汽车后视镜的风噪声分析

汽车后视镜的风噪声分析
汽车后视镜的风噪声分析

汽车后视镜的风噪声分析

The Acoustic Simulation of Auto Rearview Mirro

张建立

(沈阳华晨金杯汽车有限公司研发中心,辽宁 沈阳 110141)

关键词:噪声;后视镜;空气动力学;CFD

摘要:汽车噪声对环境危害很大,汽车噪声的大小也是衡量汽车质量水平的重要指标。本文利用STAR-CD对某型汽车的后视镜进行了噪声分析,并对后视镜进行了改进,降低了后视镜的噪声。

Abstract: The auto acoustic is very harmful to the environment,and the acoustic level is one of the most important criterion of the auto quatity.This paper introduces the process of the auto rearview mirro acoustic simulation with STAR-CD,and how we reduce its acoustic level by modifying the rearview mirro. Keyword:Acoustic;Rearview Mirro;Aerodynamics;Computational Fluid Dynamics

1前言

汽车噪声对环境的危害很大,汽车在给我们带来现代物质文明的同时,也带来了环境噪声污染等社会问题。根据噪声源的发声机理,汽车噪声主要有两类:机械噪声和空气动力学噪声。而在汽车高速行驶时,空气动力学噪声表现的尤为明显。空气动力噪声是由于气体流动中的相互作用或与固体间的作用而产生的,它包括空气通过车身缝隙或孔道进入车内而产生的冲击噪声、空气流过车身外凸出物而产生的涡流噪声、空气与车身的摩擦声三个方面[1]。其中后视镜引起的噪声是汽车空气动力学噪声的重要组成部分。

作为汽车乘坐舒适性的重要评价指标,汽车噪音也在很大程度上反映了生产厂家的设计水平及工艺水平。因此,控制汽车噪音到最低水平一直是汽车设计者追求的方向。研究表明,为了降低车身空气动力学噪声并减小高速行驶时的阻力,应采用流线型车身并尽量减少凸出部件,对于必须暴露的部件(如后视镜)也要尽可能设计成流线型,这样可以减少空气涡流,减小空气与车身表面的撞击和摩擦[2]。我们国家对机动车辆的噪声控制也非常重视,并颁布了《汽车加速行驶车外噪声限值和测量方法》(GB1495-2002)等标准来限制汽车行驶时的噪声[3]。

本文利用著名的CFD软件STAR-CD对某轻型客车的后视镜进行了稳态的CFD噪声分析,得到了车身各处特别是后视镜附近的噪声源强度大小及其分布,为后视镜的优化设计提供了依据。

2.模型建立及边界条件确定

2.1 几何模型建立

根据某车型的三维CAD实体模型,取车身外表面生成几何模型。考虑到汽车产品的复杂性,为了节约计算时间和减少网格数量,在不影响模拟精度的前提下,对车身表面、地板、底盘等做了一些简化处理;并对车体缝隙、进气隔栅等进行了缝合,以减少其对后视镜噪声的影响。但对模拟的关键部件,如后视镜等的细部结构则应尽量保留,如图1所示。

由于车身表面非常复杂,而且CAD模型之间有许多缝隙和漏洞,如果直接在CAD软件中进行模型的前处理,需要花费大量的时间和精力。因此,我们采用先在Hypermesh中划分三角形的表面网格,这样表面的连接和修补相对容易,然后输出为Nastran格式,作为表面再导入到Pro-am中划分体网格。图2为后视镜放大图。

图1 几何模型图2 后视镜放大图

2.2 计算网格划分

在本次分析中,利用自动网格生成软件Pro-am划分体网格,生成为非结构化贴体网格,绝大部分为六面体。对重点考察区域如后视镜附近、地板和尾流区进行了局部细划,以加强对此处流动细节的了解。

由于汽车为左右对称,为了减少计算时间,取一半模型进行划分。计算区域取为长方体,长宽高分别为32m×5m×7m,上游距前车轴8m,如图3所示。整个模型流体网格632662个,其中边界层网格100751个。图4为计算网格的局部放大图。

图3 计算网格图4 计算网格局部放大图

2.3 边界条件确定

分析中入口采用INLET边界条件,入口速度为30m/s,沿X方向,紊流强度为1%。出口为OUTLET边界条件。车身中面所在平面为Symmetry对称边界条件。侧面及顶部采用滑移壁面边界条件,底部及车身表面采用无滑移壁面边界条件。紊流模型采用高雷诺数k-ε湍流模型。采用SIMPLE算法进行计算[5]。

3.计算结果及分析

为降低后视镜噪声,我们对后视镜进行了流线化设计。通过对后视镜优化前后的噪声分析,我们得出了车身各处的噪声源强度大小及分布等。结果对比表明,后视镜优化设计后,噪声源强度有明显的降低。

3.1 原始模型计算结果

后视镜的原始几何模型如图2所示。通过计算,我们可以看到,噪声源强度较大的地方位于后视镜、进气隔栅和轮胎附近,这是由于气流与这些地方发生撞击,产生涡流所致。其中噪声源强度最大值为13.43,如图5所示。图6为ISO Surface图。

图5 噪声源强度分布图图6 ISO Surface图

从图7和图8沿X和Y方向的剖面可以看出,噪声源强度最大的地方处于后视镜后方。

图7 X方向剖面图图8 Z方向剖面图如图9和图10为车身和后视镜周围的速度分布情况。

图9 车身周围速度分布图 图10 后视镜附近速度分布图

3.2 优化设计后计算结果

对比原始模型,我们对后视镜进行了流线化设计,并重新进行了噪声分析。从计算结果可以看到,噪声源强度最大值为13.12,也位于后视镜后方。如图11为进行流线型设计之后的后视镜几何模型,图12为优化设计后的噪声源强度分布图。可以看出,进行后视镜的流线型设计之后,噪声源强度有了明显下降。

图11 流线型设计后的后视镜图12 噪声源强度分布图

4结论

(1)应用STAR-CD分析软件对某车型进行的后视镜噪声分析,可以较准确的得到车身周围各处的噪声源强度大小及其它详细信息。

(2)计算结果表明,对后视镜进行流线型设计,可以减小后视镜引起的噪声。

(3)在产品开发时应用CFD方法,可以大大缩短开发周期,节省开发费用,分析结果对于设计开发人员优化产品设计具有重要参考价值。

参考文献:

[1] 陈南.汽车振动与噪声控制.北京:人民交通出版社,2005

[2] 何渝生.汽车噪声控制.北京:机械工业出版社,1996

[3] 汽车加速行驶车外噪声限值和测量方法.GB1495—2002

[4] 陶文铨.数值传热学.西安:西安交通大学出版社

[5] STAR-CD帮助文档

汽车车内声场分析及降噪方法研究发展

目录 1 引言 (1) 2 汽车噪声种类 (1) 3 车内噪声的主要来源 (2) 3.1 发动机噪声 (2) 3.2 底盘噪声 (2) 3.3 车身噪声和车内附属设备噪声 (2) 4 传统的车内噪声控制技术 (3) 4.1 消除或减弱噪声源的噪声辐射 (3) 4.2 隔绝传播途径 (3) 4.3 用吸声处理降低车室混响声 (3) 5 车内噪声主动控制技术 (4) 5.1 有源噪声控制技术 (4) 5.2 结构声的有源振动控制 (4) 6 车内噪声控制技术研究的发展趋势 (4) 7 结语及展望 (5) 参考文献: (6)

汽车车内声场分析及降噪方法研究发展 1引言 控制车内噪声一直是车辆设计、制造工程师的努力方向。汽车内部噪声不但增加驾驶乘人员的疲劳,而且影响车辆的行驶安全。车内噪声水平的高低在很大程度上反映了车辆制造厂家的设计和工艺水平。近年来,车内噪声已经成为无额定车辆品质的重要因素,车内低噪声设计已经成为产品开发中的重要任务之一。车内噪声级与乘坐室振动级别一样,已经成为判断汽车舒适性的主要指标。车内噪声主要取决于乘坐室的减振隔音性能,重量轻的承载式车身结构和类似的减轻车身重量的措施被认为可能增大车内噪声,尤其是低频噪声。实车测试表明,这种低频噪声主要集中在20~30HZ。车身壁板的振动和噪声有紧密关系,且乘坐室空腔的共振会放大噪声。这个问题的解决方法是在车辆设计阶段,利用现代振动力学与声学分析方法,预测车内噪声特性,实现优化设计;并通过实车测试,改进设计及工艺,最后使得车内噪声处于最优水平,最大极限地改善乘坐的舒适性,减轻人员的疲劳[1]。 2汽车噪声种类 汽车是有多种声源的机器, 运行中会有多种噪声,可分为: 车外噪声和车内噪声。车内噪声是指行驶的汽车乘坐室或驾驶室内存在的噪声, 其主要噪声源有: 发动机噪声、进气噪声、排气噪声、冷却风扇噪声、底盘噪声等。车内噪声按传播途径分为: 空气声和固体声[2][3][4]。 空气声(Air Borne Sound) 是从动力系统表面发出的辐射声, 它在空气中传播并对车身加振而形成。空气声会在传播过程中衰减, 材料对声能的衰减也使其大大衰减。固体声(Solid Borne Sound)是机械振动沿固体构件传播中产生的噪声, 它产生于发动机、变速箱、后桥、轮胎等, 并能通过底盘车架传播。由于固体构件一般由均质、密实的弹性材料组成, 对声波的吸收作用很小, 并能约束声波使它在有限空间内传播; 因此结构声往往可以传播很远距离。固体声通过构件表面的振动也会辐射出“再生”的空气声, 它与原始空气声相比较,结构声形成的再生噪声往往更难解决。空气声和结构声是可以相互转化的。空气声的振动能够迫使构件产生振动成为结构声; 结构声辐射出声音时, 也就成为空气声。减少空气声的传播, 要从减少或阻止空气的振动入手, 可以采取吸声或隔音措施; 减少结构声的传递,则须采取隔振或阻尼措施。

电动汽车动力总成振动噪音问题的概念性认知.doc

电动汽车动力总成振动噪音问题的概念性认知 最近几周的文章将围绕一个主题展开,就是电动汽车和动力总成的振动噪音问题。这个问题几乎是电动汽车产业发展中面临的一个共性的头疼的问题。我在以往的工作中也花了大量的时间去解决这类问题,最近两周我将知识系统性的梳理了一遍,做成了一个个知识小晶体,容我慢慢道来。第一周的主要任务不是给出答案,而是将问题讲清楚,讲明白,建立大局观。这有个专有名词叫:概念性认知。这个概念性认知有几个问题构成,不如我们学着老中医的样子一起去诊断一番。第一问:病症--为什么动力总成振动噪音问题特别突出?我们这里定义的动力总成包括电机差速器减速器。在实际运行过程中,经常发出高频啸叫声、敲击声、有时还伴随振动抖动的现象。为什么这种现象越来越突出?大概有这么几种原因:无遮蔽效应:电动汽车没有了发动机这一最大噪音源头,其他的声音就会自然突出,矮个子中选高个,最明显的就是动力总成的声音了,NVH工程师们磨刀霍霍,不找它找谁。强瞬态冲击:电动机和发动机的转矩特性不一样,它的转矩能够瞬时给到最大值,这固然带来了无与伦比的加速体验,但是这么大的冲击给传动系统带来极大的考验,很容易就会出现振动抖动,并在加速过程中发出啸叫异响。电磁噪

音:这个是变频驱动电机娘胎里带来的毛病,和其他无关。一般是由控制电源PWM谐波引起或者是电机本身电磁谐波过多引起的。转速范围更宽:不像传统汽车有5档变速,电动汽车一般都是一档或者两档,也就是说电机、齿轮箱等转子系统的工作转速范围会更宽。我们知道任何旋转系统都是有其共振频率的,在共振时噪音和振动都会放大。我们都想让工作转速避开共振频率,可是转速范围很宽,总是会经过共振点,无处可避。轻量化:电动汽车为了追求续航里程或者低成本,总是要求配件供应商将产品做轻做小,如此带来的问题就是动力总成的刚度下降,同样的激励会激起更大的振动响应和噪音。 第二问:病理-- 振动噪音问题是怎么产生的?定子侧噪音振动机理要回到这个问题,先把振动噪音分成两类,一类是定子侧另一类是转子侧。定子侧噪音和振动的病理是这样的:定子侧振动噪音指的是在定子机壳、减速箱箱体上产生的振动和辐射出的噪音,这是和系统内存在的激励有关的。先说电磁激励电机存在交变的电磁场,在定子上产生两种力,一种是径向力,它会导致电机定子和机壳沿半径方向振动,我们常说的电磁噪音一般都是径向力引起的。电机在径向力作用下的变形模态另一类是切向力,它们的作用方向是沿旋转方向的。电机单独工作时,一般切向力是次要因素。可是在动力总成中,它却鲤鱼翻身,成

