波动方程

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波动方程或波动方程是重要的偏微分方程,主要描述自然界中的各种波动现象,包括横波和纵波,如声波,光波,无线电波和水波。波动方程是从声学,物理光学,电磁学,电动力学,流体力学和其他领域中抽象出来的。

历史上许多科学家,例如D'Alembert,Euler,daniel bernoulli和Lagrange,在研究乐器和其他物体中的弦振动时对波动方程理论做出了重要贡献。1746年,达朗伯(D'Alembert)发现了一维波动方程,而欧拉(Euler)在接下来的10年中发现了三维波动方程。一维波动方程可以推导如下:一系列质量为m的小颗粒,相邻颗粒通过长度为h的弹簧连接。弹簧的弹性系数(也称为“顽固系数”)为k:

从上面的形式可以看出,如果F和G是任意函数,则它们以以下形式组合必须满足原始方程式。上述两项分别对应于两行行波(“线”和“动作”中的谐音器)-F表示通过该点(点X)的右行波,G表示通过该点的左行波。为了完全确定f和g的最终形式,应考虑以下初始条件:波动方程的著名D'Alembert行波解,也称为D'Alembert 公式,是通过进行以下运算获得的:在古典意义上,如果然后。但是,行波函数f和g也可以是广义函数,例如Diracδ函数。在这种情况下,行波解应视为左行或右行中的脉冲。

基本波方程是线性微分方程,也就是说,同时受到两个波的点的振幅是两个波的振幅之和。这意味着可以通过将一系列波动分解为其解决方案来有效地解决该问题。另外,可以通过分离每个分量来分析波,例如,傅立叶变换可以将波分解为正弦分量。

相关文档
最新文档