18万吨合成氨、30万吨尿素

18万吨合成氨、30万吨尿素
18万吨合成氨、30万吨尿素

一、市场情况

(一)产品用途

尿素是一种含氮量最高的中性固体肥料,也是重要的化工原料。农业用尿素占90%,10%用于工业。农业上尿素可作单一肥料、复料、混料及微肥使用,也用作饲料添加剂。在工业上,尿素可生产脲醛树脂、氰尿酸、氯化异氰尿酸、三羟基异氰酸酯、水合肼、盐酸氨基脲、脲烷、氨基磺酸、发泡剂AC、尿囊素等;尿素可制氨基甲酸酯、酰尿、造影显影剂、止痛剂、漱口水、甜味剂等医药品;尿素可生产石油炼制的脱蜡剂;尿素用于生产含脲聚合物,也可作纤维素产品的软化剂;尿素还可以作炸药的稳定剂,选矿的起泡剂,也可用于制革颜料生产。

(二)市场情况

2000年到2006年,我国尿素产能从

二、产品方案及生产规模

(1)合成氨:600吨/日(中间产品),公称能力18万吨/年

(2)尿素:1052吨/日,公称能力30万吨/年

工厂年运行天数:330天/年、按8000小时

三、工艺技术方案

原料煤与水在棒磨机湿法研磨,浓度达到61%的水煤浆加压后与高压氧气一起进行部分氧化,生产出含有CO、H

2

的粗合成气。合成气

送到变换工段,在变换工段,大部分的CO和水蒸汽反应生成H

2和CO

2

变换气中的CO

2和H

2

S等酸性气体在低温甲醇洗工段中被脱除,得到

的净化气送入液氮洗工段精制,并配氮使合成气中的氢氮比达到3:1,精制气进入合成气压缩机,升压至15.0Mpa后送入氨合成系统生产合成氨。低温甲醇洗的CO

2

部分送往尿素装置,经压缩与液氨合成为尿素。

(一)气化工艺技术简介

气化工艺一般分为三种类型:移动床(有时也被称为固定床),流化床和气流床。

1、固定床气化炉是最老的气化炉,它很长时间在煤气化工艺中占主要地位。固定床煤气技术经历了固定层间歇气化法、富氧连续气化法和鲁奇加压气化法。

固定床气化炉中的氧化剂与煤的流动方向相反,通过由煤变为焦油,再到灰等一系列反应区。当空气被作为氧化剂时,温度通常不会超过灰熔点,而纯氧气流床气化炉既可以是干灰也可以是熔渣。由于粗煤气出口温度(400~500℃)相对较低,粗合成气常会有液态碳氢化合物。固定层间歇气化法因吹风过程中放空气对环境污染严重而被淘汰,富氧连续气化法因原料只能用焦炭和无烟煤,原料价格高,且生成气中甲烷含量高;富氧气化的特点是投资少,操作简单,在中型氮肥厂中具有丰富的操作经验,是国家重点推荐的中氮厂造气技术。由于国家大力整治小煤窑和国家经济发展和重化工业的强力拉动,全国各地的煤价格随着需求的增加正在节节上扬,使合成氨成本大幅上升,所以必须采用先进的煤气化工艺,提高煤的利用率和水煤气中有效气组成。鲁奇(Lurgi)加压气化技术,在我国建有3套装置。该技术虽然能连续加压气化,但由于气化温度低,生成气中甲烷含量大,同时生成气中含苯、酚、焦油等一系列难处理的物质,净化流程长;尤其是该技术只能用碎煤不能用粉煤,因而原料利用率低,大量筛分下来的粉煤要配燃煤锅炉进行处理。

2、流化床气化炉采用粉碎了的煤作为原料,用氧化剂(氧气或空

气)来进行床体流化,其温度保持在1000℃以下,以预防灰熔化后与

炉床里的物质发生结聚。氧化剂的有限流量意味着大多数煤粒不会充

分燃烧,而是收缩成碳素粒,被合成气带出气化炉。这就需要大量的碳

素粒循环,或被传送到分离燃烧室中燃烧。在我国具有典型代表的有:

恩德煤气化技术:恩德粉煤常压气化技术是在德国温克勒粉煤常

压气化技术的基础上改进发展形成的,在我国已有成功的工业生产运

行装置。

中科院煤化所也开发了先进的灰熔聚流化床粉煤气化,并实现了

工业化装置生产。该技术可用多种煤质作原料,如烟煤、焦炭、焦粉

等,使用粉煤在1000~1100℃下气化,固体排渣,无废气排放。该技

术工业示装置已于2001年在城固氮肥厂建成,小时耗煤量4.2吨。

其煤种适应性广,操作温度为1000~1100℃,反应压力为0.03MPa(G)。

气化炉是一个单段流化床,结构简单,可在流化床一次实现煤的破粘、

脱挥发份、气化、灰团聚及分离、焦油及酚类的裂解。带出细粉经除

尘系统捕集后返回气化炉,再次参加反应,有利于碳利用率的进一步

)提高。产品气中不含焦油,含酚量低。碳转化率为90%。合成气中(CO+H

2为68~72%,有效气体成分较低。

3、气流床气化炉属第三代先进的煤气化技术,是最清洁,也是

效率最高的煤气化类型。水煤浆或粉煤在1300~1700℃时被部分氧化,

高温保证了煤的完全气化,煤中的矿物质成为熔渣后离开气化炉。气

流床所使用的煤种要比移动床和流化床的围更广泛。

目前以煤为原料生产合成气的气流床气化工艺具有典型代表的

有:

GE水煤浆加压气化工艺;

新型对置式多喷嘴水煤浆加压气化;

壳牌干粉煤加压气化工艺(SCGP);

德国未来能源公司的GSP干粉煤加压气化工艺;

国的多喷嘴对置粉煤加压气化技术;

(二)先进的煤气化技术的工艺特点

1、GE水煤浆加压气化:水煤浆气化可列为第三代煤气化技术。

该工艺采用水煤浆进料,制成60~65%浓度的水煤浆,在气流床中加压

气化,水煤浆和氧气在高温高压下反应生成合成气,液态排渣。使用

达到80%以气化压力在2.0~8.7MPa,气化温度在1300~1400℃,CO+H

2

上,气化过程对环境影响较小。

水煤浆气化煤种适应性广,烟煤、粉煤皆可作原料,除褐煤、泥煤及热值低于22940kJ/kg煤以外,灰融点要求不超过1350℃(否则必须添加助熔剂),煤可磨性和成浆性好,制得煤浆浓度要高于60%为宜。

1)GE水煤浆加压气化技术主要特点是:

①适用于加压(中、高压)下气化,成功的工业化气化压力一般在

4.0MPa至6.5MPa,正在建设最高气化压力可达8.5MPa。在较高的气化压力下,可以降低合成气压缩的能耗。

②气化炉进料稳定,由于气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力较易得到保证,便于气化炉负荷的调节,使装置有较大的操作弹性。

③工艺技术成熟可靠,设备的国产化率高。同等生产规模,装置投资少。

④GE水煤浆加压气化工艺是一项先进、成熟、稳妥可靠的工艺技术。水煤浆加压气化生产合成氨,在日本UBE氨厂(4.0MPa)已运行了二十年,未发生过较大事故,每年可运行330天以上,从国已开车的鲁南(2.6MPa)、三联化工(4.0MPa)、(4.0MPa)工程来看,运行情况良好。

GE工艺存在的不足是:

①由于气化炉采用的是热壁,耐火砖需一年更换一次,为延长耐火衬里的使用寿命,要求煤的灰熔点尽可能的低。对于灰熔点较高的煤,为了降低煤的灰熔点,必须加适量的助熔剂,这样使煤浆的有效浓度降低,使煤和氧耗增加,降低了生产的经济效益;