车身噪声传递函数分析

车身噪声传递函数分析昝建明周舟李波灏肖攀 长安汽车股份有限公司汽车工程研究院

车身噪声传递函数分析 Noise Analysis of Car Body Using Transfer Function 昝建明周舟李波灏肖攀 (长安汽车股份有限公司汽车工程研究院,重庆401120 ) 摘 要: 车身的NVH特性是车身开发的重要内容。在车身的设计中,用有限元软件MSC Nastran 进行了噪声传递函数分析,并根据计算结果对车体结构进行优化,提高NVH 性能。关键词: 车身, NVH, MSC Nastran, 噪声传递函数, 优化 Abstract:NVH performance is the important task for body design. During the body design stage, using MSC Nastran to do NTF analysis, the results can help optimize the body structure to improve the NVH performance. Key words: Body, NVH, MSC Nastran, NTF, Optimization 1 引言 NVH性能是新车的重要性能指标之一。车身在整车的NVH性能中有着重要影响,不论是来自路面的激励,还是来自发动机的激励,都是通过车身传递给乘员。开发出合理的车身结构对提高整车的NVH性能有重要作用。车身噪声传递函数(NTF)分析就是车身开发中的重要方法之一。 将对车身与底盘之间的主要连接区域进行声学传递函数分析,以便找出噪音传递路径与对NVH特性影响比较大的关键零部件。分析时一个声学空腔模型将被包括在内并用来预测内噪声水平,车辆的详细有限元模型与声学空腔模型将被耦合并求解,通过车身与动力系统及底盘系统连接点上施加载荷来计算车内乘员耳侧的噪声响应。 2 分析模型 车身分析的有限元模型包括车身结构的有限元模型和车身声学空腔有限元模型两部分。其中,车身结构的有限元模型包括结构件的有限元模型和非结构件的有限元模型,非结构件的有限元模型就用集中质量来模拟。声学空腔的有限元模型用有限元流体的单元来模拟,包括乘员仓空腔,座椅和行李箱空腔三部分的有限元模型。图1表示了车身分析模型的结构关系。 声学单元的理想尺寸大约是每个波长不少于六个单元,实际上通常采用的声学单元的长

汽车噪声的控制措施及控制技术

汽车噪音的控制措施及控制技术 随着汽车工业的发展,汽车给世界带来了现代物质文明,但同时也带来了环境噪声污染等社会问题。至此汽车噪声控制日益引起人们的关注,尤其近几年来,作为汽车乘坐舒适性的重要指标,汽车噪声也会在很大程度上反映出生产厂家的设计水平及工艺水平,噪声水平成为衡量汽车质量的重要标志之一,因此控制汽车噪声到最低水平也是追求的方向.汽车噪声通过声辐射的方式传到车外、车内,为了达到国家规定的噪声标准,需要控制车辆外部噪声;随着现代汽车对乘坐的舒适性和行使安全性的要求越来越高,需要降低车辆内部的噪声。车内噪声过大会影响汽车的舒适性、语言清晰度,甚至影响驾驶员和乘客的心理、生理健康,如果驾驶员长期处于噪声环境中容易引起疲劳造成交通事故和生命危险;车外噪声过大会影响路人的身心健康。因此只有掌握车辆噪声产生机理采取对症下药就显得非常必要了。 1.噪声的产生机理 车辆噪声主要是发动机噪声,按其产生的机理可以分为结构振动噪声和空气动力噪声。 1.1空气动力噪声 凡是由于气体扰动以及气体和其他物体相互作用而产生的噪声称为空气动力噪声,它包括进气噪声、排气噪声、风扇噪声。进气噪声的主要成分通常包括:周期性压力脉动噪声、涡流噪声、气缸的亥姆霍兹共振噪声和进气管的气柱共振噪声;排气噪声是

汽车及其发动机中能量最大的最主要的噪声源,它的噪声往往比发动机整机噪声高10~15dB(A),因此降低排气噪声是主要的;风扇噪声在空气动力噪声中,一般小于进、排气噪声,特别是近几年来,一些车辆装设车内空调系统及排气净化装置等原因,使发动机罩内温度上升,风扇负荷加大,噪声变得更加严重。 1.2结构振动噪声 发动机的每一个零件在激振力的作用下发生振动而辐射的噪声,根据激振力的不同可以分为燃烧噪声、机械噪声、液体动力噪声三类。燃烧噪声是指气缸燃烧压力通过活塞、连杆、曲轴、缸体等途径向外辐射产生的噪声;机械噪声是发动机的零部件作往复的运动和旋转运动产生的周期力、冲击力和撞击力对发动机结构激振产生的噪声;液体动力噪声是发动机中液体流动产生的力对发动机结构激振产生的噪声。此外,由于机械撞击、摩擦和机械载荷的作用,车内装备的运动部件也会产生振动和车内噪声。 综上所述,噪声源是由多方面引起的,它与车身结构的固有频率、振型、阻尼等模态参数有着密切的关系。 2.噪声的控制措施 在汽车发动机中,柴油机的燃烧噪声在总噪声中占有很大比例。目前所研究的降噪措施主要有: (1)采用隔热活塞以提高燃烧室壁温度,缩短滞燃期,降低空间雾化燃油系统的直喷式柴油机的燃烧噪声。如尼莫尼克镍基合

