几何概型PPT
合集下载
几何概型(优秀课件)
例2.甲、乙二人约定在下午12点到17点之间在某地会面, 先到者等一个小时后即离去,设二人在这段时间内的各时刻 到达是等可能的,且二人互不影响。求二人能会面的概率。
解: 以 X , Y 分别表示甲、乙二人到达的时刻,
于是 0 X 5, 0 Y 5.
y
即 点 M 落在图中的阴影部
分.所有的点构成一个正 方形,即有无穷多个结果. 由于每人在任一时刻到达 都是等可能的,所以落在正 方形内各点是等可能的.
3.3.1几何概型
问创题设情情境境3:
下图是卧室和书房地板的示意图,图中 每一块方砖除颜色外完全相同,小猫分别在 卧室和书房中自由地走来走去,并随意停留 在某块方砖上。在哪个房间里,小猫停留在 黑砖上的概率大?
卧室
书房
几何图形
思考:上述问题的概率与什么有关? 这是古典概型问题吗?
古典概型的两个基本特点: (1)所有的基本事件只有有限个; (2)每个基本事件发生都是等可能的.
那么对于有无限多个试验结果的情况 相应的概率应如果求呢?
问题
1.取一根长度为30cm的绳子,拉直后在任意位 置剪断,那么剪得两段的长度都不小于10cm的 概率有多大?
基本事件: 从30cm的绳子上的任意一点剪断.
解:记“剪得两段绳长都不小于10cm”为事件A. 把绳子三等分,于是当剪断位置处在中间一段上时, 事件A发生.由于中间一段的长度等于绳长的1/3.
练一练:
4.有一杯1升的水,其中含有1个大肠杆 菌,用一个小杯从这杯水中取出10毫升, 求小杯水中含有这个细菌的概率.
思 考:
国家安全机关监听录音机记录了两个间谍的谈话, 发现30min的磁带上,从开始30s处起,有10s长的一段 内容包含间谍犯罪的 信息.后来发现,这段谈话的部分被 某工作人员擦掉了,该工作人员声称他完全是无意中按 错了键,使从此后起往后的所有内容都被擦掉了.那么 由于按错了键使含有犯罪内容的谈话被部分或全部擦掉 的概率有多大?
人教高中数学几何概型PPT完美版
基本事件: 从30cm的绳子上的任意一点剪断。
二、提出问题
普 概念1.几何概型(实例)
通 高 中 课
2.图中有两个转盘,甲乙两人玩转盘游戏规定当指针指向B 区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的 概率是多少?
程 标 准
分析:甲获胜的概率只与B 所在扇形区域的圆弧长度 有关,而与B所在区域的位
课 个等可能事件的情况,而古典概型中的等可能事件只有有
程 限多个;
标
准 (2)D的测度不为0,当D分别是线段、平面
图形、立体图形时,相应的“测度”分别
是长度、面积和体积。
(3)区域应指“开区域”,不包含边界点;在区域D内随 机取点是指:该点落在D内任何一处都是等可能的,落在 任何部分的可能性只与该部分的测度成正比而与其性状位 置无关。
通 如果每个事件发生的概率只与构成该事件区域的长度(面
高 中 课
积或体积)成比例,则称这样的概率模型为几何概型 (Geometric models of probability)
程 几何概型的特点:
标 准
(1)基本事件有无限多个(不可数);
(2)基本事件发生是等可能的。
一般地,在几何区域D中随机地取一点,记“该点落在其 内部一个区域d内”为事件A,则事件A发生的概率:
P(A)=
d的测度 D的测度
A
Liangxiangzhongxue
人 教 高 中 数 学几何 概型PP T完美版
人 教 高 中 数 学几何 概型PP T完美版
三、概念形成
普 概念2.几何概型(Geometric models of probability)
通 高
注意事项:
中 (1)古典概型与几何概型的区别在于:几何概型是无限多
数学必修三 几何概型 新课标人教B版 .ppt
复习回顾
定义:(1)试验中所有可能出现的基本事件
只有有限个; (2)每个基本事件出现的可能性相等. 我们将具有以上两个特点的概率模型称 为古典概率模型,简称古典概型.
