数列极限标准定义:对数列{xn},若存在常数a,对于任意ε>0,总存在正整数N,使得当n>N时,|xn-a|<ε成立,那么称a是数列{xn}的极限。
(三)函数极限的通俗定义
1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∞时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作lim f(x)=A ,x→+∞。
2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作limf(x)=A ,x→a。※函数的左右极限:
1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就是a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a.
2: 如果当x从点x=x0的右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就是说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a.
(四)极限的运算规则(或称有关公式)
lim(f(x)+g(x))=limf(x)+limg(x)
lim(f(x)-g(x))=limf(x)-limg(x)
lim(f(x)*g(x))=limf(x)*limg(x)
lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 )
lim(f(x))^n=(limf(x))^n
以上limf(x) limg(x)都存在时才成立
lim(1+1/x)^x =e x→∞
lim(1+1/x)^x =e x→0
(五)两个重要极限
1、lim sin(x)/x=1,x→0
2、lim(1 + 1/x)^x=e,x→0 (e≈2.7182818...,无理数)
(六)极限求解的方法
1.迫敛性求解
求解的要点是,当极限不容易直接求出解的时候,就可以考虑将求解极限的变量做适当的放大或者缩小,使得放大、缩小所得的自变量易于求解极限,且二者的极限值相同,即原极限存在且等于此公共值。
2.洛必达法则
∞/∞型不定式极限常用的方式就是洛必达法则,有时还需要利用推广的洛必达法则进行求解。即将x→a换成x→a+0或x→a-0也可以适应洛必达法则。应用洛必达法则的时候应注意一下几点:要验证应用洛必达法则的条件应对极限进行分析确定其类型,然后才能继续使用洛必达法则,主要符合这个条件就可以利用法则求解极限;另外,其他类型的不定式也可以求解极限。
3.极限内涵和判断准则
极限的内涵可以利用公式进行描述,即ε>0;|an-a|<ε,以此来描述数列{an}在变化的过程中所定义的是a近似的程度。即在{an}在变化的过程中an与a可以任意的接近,且可以要多接近就多接近,这也是极限的思路之一。上式表示的是an和a的绝对值之间的差值小于ε,且不是任何一项an都有这个性质,而是在某一个时刻后,即n>N的时候才能体现出来。用纯粹的数学方式表达:极限存在的辨识方法:极限存在左右极限存在且体现相等;符合夹逼定理;符合连续定理(单调有界数列必有极限);符合柯西准则。
(七)对极限理论理解概述
所谓的极限理论是第二次数学危机所推动的一种类似的微增量类的计算形式,经过一个长期发展过程,数学家达朗贝尔、拉格朗日、贝努力家族、拉普拉斯等人的努力下,微积分理论的发展得到了极大的丰富。
如著名的法国数学家柯西的研究就从分析基础严密话的工作项前迈进了一个台阶,在其努力下连续、导数、微分、积分、无穷大极数的和等建立打下来较为坚实的基础。但是因为当时的情况所限,实数的严格理论没有最终形成和完善,所以柯西的极限理论还不能得到最终完善。可以之后的一些数学家如:维尔斯特拉斯、戴德金等都经过自身的努力在各自的领域上进行了深入的研究,都将分析基础归结为实数理论,并与70年代各自建立了完整的实数体系,因此在极限理论上,柯西所开辟的道路上完善起来的。而数学分析的无矛盾性问题也被归结实数论的无无矛盾性,从而使得微积分学也获得了较为牢固的理论基础。