车内噪音的来源及解决方法

在汽车音响改装行业浸淫多年,改装过不少车型,因为音响改装涉及到车辆吸音降噪的处理,对此也有些心得,现在整理一下,和大家分享。 首先我们来分析一下车内的噪音的来源,车内噪音主要有下面几种: 1.发动机噪音 发动机噪音包括发动机缸体发出的机械声,还包括进气系统噪音,即高速气体经空气滤清器、进气管、气门进入气缸,在流动过程中,会产生一种很强的气动噪音。由于汽车公司在车辆设计时由于成本的问题,部分零件不会采用最好的材料,如该车引擎盖没有使用吸音材料,防火墙没有贴隔音材料造成了发动机的声音通过仪表台下方、底盘传入到车内。 2.轮胎噪音 一般的胎噪主要由三部分组成:一是轮胎花纹间隙的空气流动和轮胎四周空气扰动构成的空气噪音;二是胎体和花纹部分震动引起的轮胎震动噪音;三是路面不平造成的路面噪音。胎噪是不可避免的,即使是换用所谓的低胎噪轮胎也没有什么效果,关键还是看车辆本身的吸音隔音效果,现在市售30万以下的新车防火墙基本是不做吸音隔音的,造成了发动机声音和轮胎噪音通过仪表台下方、底盘叶子板处传入到车内。 3.空气噪音 一是风噪,就是由车身周围气流分离导致压力变化而产生的噪音;二是风漏,或叫吸出音,是由驾驶室及车身缝隙吸气而与车身周围气流相互作用而产生的噪音;三是其他噪音,包括空腔共鸣等,例如很多车尾箱内的备胎空腔,很容易与排气系统形成共鸣,而汽车的四个门是离车内最近的结构,如果密封做的不好,风噪和凤漏就会很明显。 4.车身结构噪音 主要是受两个方面因素影响,一是车身结构的震动传递方式,二是车身上的金属构件由于在里外作用下产生震动而产生噪音。例如车门和尾箱两侧的钢板,很容易因为车辆震动而产生噪音,车门噪音传导及车身密封性不足,车门是由钣金件和门饰板组成。市场上售价在30万以下的新车,大部分车门部分都没有做隔音处理,因此在关门的时候可以感觉到明显的金属声音,车辆高速行驶时金属声会更明显。下面,我们将以马自达5为例,讲解一下如何进行静音降噪的处理。 刚提回来还没上牌的新车,车主说低速行驶时没多大问题,当时速达到80-100km后整车车身振动大、低频共鸣噪音大,要求处理高速行驶时产生的各种噪声。噪音描述符合绝大部分中小型车的噪音特性。在弄清楚噪音产生的原因后跟车主详细解释各部位振动所产生噪音的原理和解决方法,车主明白认可后开始动工做降噪工程。详细了解该车的各种噪音情况,分析噪音产生的原因,向车主解释该车噪音产生的部位、原理和处理方法以及施工后能达到的效果,让顾客明白放心消费。

SAE J2380-2013电动汽车蓄电池的振动试验 中文

SAEJ2380-2013电动汽车蓄电池的振动试验 4.4试验过程 4.4.1根据SAEJ1798的规定,进行一系列参考性能试验,包括一次C/3恒定电流放电试验,一次使额定容量100%放电的动态容量试验,以及一次峰值功率放电试验。4.4.2使用制造商建议的充电方法使电池完全充电。 G值, (振动 (1):这些累计时间当且仅当三个轴分别进行试验时适用。 图2随机振动试验的振动频谱 4.4.5根据规定的时间进行振动,在对给定的电池进行振动试验期间,电池放电深度从0%(完全充电)变为80%(最小充电量)。可使用以下两种方法来完成:

a.若使用一轴或两轴的振动台,则大约三分之二的垂直轴试验需要在完全充电状态下完成,纵向轴和横向轴需要在40%的放电深度下振动,剩余的垂直轴需要在80%的放电深度下振动。 b.若使用能让各轴同时振动的三轴振动台,则总试验时间可以划分为三个时长大致相等的区间,第一个区间应在电池完全充电的状态下进行,第二个区间应在40%的放电深度下进行,第三个区间应在80%的放电深度下进行。 4.4.6在 量的40% 4.4.7使用一次 4.5 出现: a. 0.1mA b. c. d.异常温度,指示电池可能损坏,或者热管理系统元件可能损坏。 e.上文未列举制造商建议的量度。应包括正常限度和破坏限度。 一旦检测到上述a到e所列的状况,振动试验应立即中止,直至状况清除,再确定继续进行试验是安全的,或者应当终止试验。 4.6数据采集与报告

4.6.1上文4.4.1及4.4.7所述的参考性能试验中采集的数据应遵循标准性能试验数据采集的要求。如果试验过程中未出现异常,则试验中采集的数据(而不是总结的结果)应当保留下来。 4.6.2应准备一份报告,详细说明实际振动状况,同时列举并说明采集到的所有数据,以及详细的元件故障分析结果。此外,还应总结可确认电池设计足以承受振动环境的振动前和振动后电力性能数据。

汽车空调系统噪声与车内噪声研究与解决

汽车空调系统拍频现象 引起的车内噪声研究与解决 朱卫兵(1),李宏庚(2) 上汽通用五菱汽车股份有限公司 【摘要】 汽车室内噪声是汽车NVH的主要内容。引起车内噪声的因素很多,主要有发动机噪声、进排气噪声、传动系噪声以及高速行驶时的风噪声等等;汽车空调系统在工作时也会产生非常明显的车内噪 声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是 正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时处理。本文针对国内某款微型 面包车在开发过程中出现空调系统拍频异响问题,采用分别运转法、频谱分析法等将存在的异响问题解决,从而降低汽车车内噪声,同时也为汽车工程技术人员NVH开发提供借鉴。 【关键词】:汽车NVH,速比,压缩机,发电机,拍频 The Analysis and Solution on the Automobile Interior Noise Caused by Air Conditioning Beat-frequency ZHU Weibing(1),LI Honggeng(2) SAIC-GM-Wuling Automobile Co,.Ltd Abstract: The interior noise is one of key performances of vehicle NVH. There are many factors for vehicle interior noise, include engine noise, intake noise, exhaust noise, transmission noise and wind noise on high speed. The vehicle air condition will bring visible interior noise while it working. And it’s easy to distinguish it on relatively. In air condition system, it’s normal for a little noise in compressor, evaporator, fan and pipeline. But if it exist too big noise, there may be exist some problems in air condition system. This passage explains how to resolve the problem according to the air condition noise with the method of separate working and frequency analysis. At the same time it’s a reference to the carmaker’s vehicle NVH develop. Key words:Vehicle NVH, Speed ratio, Compressor, Dynamotor, Beat-frequency 1 前言 汽车空调系统在工作时也会产生非常明显的车内噪声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时治理。 本文针对国内某款微车在开发过程中,由于空调系统拍频现象导致的车内噪声过大问题,采用分别运转法、频谱分析法等方法来确定汽车产生拍频现象的源头,并运用适当的方法来解决此问题,同时也为汽车工程技术人员NVH开发提供借鉴。 2空调系统噪声分析