概率计算公式: P(A)=
A包含的基本事件的个数 基本事件的总数
问题1.
取一根长度为3m的绳子,拉直后在任意位置剪 断,那么剪得两段的长度都不小于1m的概率有多 大?
2a, A 2a 2r
A 2a 2r a r P( A) 2a a
ar 所以,硬币不与任一条平行线相碰的概率为 。 a
思路三
解:记“硬币不与任一条平行线相碰”为事件A。 为了确定硬币的位置,过硬币中心O作两平行线间的垂线 段,其长度2a即是几何概型定义中Ω的几何度量。 当硬币不与平行线相碰时,硬币中心O可 移动长度2a-2r即是子区域A的几何度量。 这是一个几何概型问题。
基本事件:
从3m的绳子上的任意一点剪断.
问题2.
有一杯1升的水,其中含有1个细菌,用一个小 杯从这杯水中取出0.1升,求小杯水中含有这 个细菌的概率.
提出问题
思考:上述问题的概率是古典概型问题吗?
为什么?
古典概型的两个基本特点: (1)所有的基本事件只有有限个; (2)每个基本事件发生都是等可能的。
那么对于有无限多个试验结果 (不可数)的情况相应的概率应 如何求呢?
(1)试验中所有可能出现的基本事件有无限多个; (2)每个基本事件出现的可能性相等.
1、几何概型是怎样定义的? 事件A理解为区域Ω 的某一子区域A,A的概率只与子 区域A的几何度量(长度、面积、体积)成正比,而与A的 位置和形状无关。满足以上条件的试验称为几何概型。
3.几何概型的概率计算公式
定义:(1)试验中所有可能出现的基本事件
只有有限个; (2)每个基本事件出现的可能性相等. 我们将具有以上两个特点的概率模型称 为古典概率模型,简称古典概型.
概率计算公式: P(A)=
A包含的基本事件的个数 基本事件的总数
问题1.
取一根长度为3m的绳子,拉直后在任意位置剪 断,那么剪得两段的长度都不小于1m的概率有多 大?
2a, A 2a 2r
A 2a 2r a r P( A) 2a a
ar 所以,硬币不与任一条平行线相碰的概率为 。 a
思路三
解:记“硬币不与任一条平行线相碰”为事件A。 为了确定硬币的位置,过硬币中心O作两平行线间的垂线 段,其长度2a即是几何概型定义中Ω的几何度量。 当硬币不与平行线相碰时,硬币中心O可 移动长度2a-2r即是子区域A的几何度量。 这是一个几何概型问题。
基本事件:
从3m的绳子上的任意一点剪断.
问题2.
有一杯1升的水,其中含有1个细菌,用一个小 杯从这杯水中取出0.1升,求小杯水中含有这 个细菌的概率.
提出问题
思考:上述问题的概率是古典概型问题吗?
为什么?
古典概型的两个基本特点: (1)所有的基本事件只有有限个; (2)每个基本事件发生都是等可能的。
那么对于有无限多个试验结果 (不可数)的情况相应的概率应 如何求呢?
(1)试验中所有可能出现的基本事件有无限多个; (2)每个基本事件出现的可能性相等.
1、几何概型是怎样定义的? 事件A理解为区域Ω 的某一子区域A,A的概率只与子 区域A的几何度量(长度、面积、体积)成正比,而与A的 位置和形状无关。满足以上条件的试验称为几何概型。
3.几何概型的概率计算公式
几何概型课件(公开课)(28张PPT)
1比赛靶面直径为122cm,靶心直径为12.2cm,随机射箭,
假设每箭都能中靶,射中黄心的概率
P( A)
A对应区域的面积 试验全部结果构成区域的面积
1 100
2 500ml水样中有一只草履虫,从中随机取出2ml水样放
在显微镜下观察,发现草履虫的概率
P(
A)
A对应区域的体积 试验全部结果构成区域的体积
= A C '= A C = 2 AB AB 2
则AM小于AC的概率为2
2
解:如图,当P所在的区域为正方形ABCD的内部(含边界), 满足x2+y2≥4的点的区域为以原点为圆心,2为半径的圆的外 部(含边界). 故所求概率
练习 5.在半径为1的圆上随机地取两点,连成一条线,则
其长超过圆内等边三角形的边长的概率是多少?
