测
汽轮机叶片对 应的X光图像
点检测的结果
改变阈值 的结果
线检测
通过比较典型模板的计算值,确定一个点是否在某 个方向的线上
你也可以设计其它模板:
模板系数之和为0 感兴趣的方向系数值较大
-1 -1 -1 222 -1 -1 -1
-1 -1 2 -1 2 -1 2 -1 -1
-1 2 -1 -1 2 -1 -1 2 -1
人的视觉系统对图像分割是相当有效的,但十分复 杂,且分割方法原理和模型都未搞清楚。这是一个 很值得研究的问题。
研究层次
图像分割算法 图像分割算法的评价和比较 对分割算法的评价方法和评价准则的系统研究
图像分割的策略
图像分割的基本策略是基于灰度值的两个基本特性:
区域之间的不连续性 • 先找到点、线(宽度为1)、边(不定宽度) • 再确定区域
xfi,jfi,jfi1,j yfi,jfi,jfi,j1
边缘检测
二阶导数:通过拉普拉斯来计算
特点:二阶微分在亮的一边是正的,在暗的一边是负 的。常数部分为零。 用途:确定边上的像素是在亮的一边,还是暗的一边, 0用于确定边的准确位置
简单边缘检测方法
最早的边缘检测方法都是基于像素的数值导数的, 在数字图像中应用差分代替导数运算。
图像经过梯度运算能灵敏地检测出边界,但是梯度运算 比较复杂。
对于数字图像,可用一阶差分替代一阶微分: 则f(x,y)的梯度幅度可以=?
常用的边缘检测器
给定图像中的一个 3*3区域,使用下面的边缘检测 滤波器进行检测,它们都使用一阶导数
原始图像
边缘检测举例
水平梯度部分
垂直梯度部分
组合得到边缘图像
图像分割是图像识别和图像理解的基本前提步骤
图像
图像预处理
图像识别
图像理解
图像分割
图像分割举例
图像分割举例
图像分割是把图像分解成构成的部件和对象的过程 把焦点放在增强感兴趣对象
汽车牌照
排除不相干图像成分:
非矩形区域
n
(1) Ri
i1
(2)对所有的 i和j, i j, 有Ri R j (3)对i 1,2,..., n, 有P(Ri ) true (4)对i j, 有P(Ri R j ) false (5)对i 1,2,..., n, Ri是连通的区域
由于边缘是图像上灰度变化比较剧烈的地方,在
灰度变化突变处进行微分,将产生高值,因此在数学 上可用灰度的导数来表示变化。
差分定义:
f 2 x
fy2
梯度算子 梯度是图像处理中最为常用的一次微分方法。
图像函数 x, y在点 的梯度幅值为 arctgf y f x fx, y
其方向为
xfx,yfx,yfx1,y yfx,yfx,yfx,y1
2 -1 -1 -1 2 -1 -1 -1 2
水平模板
45度模板
垂直模板 135度模板
线检测
用4种模板分别计算
R水平 = -6 + 30 = 24 R45度 = -14 + 14 = 0 R垂直 = -14 + 14 = 0 R135度 = -14 + 14 = 0
从这些值中寻找绝对值最大值,确定当前点更加接 近于该模板所对应的直线
边缘检测问题
边缘检测中经常碰到的问题是:
图像中存在太多的细节。比如,前面例子中的砖墙 图像受到噪声的干扰,不能准确的检测边缘
解决的一个方法是在边缘检测之前对图像进行平滑
g 0 h x
1
x2
e 2 2
2
g1 h x
x e
x2 2 2
2 3
g 2 h x
1
x2
e 2 2
数字图像处理图像分割
计算机图像处理的两个目的:
产生更适合人观察和识别的图像 有计算机自动识别和理解图像
图像分割(Image Segmentation):
图像分割 阈值选择与阈值化处理 边界提取和轮廓跟踪 Hough变换 区域生长
课程内容
图像分割
图像分割的目标是重点根据图像中的物体将图像的 像素分类,并提取感兴趣目标