汽车噪声噪声检测标准是什么

汽车噪声噪声检测标准是什么 题要 任何东西都有可能发生噪声污染,现如今,随着汽车保有量的增加,汽车噪声污染问题越来越受到社会和公众的重视。为此国家也出台了汽车噪声噪声检测标准,目的就是要求汽车企业在生产汽车时,要确保汽车达标。这也是社会发展的要求,保障人民群众健康,具体的标准可以到本文了解。 任何东西都有可能发生噪声污染,现如今,随着汽车保有量的增加,汽车噪声污染问题越来越受到社会和公众的重视。为此国家也出台了汽车噪声噪声检测标准,目的就是要求汽车企业在生产汽车时,要确保汽车达标。这也是社会发展的要求,保障人民群众健康,具体的标准可以到本文了解。 ▲一、汽车噪声噪声检测标准是什么 根据《机动车运行安全技术条件》和《机动车噪声测量方法》,汽车规定最大的噪声级别如下: 车辆类型车外最大允许噪声级[dB(A)] 载货汽车 92 90 89 轻型越野车 89 公共汽车 89 88 轿车 84 客运车辆内部的最大噪音不能大于82dB,汽车驾驶员的

耳旁噪音级不得大于90dB,喇叭的声级在离车2m、离高1.2m 的时候对应的值为90~115dB。 ▲二、汽车噪声测量工具 1、测量工具:使用的国家规定的标准测试噪音的仪器,主要检测的项目有机动车的行驶噪声、排气噪声和喇叭声音响度级。在市场上一般分为精密声级计和普通声级计,根据使用的电源不同还被分为交流式声级计和直流式声级计。还可以便捷式,适合出现于任何一个场所。 主要组成部件有传声器、放大器、衰减器、计权网络、检波器、指示表头和电源等。主要是将传输的声波转化成电压信号,体现的形式有动圈式和电容式等更多形式,还使用了放大器和衰减器。 2、测量方法:主要通过声级计的检查与校准、车外噪声测量、加速行驶车外噪声测量、匀速行驶车外噪声测量这几个方面使用专业的测噪音仪器对其其噪音的比较和综合 数据。 ▲三、噪声检测物理标准 1、声压和声压级:通过物理性质我们可以了解到,噪音有声压与声压级、声强与声强级和声功率与声功率级。声压和声压级主要表示的是噪音的强弱参数,当声压越大听到的声音就越强,然而人可以听到的范围是2×10-5(听阈声压)~20Pa(痛阈声压)。

SAEJ电动汽车蓄电池的振动试验中文

S A E J电动汽车蓄电池的振动试验中文 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

S A E J2380-2013电动汽车蓄电池的振动试验4.4试验过程 4.4.1根据SAEJ1798的规定,进行一系列参考性能试验,包括一次C/3恒定电流放电试验,一次使额定容量100%放电的动态容量试验,以及一次峰值功率放电试验。 4.4.2使用制造商建议的充电方法使电池完全充电。 4.4.3为电池的每个垂直、纵向和横向轴选定常规G值或者表1中给出的替换G 值,并合理设置振动台。G值的选择将决定电池每个轴的振动时间,如表1所示。(振动频谱如图2所示,表示为G2/Hz,可计量任何一组G值。) 表1随机振动试验的振动设置 (1):这些累计时间当且仅当三个轴分别进行试验时适用。 图2随机振动试验的振动频谱 4.4.5根据规定的时间进行振动,在对给定的电池进行振动试验期间,电池放电深度从0%(完全充电)变为80%(最小充电量)。可使用以下两种方法来完成:

a.若使用一轴或两轴的振动台,则大约三分之二的垂直轴试验需要在完全充电状态下完成,纵向轴和横向轴需要在40%的放电深度下振动,剩余的垂直轴需要在80%的放电深度下振动。 b.若使用能让各轴同时振动的三轴振动台,则总试验时间可以划分为三个时长大致相等的区间,第一个区间应在电池完全充电的状态下进行,第二个区间应在40%的放电深度下进行,第三个区间应在80%的放电深度下进行。 4.4.6在4.4.5规定的每两个振动区间之间,电池应在C/3恒定电流下放出电池额定容量的40%的电。待第三个区间结束后,电池应完全再充电。 4.4.7使用SAEJ1798重复参考性能试验。其中包括一次C/3恒定电流放电试验,一次使额定容量100%放电的动态容量试验,以及一次峰值功率放电试验。 4.5试验预防措施 在进行振动试验的整个过程中,测试单位都必须连接仪器,以随时报告以下状况的出现: a.电池正极与电池箱和/或试验设备接地之间的电绝缘缺失。在振动期间,绝缘程 度应定期检查,比如每日检查,须达到0.5MΩ或更高(在500V直流电压下漏电 0.1mA或更少)。 b.指示存在开路或短路状况的异常电池电压。 c.电池内出现未预计到的谐振状况,指示机械拴系元件的故障。 d.异常温度,指示电池可能损坏,或者热管理系统元件可能损坏。 e.上文未列举制造商建议的量度。应包括正常限度和破坏限度。 一旦检测到上述a到e所列的状况,振动试验应立即中止,直至状况清除,再确定继续进行试验是安全的,或者应当终止试验。 4.6数据采集与报告

汽车车内噪声控制方法研究

汽车维修工高级技师论文 汽车车内噪声控制方法研究 姓名:付建伟 日期:2011年8月19日

论文题目:汽车车内噪声控制方法研究 摘要:汽车车内噪声指行驶汽车车厢内存在的各种噪声。车内噪声极易使乘车人员感到疲劳,对汽车的舒适性有着重要影响。本文从系统的观点出发,在分析了国内外汽车 产品的噪声控制技术水平现状以及噪声研究和控制技术方法的基础上,开展了比较 系统的车内噪声控制研究,识别了主要的噪声源和噪声辐射部位,同时,通过本项 目的研究,摸索出了一些行之有效的汽车噪声研究和控制的方法和措施。 关键词:汽车,车内噪声,声源识别,噪声控制,试验研究。 论文内容: 交通噪声是目前城市环境中最主要的噪声源,汽车噪声约占整个交通噪声的75%,是影响其性能和质量的重要指标之一,根据汽车对环境的影响,汽车噪声一般分为车外噪声和车内噪声。车外噪声在很大程度上对外部环境产生生态影响,而车内噪声对乘客舒适性产生影响。 一、国内外汽车噪声状况及控制技术 国外一般对车外噪声有严格的限制标准,至于对车内噪声尚没有严格的标准。在欧洲、美国、日本一些发达国家,汽车加速行驶时主噪声源并不是来自发动机,而是来自胎噪。发达国家对汽车发动机、消声器、变速箱、冷却系等主要噪声源已有深入研究,并且有成熟的理论计算和产品开发设计程序。目前,国外汽车噪声研究和控制的重点已经转向结构振动噪声、轮胎噪声及发动机隔声罩的研究方面,控制技术已普遍达到实用阶段。 国内对车外加速噪声的限制标准制定相对缓慢,自1979年制定了GB1495-79《机动车辆允许噪声》以来一直未做修订,直到2002年才颁布新标准GB1495-2002《汽车加速行驶车外噪声限值及测量方法》,国内对车内噪声没有严格的限制,只对某些星级汽车设置了噪声限值,在国内,发动机噪声仍占汽车噪声的三分之一以上,发动机的减振、降噪成为汽车噪声控制的关键。 对于汽车噪声的控制,不同阶段针对不同噪声源采取的控制措施是不同的。国内汽车的噪声控制技术每个时期都有其侧重点(见表1) 表1不同阶段重点集中发展的控制技术