2 500
1 250
某人在7:00-8:00任一时刻随机到达单位, 问此人在7:00-7:10到达单位的概率?
设“某人在7:10-7:20到达单位”为事件A
P( A)
A对应区域的长度 试验全部结果构成区域的长度
1 6
不是古典概 型!
问此人在7:50-8:00到达单位的概率?
类比古典概型,这些实验有什么特点? 概率如何计算?
2a
解: 记“豆子落在圆内”为事件A,
P(A)
圆的面积 πa2 正方形面积 4a2
π 4
答 豆子落入圆内的概率为π4 .
应用巩固:
(1)在区间(0,10)内的所有实数中随机.
(2) 在1万平方千米的海域中有40平方千米的与大面陆积架成储比藏例 着石油,如果在海域中任意点钻探,钻到油层面的概率 .
F
E B
P=2/9
假设每箭都能中靶,射中黄心的概率
P( A)
A对应区域的面积 试验全部结果构成区域的面积
1 100
2 500ml水样中有一只草履虫,从中随机取出2ml水样放
在显微镜下观察,发现草履虫的概率
P(
A)
A对应区域的体积 试验全部结果构成区域的体积
= A C '= A C = 2 AB AB 2
则AM小于AC的概率为2
2
解:如图,当P所在的区域为正方形ABCD的内部(含边界), 满足x2+y2≥4的点的区域为以原点为圆心,2为半径的圆的外 部(含边界). 故所求概率
练习 5.在半径为1的圆上随机地取两点,连成一条线,则
其长超过圆内等边三角形的边长的概率是多少?
2 500
1 250
某人在7:00-8:00任一时刻随机到达单位, 问此人在7:00-7:10到达单位的概率?
设“某人在7:10-7:20到达单位”为事件A
P( A)
A对应区域的长度 试验全部结果构成区域的长度
1 6
不是古典概 型!
问此人在7:50-8:00到达单位的概率?
类比古典概型,这些实验有什么特点? 概率如何计算?
2a
解: 记“豆子落在圆内”为事件A,
P(A)
圆的面积 πa2 正方形面积 4a2
π 4
答 豆子落入圆内的概率为π4 .
应用巩固:
(1)在区间(0,10)内的所有实数中随机.
(2) 在1万平方千米的海域中有40平方千米的与大面陆积架成储比藏例 着石油,如果在海域中任意点钻探,钻到油层面的概率 .
F
E B
P=2/9
几何概型课件
角度型的几何概型的概率计算
总结词:基于角度
详细描述:角度型的几何概型是以角度作为概率测度的概率 模型。例如,在等可能的角度分布情况下,某事件发生的角 度越大,其发生的概率就越大。
03
几何概型的应用
在日常生活中的应用
交通信号灯
天气预报
几何概型可以用于计算不同方向的车 流等待时间。
几何概型可以用于预测降雨、降雪等 天气事件。
随机过程
几何概型可以用于研究随 机过程的变化和趋势。
统计学
几何概型可以用于统计分 析,如回归分析和方差分 析等。
04
几何概型的实际案例
掷骰子问题
总结词
等可能性和有限性
详细描述
掷一颗骰子,观察出现的点数,因为骰子有六个面,每个面上的点数都是等可 能的,所以这是一个几何概型问题。
转盘游戏问题
总结词
详细描述
数形结合思想在几何概型中主要体现在将概 率问题转化为几何图形问题,通过图形的性 质和变化来研究概率的变化规律。例如,在 几何概型中,等可能事件可以通过几何图形 来表示,概率的大小可以通过图形的面积或
体积来度量。
等可能性的思想方法
总结词
等可能性是几何概型中的一个基本思想,它认为在相 同的条件下,各个事件发生的可能性是相等的。
总结词:基于Байду номын сангаас积
详细描述:面积型的几何概型是以面积作为概率测度的概率模型。例如,在等可能的点分布情况下,某事件发生的区域面积 越大,其发生的概率就越大。
体积型的几何概型的概率计算
总结词:基于体积
详细描述:体积型的几何概型是以空间体积作为概率测度的概率模型。例如,在等可能的点分布情况 下,某事件发生的空间体积越大,其发生的概率就越大。
人教版高中数学必修3(A版) 几何概型 PPT课件
2 5
1 6
第二种三块区域圆心 角之比为1:2:3;
1 4
第三种圆盘两圆的半 径之比为1:2
[情境二] 问题1:在区间[0,9]上任取一个整数,恰 好取在区间[0,3]上的概率为多少? 2
5
问题2:在区间[0,9]上任取一个实数,恰 好取在区间[0,3]上的概率为多少? 1
3
探究:
请问飞镖射中靶心A(看成一个点)的 概率是多少?