某电动汽车动力电池箱随机振动仿真与试验

141 中国设备 工程 Engineer ing hina C P l ant 中国设备工程 2017.01 (上)动力电池是新能源汽车“三电”系统的核心组成部分,动力电池的使用安全直接影响着整车的性能安全和使用寿命。其中,结构安全和电气安全构成了动力电池安全的两个重要方向,而结构强度是保证结构安全的首要保障。为保证动力电池工作状态下的安全性和可靠性,对动力电池系统进行振动分析测试具有非常重要的意义。由于动力电池的内部模组结构比较复杂,并且车辆行驶工况的存在多样化和不确定性等特点,对其进行相关道路测试需要消耗大量的人工和时间成本等,因此,利用传统的试验方法对车载动力电池进行结构强度测试比较困难,而借助有限单元方法(FEM),通过计算机仿真模拟的手段,可以得到和真实情况相近的结果。 本文针对一种应用于新能源汽车的车载动力电池箱,基于有限元分析软件ANSYS WORKBENCH 对其结构强度进行随机振动仿真分析,研究该电池箱能否满足规范的运行要求,进而对该电池箱体进行振动试验,对仿真结果进行验证和分析。 1?电池箱体有限元模型的建立 使用SOLIDWORK 建立该车载动力电池箱三维结构如图1 所示,其长×宽×高尺寸为:990mm×570mm×243mm,该电池由上壳体、下壳体、外部支架、内部支架、插件转接铝板、MSD 以及箱体内部的电池模组、BMS 等部分构成。 在满足计算精度的前提下,对该车载动力电池箱作如下简化:通过Space Claim 完成对箱体的几何修复和中面抽取,对箱内的锰酸 锂电池模组通过质量点 的方法施加到箱体中,电池箱体与其支架构件的焊 接采用点焊模拟,见图2。 为动力电池箱的箱体和电池模组单元赋予材料属性,完成前处理设置。电池箱整体划分为239738 个单元,所建立的网格模型如图3所示。 图3?电池箱全网格模型 2?电池箱模态分析 进行随机振动前,首先要得到电池箱体的模态,本文中模态提取方法选择Block Lanczos 法,此方法计算精确,收敛性较快,在工程应用中常用此法来提取结构的模态。结构的振动是由各阶固有振型线性组合而成,其中,在整个模态分布中占主要地位的是低阶模态,而高阶模态对整个结构的响应贡献很小,因此本文仅考虑低阶模态的频率和振型,对高阶模态忽略不计。 进入ANSYS WORKBENCH 求解器,进行模态(Modal)分析,首先,计算电池箱的固有频率和振型。所得的前6阶低阶固有频率如表1所示。 某电动汽车动力电池箱随机振动仿真与试验 章丽1,2,邹湘2,匡绍龙1 (1.苏州大学机电工程学院,江苏?苏州?215000;2.江苏兴云新能源有限公司,江苏?无锡?214200) 摘要:为保证装载在新能源汽车上的动力电池包在实际道路上运行的可靠性及安全性,需对电池包进行随机振动工况的可靠性验证。本文基于通用有限元软件ANSYS?,对某动力电池汽车的动力电池箱进行随机振动工况下的仿真计算。最后通过随机振动试验对仿真分析结果进行了对比验证,保证有限元方法的正确性,得出了基于仿真分析的随机振动工况动力电池强度评估标准。 关键词:动力电池;功率谱密度;随机振动;ANSYS 中图分类号:U469.72 ?文献标识码:A 文章编号:1671-0711(2018)01(上)-0141-02 图1?车载动力电池箱结构外形 图2?电池箱体有限元模型

汽车的分类及意义

汽车的分类及意义 文章摘要:汽车分类标准长期存在的体系繁杂、分类混乱的问题,虽几经努力却一直未能较好解决,给业内外造成很大的负面影响。我们很难全面的了解汽车分类的知识和现状。本文将以家用车为例简要分析,希望能够引起对这一看似无足轻重、实则影响重大的基础问题的重视,认真探索解决办法。 关键词:汽车分类标准分类意义 正文: 什么是汽车分类?为什么要汽车分类?它的作用和意义在哪里?这些都是与我们息息相关的问题。 一:汽车的分类 汽车本是没有分类的,但对于生产商来说,需要分出商品线和市场竞争;对于消费者来说,需要明确的购买方向;对于社会来说,需要方便的管理规划,因此便产生了汽车的分类。 各国的小型乘用车分类 从广义上说,分类就是系统学,是一种分门别类的科学。汽车的各种特性,比如尺寸、排量、驱动方式、座位数和外形结构等都可以作为分类的依据。因此许多车可以符合多个类别或者个别新车不属于任何类别。同样的车辆在不同的国家有不同的叫法,仅在英语国家就很复杂了,这就导致汽车分类的主观性,在全球有许多不同的标准。 (1)美国的分类: 汽车的王国——美国,因为作为长久以来全球汽车工业最发达的国家和汽车消费大国,美国的汽车分类会相对完善一些。 在美国,家庭用车即小型乘用车不是按车长或轴距分类,而是按照车内空间的体积分类,依据美国“Title40——环境保护,第600.315-82节,可类比的汽车分类”规定,首先将汽车分为:双座、轿车、旅行车和卡车四大类,轿车和旅行车的分类依据为车内容积,而卡车则依据额定载重区分。 美国的汽车分类相比之下更为准确,与车长或轴距分类相比,缺点是不够直观。此分类被用于车型的归档和征税。 在欧洲,也不是按照车场或轴距来分,但事实并非如此,他们对于车辆分类并没有特定的法律法规,而是一种近乎约定俗成的存在。它们并不计较为什么这辆车是小型车,而另一辆却是紧凑型车,即使前者的尺寸可能更大。 (2)欧洲的分类: 在欧洲主要有3种分类方式: 1.Euro Car Segment 也就是我们熟知的A级车、B级车的分类方法。这种方法最早被大众汽车所采用,继而传播开来,同时这也是被欧盟承认的分类方式,共有9种不同的级别和车型。 2.Euro NCAP Euro NCAP是欧洲新车碰撞试验的执行机构,具有相当高的公信力,它的分类标准从1997年开始实施,依据的是车体结构和级别,共10类,后简化为5大类。 3.ACRISS汽车分类

汽车车内声场分析及降噪方法研究现状

汽车车内声场分析及降噪方法研究现状 摘要:本文首先对车内噪声的来源进行分析,然后建立了车室空腔声场的声学有限元模型,利用结构及声场动态分析技术,对车身结构的动态特性、车室空腔声场的声学特征进行了研究。在此基础上,分析了声固耦合系统在外界激励下的声学响应。阐述了车内被动噪声控制在低频噪声上的原理与应用。及决定主动噪声控制效果的决定因素及在车内噪声控制中应用的发展过程, 并指出当前研究中需解决的问题和今后的研究方向。 关键词:车内噪声;控制;车室空腔;主动降噪 Abstract:This article first interior noise sources were analyzed, and then the establishment of a finite element model of the vehicle compartment acoustic sound field in the cavity, the use of the structure and dynamic sound field analysis of the dynamic characteristics of the body structure, the acoustic characteristics of the vehicle compartment cavities were sound field the study. On this basis, the analysis of the acoustic excitation solid coupling system in the outside world under the acoustic response. It describes the principle and application of passive noise control car on the low-frequency noise. And determine the effect of active noise control determinants and development process in the car noise control applications, and pointed out that current research problems to be resolved and future research directions. Keywords: interior noise; control; the passenger compartment of the cavity; Active Noise Reduction 0 引言 汽车车内噪声不但增加驾驶员和乘客 的疲劳,而且影响汽车的行驶安全。因此,车内噪声特性已成为汽车乘坐舒适性的评价 指标之一,日益受到人们的重视。车内噪声 主要由发动机、传动系、轮胎、液压系统及结构振动引起。而这些噪声有直接或间接地传到车身结构,在车室内形成声场。车内的噪声水平是体现其舒适性的一项重要指标。为了提高车辆的舒适性, 世界各大汽车公 司都对车内噪声水平制定了严格的控制标准, 将车内噪声的控制作为重要的研究方向。特别是轿车, 车内噪声状况更是衡量轿车档次的标准之一。如何改善车辆内部乘员室声学环境, 降低车内噪声水平,提高车辆 乘坐舒适性已成为研究的热点。 1 车内噪声来源 一切向周围辐射噪声的振动物体都被 称为噪声源。噪声源的类型较多, 有固体的, 即机械性噪声;还有流体的, 即空气、水、 油的动力性噪声; 行驶汽车的噪声包括发 动机、汽车动力总成所产生的噪声, 车身因发动机、道路和空气流的作用而振动所产生的噪声以及附件噪声等。车内噪声产生机理如图1所示[1]。从声源来看,车内噪声的来源主要有: 发动机噪声、进排气噪声、冷却风扇噪声等。车外噪声向车内传播的具体途径主要有两个: 一是通过车身壁板及门窗上所有的孔、缝直接传入车内;二是车外噪声声波作用于车身壁板,激发壁板振动,并向车内辐射噪声。从振动源来看,主要有两个方面: 发动机、底盘工作时产生的振动和路面激励产生的振动。后者频率较低,对激发噪声影响较小。车身壁板主要由金属板和玻璃构成,这些材料都具有很强的声反射性能。在车室门窗均关闭的条件下,上述传入车内的空气声和壁板振动辐射的固体声,都会在密闭空间内多次反射,相互叠加成为车内噪声。 图1 车内噪声产生机理

SAEJ范文电动汽车蓄电池的振动试验中文

S A E J范文电动汽车蓄电池的振动试验中文集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

SAE J2380-2013电动汽车蓄电池的振动试验试验过程 进行一系列参考性能试验,包括一次C/3恒定电流放电试验,一次使额定容量100%放电的动态容量试验,以及一次峰值功率放电试验。 使用制造商建议的充电方法使电池完全充电。 为电池的每个垂直、纵向和横向轴选定常规G值或者表1中给出的替换G值,并合理设置振动台。G值的选择将决定电池每个轴的振动时间,如表1所示。(振动频谱如图2所示,表示为G2/Hz,可计量任何一组G 值。) 表1 随机振动试验的振动设置 (1):这些累计时间当且仅当三个轴分别进行试验时适用。 图2 随机振动试验的振动频谱 根据规定的时间进行振动,在对给定的电池进行振动试验期间,电池放电深度从0%(完全充电)变为80%(最小充电量)。可使用以下两种方法来完成:

a.若使用一轴或两轴的振动台,则大约三分之二的垂直轴试验需要在完全充电状态下完成,纵向轴和横向轴需要在40%的放电深度下振动,剩余的垂直轴需要在80%的放电深度下振动。 b.若使用能让各轴同时振动的三轴振动台,则总试验时间可以划分为三个时长大致相等的区间,第一个区间应在电池完全充电的状态下进行,第二个区间应在40%的放电深度下进行,第三个区间应在80%的放电深度下进行。 电池应在C/3恒定电流下放出电池额定容量的40%的电。待第三个区间结束后,电池应完全再充电。 使用SAE J1798重复参考性能试验。其中包括一次C/3恒定电流放电试验,一次使额定容量100%放电的动态容量试验,以及一次峰值功率放电试验。 试验预防措施 在进行振动试验的整个过程中,测试单位都必须连接仪器,以随时报告以下状况的出现: a.电池正极与电池箱和/或试验设备接地之间的电绝缘缺失。在振动期 间,绝缘程度应定期检查,比如每日检查,须达到Ω或更高(在500V 直流电压下漏电或更少)。 b.指示存在开路或短路状况的异常电池电压。 c.电池内出现未预计到的谐振状况,指示机械拴系元件的故障。 d.异常温度,指示电池可能损坏,或者热管理系统元件可能损坏。 e.上文未列举制造商建议的量度。应包括正常限度和破坏限度。