中国刑法第三百零三条规定:以营利为目的,聚众 赌博或者以赌博为业的,处三年以下有期徒刑、拘役 或者管制,并处罚金;“开设赌场的,处三年以下有期徒 刑、拘役或者管制,并处罚金;情节严重的,处三年以 上十年以下有期徒刑,并处罚金.
复习提问:
1、古典概型的两个特点: (1)试验中所有可能出现的基本事件只有 有限个. (2)每个基本事件出现的可能性相等. 2、计算古典概型的公式:
几何概型的概率计算公式:
构成事件A的测度(长度、弧度、 角度、面积、体积) P( A) 全部结果的测度(长度 构成事件A的测度(长度、弧度、 角度、面积、体积) P( A) 全部结果的测度(长度 、弧度、角度、面积、 体积)
例1:取一根长度为60cm的绳子,拉直后在任意
A包含基本事件的个数 公式:P( A) 基本事件的总数
创设情境:
情境一:摸球游戏:袋子中有分别写有1 号、2号、3号、4号、5号的5个球, 问题:随机抽取一个抽到1号的概率是多 1 少? 5 上述情景改为如图所示,问 1 5 题:圆盘中指针指到到1号的 4 2 概率是多少? 3
注:五个扇形区域面 积相同;
解:设A={等待的时间不多于10分钟}. 所求的事件A恰好是打开收音机时的 时刻位于[50,60]时间段内。 因此由几何概型的概率公式得
高中数学人教A版必修3《几何概型》PPT (3)
①硬币覆盖的范围是一个面,
求概率时,应选择面积比.
②用硬币圆心的位置来描述
试验及事件A.
③对于试验,硬币圆心覆盖的 范围是以点O为圆心, 半径
O
4 56
为6的圆. 对于事件A, 硬币
圆心覆盖的范围是以O为圆
心,半径为4的圆.
说明 记“硬币完全落入圆内”为事件A.
探究1 有一个半径为5的圆, 现在将一枚半径为1的硬币 向圆投去,如果硬币不会完全落在圆外, 试求硬币完全落入圆内的概率.
EFGH内随机投掷一枚半径为1的硬币,则硬币能覆盖正
方形ABCD顶点的概率为
.
析:向正方形EFGH内随机投 E
掷一枚半径为1的硬币,硬币
圆心覆盖的区域为虚线正方 形,该正方形的边长为4.记
A
“硬币能覆盖正方形ABCD顶
点”为事件A,事件A发生时,
B
硬币圆心覆盖的区域为半径
为1的⊙A、⊙B、⊙C、⊙D,
4.引进变量可以是长度、角度等---正确引入变量.
3. 如图,一个边长为2的正方体鱼缸内放入一个 倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底 面正方形相切,圆锥的顶点恰好在鱼缸的缸底上,现 在随机的向鱼缸内投入一粒鱼食,则“鱼食能被鱼缸 内圆锥外面的鱼吃到”的概率是______________.
面积模型
几何概型在高中教学中的地位
几何概型是高中概率中的一种重要模型,在 高考中,几何概型的问题往往新颖别致,构思巧 妙,具有较高的思维挑战性.