汽车空调噪音的处理方法

汽车空调噪音的处理方法 当前,汽车行业蓬勃发展,汽车市场蒸蒸日上,尤其是轿车也进入了寻常百姓家。因此,人们对汽车的动力性、舒适性等要求越来越高。其中,车内噪声高低是人们选车的一个重要评价点,若车内的噪声高则容易引起驾驶者和乘员的不适,因此,如何控制车内噪声是设计者需解决的重要问题。在汽车噪声源中,汽车空调压缩机是容易引起噪声的部件之一,这样,解决压缩机引起的车内噪声问题是非常必要的,这也是提升整车品质的重要一环。 2压缩机噪声产生的原因分析 压缩机噪声直接来源于吸、排气阀的机械撞击和气流脉动。在压缩机起动的瞬间,假如发动机、空调系统和防火墙消音垫等设计、安装不合理,就会把噪声传递到乘员舱内,从而使驾驶者和乘员感到噪声明显,引起不舒适的感觉。目前,汽车空调压缩机引起车内噪声的有以下几种原因。 1)发动机支撑或悬置设计不合理。在汽车设计中,发动机的支撑或悬置点设计不合理,当发动机运转后,由于压缩机是固定在发动机上,压缩机起动时,发动机的震动会导致压缩机产生共振,从而使压缩机噪声增大,人们明显就感到有噪声。 2)空调系统没有减震降噪措施。在汽车空调系统内,压缩机、冷凝器和蒸发器等是通过空调管路连接起来。假如空调系统没有减震降噪措施,那么,当压缩机起动后,压缩机的震动引起的噪声就会通

过空调管路传递到蒸发器,从而使车内的驾驶者和乘员就感到噪声加强,有不舒适的感觉。 3)防火墙的消音垫设计或安装不合理。汽车的发动机舱是产生汽车噪声的主要地方,其中防火墙的消音垫就是起到阻断或消减发动机舱内噪声的作用。如果防火墙的消音垫设计不合理或安装不到位,同样也会使发动机舱的噪声,例如压缩机的震动声音传递到乘员舱内。 以上是压缩机引起车内噪声的几种情况分析,不管是何种情况,压缩机噪声引起的不适问题必须解决。 3降低或消除压缩机噪声的措施及测试 通过以上三种压缩机引起车内噪声的原因分析,认为通常情况下,发动机、防火墙消音垫设计和安装一般都合理,传递压缩机噪声的可能性较低,因此,本文针对第二种原因,即空调系统减震降噪设计不合理来提出改进措施,并进行相关的测试,以验证措施的有效性。 一般情况下,压缩机起动后,由于压缩机工作,压缩机的转速比发动机的转速高,故一般要产生一定的震动,假如各方面设计及安装合理,则驾驶者和乘客所感受的压缩机噪声不应该明显,不会产生不适的感觉,因此认为,压缩机开启前后的噪声差值在3分贝左右是合理的。如果噪声差值超过这一数值,则会造成驾驶者和乘员的不适。 根据3分贝的噪声差值,对空调管路进行了下面的改进措施和测试。 3.1蒸发器或空调单元接口贴泡绵

汽车的噪声分类与分析

汽车的噪声分类与分析 随着汽车工业的迅速发展,人们对于汽车的噪声控制的要求越来越严格。据有关资料表明,城市噪声的70 %来源于交通噪声,而交通噪声又主要产生于汽车噪声。它严重地污染着城市环境,影响着人们的生活、工作和健康。对于噪声而言,声音的频率成分是其最可识别的特征之一,以单一频率出现的声音称为纯音。然而,大多数声音要复杂得多,频率分量分布于整个听力范围。研究表明,健康年轻人的听力频率范围从20 Hz~20 kHz ,在500 Hz~5 kHz 的范围最为敏感。 人们采用分贝(dB)为单位来衡量声音数据的声量,并且基于此基准量的声功率级、声强度级和声压级也是重要的指标。对于汽车噪声而言,主要是从行驶噪声、静止车辆噪声以及车内噪声几个方面进行评价分析。我国发布的GB 149522002《汽车加速行驶车外噪声限值及测量方法》对车外噪声,以及GB 725822004《机动车运行安全技术条件》则对车内噪声作出了明确要求。 车辆的噪声源主要包括:发动机噪声、传动系噪声、进、排气系统噪声、高速行驶时的风噪声、轮胎噪声、制动噪声等,以及其它任何运动的部件都有可能发出噪声。 1、发动机噪声:发动机噪声起源于燃烧过程和与发动机动力学有关的机械力。燃烧过程造成各缸大的压力变化,产生大动态气体负载和其它机械力,如活塞的拍击力。这些力与惯性引起的动力相结合,不平衡效果产生作用于发动机结构的激励,从而产生振动,从发动机的各个表面产生噪声传播。研究表明,发动机最大的噪声来自较大的柔软表面,如油底壳、

正时齿轮盖、曲轴带轮和进气歧管等。 2、变速器噪声:变速器噪声主要是齿轮噪声。当变速器中的主动齿轮和从动齿轮相互啮合时,会在瞬间突然产生负荷传递,使从动齿轮加速,主动齿轮减速,导致以齿轮啮合的频率产生噪声。齿轮噪声随速度的增加而增加,速度每增加一倍,噪声增大6~8 dB ,并且传递的功率每增加一倍,噪声会增大2.5~4 dB。 3、进、排气噪声:进气噪声是由流经进气门的空气流周期性地被切断产生的,这些噪声通过空气滤清器传递并从进气歧管发出。排气噪声是由排气门打开和关闭时,废气的周期性的突然释放引起的。它的大小和特点随发动机类型、气门结构和正时的差异有相当大的变化。进、排气噪声对发动机的负荷增加很敏感,从空负荷到全负荷工作,噪声级将增加10~15 dB。 4、空气动力噪声:空气动力噪声主要是与稳流和涡流相关的压力波造成。对于汽车而言,分布于整个车身上的边界层、边缘、车身各部位和冷却风扇等处的涡流是噪声产生的主要部位。边界层噪声在特性上是随机的,边缘噪声是由气流从车身结构的凸出部分离时产生的;冷却风扇噪声则来源于叶片发出的螺旋状的涡流。 5、轮胎噪声:轮胎噪声产生于能量的释放。轮胎与地面接触的受挤压区,当返回到未挤压状态时会释放能量,同样,胎迹的前端会产生相反效果。此时,位于花纹槽中的空气被地面挤出与重新吸入的过程会引起泵气声。 6、制动噪声:动态不稳定的制动系统导致了制动元件的振动,制动噪声

相关文档
最新文档