本节课我们就来研究一下这类构思巧妙的题型.
探究1 有一个半径为5的圆, 现在将一枚半径为1的硬币
向圆投去,如果硬币不会完全落在圆外,
试求硬币完全落入圆内的概率.
AM
高中数学几何概型课件新人教必修
01.
无限性:试验中可能出现的结果有无限个; 等可能性:发生每一种结果的可能性相同。
02.
几何概型的特征性质:
03.
如何求解它的概率呢?
几何概型的定义及计算公式:
事件A理解为区域 的某一子区域A,A的概 率只与子区域A的几何度量(长度、面积或体积)
成正比,而与A的位置和形状无关满足以上条件的
试验称为几何概型
cm 2
课堂作业 P114 A组 2、3题
谢谢
10
例3、在区间[10,20]内的所有实数中,随机地取一个实
数a,
3
满足10≤a≤13的概率. 10
.
。........ .
0
10
13
20
练习: 在区间[0,3]内任取一数a,且a
1
练习:
2
二.两根相距6m的木杆上系一根绳子, 并在绳子上挂一盏灯,则
课堂小结:
1、几何概型的特征性质:
(1)无限性;(2)等可能性
2、几何概型及计算公式:
P(A)=
其中 A
A
构成事件A的区域长度(面积或体积)
试验的全部结果所构成的区域长度(面积或体积)
cm 2
思考与探究:
在长为12cm的线段AB上任 取一点M,并以AM为边长 作正方形,求正方形面积介 于36 与81 之间的概 率
实验:进行 抛掷小豆子
的实验
提问2:你猜想豆子落 在红色区域内的概率是 多少?
提问1:这个问题是不 是古典概型的问题?
如图,有一个由红绿蓝三色构成的彩色圆盘,向圆盘 内随机抛掷豆子(落在圆盘外的不算).
记“小豆子落在红色
区 猜域 想”:为P(事A件)红A=,色圆区的域面的积面积12
人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件(共17张PPT)
【变式2】:圆O是边长为2的正方
形的内切圆 , 向这个正方形中随机
地投一点M,设M落在正方形中任一
点的可能性是相同的,试求点M落圆
O中的概率.
O
4
•M
知识探究(二):几何概型的概率
【变式3】一只小虫在一个棱长为20cm盛满 水的正方体容器中游动, 假设小虫出现在容 器中的任意一个位置均为等可能的, 记“它 所在的位置距离正方体中心不超过10cm”为 事件A, 那么事件A发生的概率是多少?
B
N
N
B
B
N
BB
N
N
B
知识探究(一):几何概型的概念
思考 3:上述每个扇形区域对应的圆弧的长度(或 扇形的面积)和它所在位置都是可以变化的,从 结论来看,甲获胜的概率与字母 B 所在扇形区域 的哪个因素有关?
B
N
N
B
B
N
BB
N
N
B
与扇形的弧长(或面积)有关.
知识探究(一):几何概型的概念 思考 4:如果每个事件发生的概率只与构成该事 件区域的长度(面积或体积)成比例,则称这样 的概率模型为几何概型. 参照古典概型的特性, 几何概型有哪两个基本特征?
所有基本事件构成 的区域是什么?
事件A构成的区域 是什么?
在线段AB上任取一
3m
点
A
B
3m
取到线段AB上某一点 A
B
3m
线段AB(除两端外) A
B
线段CD
1m
AC DB
知识探究(二):几何概型的概率
【变式1】:在等腰直角三角形 ABC中,在斜边AB上任取一点M,
求AM的长大于AC的长的概率.
知识探究(二):几何概型的概率
高中数学《几何概型》课件
剪断,那么剪得两段的长度都不小于3米的概率
是多少?
解:记“剪得两段彩带都不小于3m” 为事件A.
把彩带三等分,于是当剪断位置处在中间一段上时,
事件A发生.由于绳子上各点被剪断是等可能的,且中间
一段的长度等于彩带的 1 . 即P A 1
3
3
PA
构成事件 A的区域长度 试验的全部结果所构成 的区域长度
问题2 某列岛周围海域面积约为17万平方公里,
如果在此海域里有面积达0.1万平方公里的大 陆架蕴藏着石油,假设在这个海域里任意选 定一点钻探,则钻出石油的概率是多少?
解:记“钻出石油”为事件A,则
PA 0.1 1
17 170
P
A
构成事件 A的区域面积 试验的全部结果所构成 的区域面积
问题3 有一杯1升的水, 其中含有1个细菌, 用
P(A) ACC 60 2 2 ACB 90 3 3
答:这时AM小于AC的概率为 .
练习题:
1.在等腰直角△ABC中,过直角顶点C任作一
条射线L与斜边AB交于点M,求AM小于AC的
概率.
3
4
2.在等腰直角△ABC中,在斜边AB上任取一点
M,求使△ACM为钝角三角形的概率. 1
2
3.在等腰直角△ABC中,在斜边AB上任取一点
p
A
m A m
数学理论:
古典概型的本质特征: 1、样本空间中样本点个数有限, 2、每一个样本点都是等可能发生的. 将古典概型中的有限性推广到无限性,而保留等
可能性,就得到几何概型.
几何概型的本质特征: 1、有一个可度量的几何图形S;
2、试验E看成在S中随机地投掷一点;
3、事件A就是所投掷的点落在S中的可度量图形A中.
几何概型(1)课件
解:P(A)= μA/μΩ=2/500=0.004
5
注
意
古典概型与几何概型的异同点
古典概型—— 有限性、等可能性. 几何概型—— 无限性、等可能性.
6
一、与长度有关的几何概型问题
例1 已知函数 y=x2-x-2, x∈[-5,5],那么任 取一点x0∈[-5,5],求使f(x0)≤0的概率。
而只有 r< OM a 时硬币不与平行线相碰. 所以
M O
L1
L2
r , a 的长度 a r P( A) 0,a 的长度 a
8
二、与面积有关的几何概型问题
例3:一海豚在水池自由游弋,水池长30m,宽20m的长 方形.求此刻海豚嘴尖离岸边不超过2m的概率.
解: μΩ=30×20=600(m2) μA=600-26×16 =184(m2) P(A)=μA/μΩ =184/600 =23/75
解: 记“使f(x0)≤0”的事件为A 显然当x0∈[-1,2]时, 总有f(x0)≤0成立.
-5 -1
y
o
2
5
x
A 2 (1) 3 p( A) 5 (5) 10
7
一、与长度有关的几何概型问题
例2: 平面上有一些彼此相距2a的平行线,把一枚半 径r<a的硬币任意地掷在这个平面上,求硬币不 与任一条平行线相碰的概率。 解: 记“硬币不与任一条平行线相碰”为事件 A 由于 OM 0,a 即Ω的几何度量 2a
10
C
M N
AOLeabharlann B三、与体积有关的几何概型问题
例3:在1升高产小麦种子中混入了一粒带麦锈病 的种子,从中随机取出1毫升,则取出的种 子中含有麦锈病的种子的概率是多少?
《几何概型》_PPT完整版人教版2
50 60
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
思维展示
本题采用的几何度量有:
圆心角
时长
面积
弧长
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
几何概型
【情境创设 引入新课】
情境一:现在假设,一根长为3米的彩带,拉直后在任意位置剪
断,那么剪得两端的长都不少于1米的概率有多大?
A
M
N
B
1m
1m
情景二:现在我们将刚才的视频提炼为:指针指向黄色区域时, 获得加分,否则不加分.在下面情况中获得加分的概率是多少?
情景三:大烧杯盛有2升的水,内有1只金鱼, 一个小烧杯从中 取出0.1升,求小烧杯水中含有这条金鱼的概率.
记 表示区域Ω的几何度量, A 表示
子区域A的几何度量.则
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
定义辨析 呈现本质
下列概率问题都是几何概型吗?为什么? 古典概型
⑴我班46个学生,抽5个学生参加问卷调查,某同学
被抽到的概率?
与面积成正比
⑵我班某同学参加射击比赛,假设均能射中且等可 能,箭靶直径20cm,靶心直径4cm,射中靶心概率?
概率的计算公式
古典概型 有限个
几何概型 无限个
相等
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版) 《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
思维展示
本题采用的几何度量有:
圆心角
时长
面积
弧长
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
几何概型
【情境创设 引入新课】
情境一:现在假设,一根长为3米的彩带,拉直后在任意位置剪
断,那么剪得两端的长都不少于1米的概率有多大?
A
M
N
B
1m
1m
情景二:现在我们将刚才的视频提炼为:指针指向黄色区域时, 获得加分,否则不加分.在下面情况中获得加分的概率是多少?
情景三:大烧杯盛有2升的水,内有1只金鱼, 一个小烧杯从中 取出0.1升,求小烧杯水中含有这条金鱼的概率.
记 表示区域Ω的几何度量, A 表示
子区域A的几何度量.则
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
定义辨析 呈现本质
下列概率问题都是几何概型吗?为什么? 古典概型
⑴我班46个学生,抽5个学生参加问卷调查,某同学
被抽到的概率?
与面积成正比
⑵我班某同学参加射击比赛,假设均能射中且等可 能,箭靶直径20cm,靶心直径4cm,射中靶心概率?
概率的计算公式
古典概型 有限个
几何概型 无限个
相等
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版) 《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
《几何概型》教学分析人教版2-精品 课件ppt (实用 版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、基础知识的深刻理解(高考的初级层次要求)
能用古典概型描述该事件的概率吗?为什么? (1)试验中的基本事件是什么?
射中靶面上每一点都是一个基本事件,这一点可 以是靶面直径为122cm的大圆内的任意一点.
(2)每个基本事件的发生是等可能的吗?
(3)符合古典概型的特点吗?
三、基础知识的深刻理解(高考的初级层次要求)
则这个实数a>7的概率为 0.3 .
与长度成比例
(2) 在1万平方千米的海域中有40平方千米的大陆架储藏
着石油,如果在海域中任意点钻探,钻到油层面的概率 .
0.004
与面积成比例
(3) 在1000mL的水中有一个草履虫,现从中任取出
2mL水样放到显微镜下观察,发现草履虫的概率.
阿 0.002
与体积成比例
三、基础知识的深刻理解(高考的初级层次要求)
古典概型的本质特征: 1.基本事件的个数有限的。 2.每一个基本事件都是等可能发生的。 将古典概型中的有限性推广到无限性,而保留等 可能性,就得到几何概型. 几何概型的本质特征: 1.有一个可度量的几何图形S;
2.试验E看成在S中随机地投掷一点;
3.事件A就是所投掷的点落在S中的可度量图形A中.
22 a2
问题2:取一根长度为3m的绳子,拉直后在任意位置剪 断,那么剪得两段的长都不小于1m的概率有多大?
能用古典概型描述该事件的概率吗?为什么?
(1)试验中的基本事件是什么? 从每一个位置剪断都是一个基本事件,剪断位
置可以是长度为3m的绳子上的任意一点. (2)每个基本事件的发生是等可能的吗?
(3)符合古典概型的特点吗?
圆内,当n很大时,频率接近于概率.
P( A) m m 4m .
n 4n
n
例3:取一个边长为2a的正方形及其内切圆(如图),随 机地向正方形内丢一粒豆子,求豆子落入圆内的概率.
解:记“豆子落入圆内”为事件A,则
圆面积 P(A)= 正 方 形 面 积
a 2
4a 2
4
答:豆子落入圆内的概率为
30m
20m
2m
解:设事件A“海豚嘴尖离岸边小于2m”(见阴影部分)
P(A)=
d的测度 D的测度
=
30 20 2616 184 0.31
30 20
600
答:海豚嘴尖离岸小于2m的概率约为0.31.
三、基础知识的深刻理解(高考的初级层次要求)
(1)在区间(0,10)内的所有实数中随机取一个实数a,
例三3:、取基一础个知边识长的为深2刻a的理正解方(形高及考其的内初切级圆层(次如要图求),随 机地向正方形内丢一粒豆子,求豆子落入圆内的概率.
解:记“豆子落入圆内”为事件A,则
圆面积 P(A)= 正 方 形 面 积
a 2
4a 2
4
答:豆子落入圆内的概率为
4
撒豆试验:向正方形内撒n颗豆子,其中有m颗落在
d的 测 度 P(A)= D的 测 度
注意:D的测度不能为0,其中“测度”的意义 依D确定.当D分别为线段,平面图形,立体图形 时,相应的“测度”分别为长度,面积,体积等.
三、基础知识的深刻理解(高考的初级层次要求)
例1:某人午觉醒来,发现表停了,他打 开收音机,想听电台报时,求他等待的时 间不多于10分钟的概率.
解:设A={等待的时间不多于10分钟}.事件A恰好是 打开收音机的时刻位于[50,60]时间段内,因此由几 何概型的求概率的公式得
P(A) 60 50 1 ,
答:“等待的时间不超过1600分钟6”的概率为 1 .
6
三、基础知识的深刻理解(高考的初级层次要求)
例2:一海豚在水池中自由游弋,水池长30m,宽20m 的长方形,求此刻海豚嘴尖离岸小于2m的概率.
三、基础知识的深刻理解(高考的初级层次要求)
问题3: 有一杯1升的水,其中漂浮有1个微生物,用一
个小杯从这杯水中取出0.1升,求小杯水中含有这个微生 物的概率.
能用古典概型描述该事件的概率吗?为什么?
(1)试验中的基本事件是什么?
微生物出现的每一个位置都是一个基本事件, 微生物出现位置可以是1升水中的任意一点.
(2)每个基本事件的发生是等可能的吗?
(3)符合古典概型的特点吗?
三、基础知识的深刻理解(高考的初级层次要求)
上面三个随机试验有什么共同特点?
(1)一次试验可能出现的结果有无限多个; (2) 每个结果的发生都具有等可能性.
对于一个随机试验,将每个基本事件理解 为从某个特定的几何区域内随机地取一点,该 区域中每一个点被取到的机会都一样;而一个 随机事件的发生则理解为恰好取到所述区域 内的某个指定区域中的点.这里的区域可以是 线段,平面图形,立体图形等.用这种方法处理 随机试验,称为几何概型.
4
撒豆试验:向正方形内撒n颗豆子,其中有m颗落在
圆内,当n很大时,频率接近于概率.
P( A) m m 4m .
n 4n
n
三、基础知识的深刻理解(高考的初级层次要求)
练习3:在正方形ABCD内随机取一点P,求∠APB >
90°的概率.
D P
P( A)
d的测度 D的测度
1 (a )2
式。
2.难点
几何概型应用中集合度量的确定及运算。
三、基础知识的深刻理解(高考的初级层次要求)
问题情境
问题1:射箭比赛的箭靶涂有五个彩色得分环, 从外向内为白色、黑色、蓝色、红色,靶心 为金色.金色靶心叫“黄心”.
奥运会的比赛靶面直径为 122cm,靶心直径为12.2cm, 运动员在70m外射.假设射箭 都能中靶,且射中靶面内任意 一点都是等可能的,那么射中 黄心的概率有多大?
三、基础知识的深刻理解(高考的初级层次要求)
如何求几何概型的概率?
1m
1m
3mP(B)= 131 12.22P(A)=
4 1
1222
0.01
4
P(C)= 0.1 0.1
1
三、基础知识的深刻理解(高考的初级层次要求
一般地,在几何区域D中随机地取一点,记事件 “该点落在其内部一个区域d内”为事件A,则 事件A发生的概率为:
几何概型 耿哲老师
-----书山有路勤为径,学海无涯苦作舟
一、高考目标
1.正确理解几何概型定义及与古典概率的区别。 2.掌握几何概型的概率计算公式,并能解决简单实 际问题。 3.了解随机数的意义,能运用模拟方法估计或计算概 率.
二、重点、难点
1.重点 熟练掌握几何概型的判断及几何概型的概率计算公