②烧嘴使用寿命短,停车更换烧嘴频繁,为稳定后工序生产必须设置备用炉,日常操作费用较高。

2、新型(对置式多喷嘴)水煤浆加压气化技术也是较先进煤气化技术之一。是在GE水煤浆加压气化法的基础上发展起来。该项目是被科技部列入了“九五”国家重点科技攻关项目,由华东理工大学、原鲁南化肥厂(水煤浆工程国家中心的依托单位)、中国天辰化学工程公

司共同承担开发完成。

新型(对置式多喷嘴)水煤浆加压气化技术在2004年11月、2005年5月分别在和兖矿投入工业生产。

3、壳牌干粉煤加压气化工艺(SCGP)

壳牌干粉煤气化是Shell公司开发的具有特色的第三代煤气化工艺,于1972年开始在壳牌公司阿姆斯特丹研究院(KSLA)进行煤气化研究,1976年应用于一台6t/d煤气化炉,1978年第一套中试装置在德国汉堡郊区哈尔堡炼油厂建成并投入运行日处理煤量150吨,1978年在美国休斯顿迪尔·帕克炼油厂建成日投煤量250~400吨的示装置投产称作SCGP-1示装置。1993年在荷兰的德姆克勒(Demkolec)电厂建成投煤量2000吨/日的大型煤气化装置,用于联合循环发电,称作SCGP工业生产装置。装置开工率最高达73%。该套装置的成功投运表明SCGP气化技术是先进可行的。

1)SCGP技术的特点

①适合于气化原料煤的围较宽,采用高温加压干粉煤气流床SCGP 气化方法,拓宽了适应制取合成气原料煤的煤种,如褐煤、烟煤、无烟煤等各种煤均可使用,对煤的性质如:粒度、结焦性、灰分、水分、硫分、氧分等含量均不敏感。

②成功地设计了膜式水冷壁气化炉,采用水冷壁气化炉,基本消除了频繁检修、更换炉耐火衬里和耗费昂贵的弊端。同时单炉产气能力大,具有高效、大型化和长周期运行的显著特点。

③SCGP技术具有较高的热效率,煤炭利用率高,碳转化率可达99%,其原料煤能量加在收率高,80%~83%以合成气形式回收(即冷煤气效率),14%~16%以蒸汽形式回收。

④环境质量高,SCGP气化工艺,壳牌公司称它为“洁净煤”工艺,其生产的合成气是含甲烷量很低的高洁净合成气。在煤气化过程中,煤粉制备采用密闭系统,无粉尘排放;煤中灰分在气化炉排出时被转化为玻璃体颗粒,可作为道路建筑材料,不污染环境;合成气水

S气体送硫回收装置。洗排放液经汽提冷却后循环使用,汽提逐出的H

2

2)SCGP技术工艺存在的不足主要是:

①气化炉及废热锅炉结构复杂,制造难度大,目前其件及关键

设备还需引进;相同生产规模,设备的外形尺寸较大,运输较困难;装置投资相对较大;

②因为无备用炉,工厂必须具有很的管理水平和操作水平;

③国装置正在建设和试运阶段,没有成功的操作管理和运行经验可以借鉴。

4、德国未来能源公司的GSP干粉煤加压气化工艺

未来能源公司位于德国来比锡附近的弗来堡市(Freibarg),原为东德墨水泵工气联合企业弗来堡燃料研究所。1980年建成两套粉煤加压气化装置:MW3(处理煤量100~250kg/h),MW5(处理煤量300~500kg),1983年12月又建成一套大型粉煤加压气化装置,MW130处理干煤量30t/h称为GSP工艺。2004年从巴高克电力公司分离出来,并由瑞士SH公司收购以东德煤炭工业学院为依托加强开发煤的气化技术。公司1956年成立以来,最初开发固定床气化技术,70年代末开始气流床的研究工作,原料煤主要是含硫的褐煤。

1)GSP流化床煤气化工工艺技术特点:

①能高效生产富氢和一氧化碳的合成气,甲烷含量少,热值高;

②燃料可完全气化,不生成冷凝副产品,气体不含焦油、酚等污染物;

③液态排渣,熔融淬冷成透明状,硬度大对环境无污染;

④能气化劣质褐煤,也可气化烟煤和焦煤,煤种适应围广;

⑤煤气化碳转化率高于99%;

⑥可处理高Cl-的物料,原料适应性强;

⑦水管冷壁型气化炉,寿命长,维修工作量小;

⑧新型水冷气化喷咀,寿命长,效率高;

⑨流体上进下出,单喷咀,工艺有水冷激型、废锅型、混合型流程。

2)GSP工艺存在的不足主要是:

①GSP气化工艺商业化的装置最大能力为处理煤720t/d;对更大的气化装置没有成功的运行业绩;

②国目前还没有装置在运行,没有成功的操作管理和运行经验可以借鉴。

5、多喷嘴对置粉煤加压气化技术

多喷嘴对置粉煤加压气化技术是在新型多喷嘴对置气化炉中试装置的基础上开发的,是对新型气化炉攻关成果的拓展和延伸。由鲁南化肥厂、华东理工大学、中国天辰化学工程公司共同承担的《日投料30吨能力粉煤加压气化炉工业中试装置》项目,2001年11月被科技部列入了“十五”国家重点科技攻关项目。该项目已于2003年3月完成工程设计,2004年10月在鲁化建成并一次投料成功。于2004年12月6~8日,通过由科技部组织的国家72小时考核。装置运行良好,各项主要技术指标达到和超过设计要求。于2005年2月1日,通过由科技部组织的国家项目验收。项目试验的成功,可望使我国在煤化工气化整体技术水平处于国际先进水平,气化炉结构及工艺效果处理国际领先水平。

多喷嘴对置粉煤加压气化技术特点是:

①用对置式气化炉,强化热质传递,有利于煤粉气化。单炉产气能力大,具有高效、煤耗低和长周期运行的显著特点。

②气化炉热量利用高,有激冷工艺制得含蒸汽量高的合成气如用于生产合成氨或甲醇,在变换工序不需再外加蒸汽。

③能高效生产富氢和一氧化碳的合成气,甲烷含量少,热值高。

④燃料可完全气化,不生成冷凝副产品,气体不含焦油、酚等污染物。

⑤液态排渣,熔融淬冷成透明状,硬度大对环境无污染。

⑥能气化劣质褐煤,也可气化硬煤和焦煤,煤种适应围广。

⑦煤气化碳转化率高于98%;合成气中有效成分CO+H

≥90%;冷

2

煤气效率:~83%。

⑧新型水冷气化喷咀,寿命长,效率高。

⑨煤粉采用氮气或CO

活化(悬浮)、收缩扩管降压、载气量三者

2

协调控制,达到煤粉的稳定可控输送。

⑩气化炉装置具有开车方便、操作灵活、投煤负荷增减自如的特点,尤其是气化炉装置可灵活的焦下一对烧嘴另一对煤嘴可继续工作,不必立即停车,为保压操作和维修创造有利条件。

经过比较:本项目采用技术先进、成熟,使用广泛的GE水煤浆

加压气化工艺。

(三)尿素生产工艺介绍

自全循环法合成尿素工艺工业化以来的几十年时间里,尿素工艺技术已取得了很大进展。在解决诸如提高反应转化率、促进未反应物分解回收、减轻设备腐蚀、提高能量利用率、减轻环境污染以及提高操作灵活性和设备可靠性等方面都已积累了丰富的经验。目前在尿素技术市场上占主导地位的主要有以下几种技术:CO 2汽提法、NH 3汽提

法、ACES 节能工艺等。为了合理地选择用于本工程的尿素生产工艺,现将上述三种汽提法的工艺技术特点和生产能耗及经济效益比较。

1、氨汽提工艺

氨汽提工艺,即Snamprogetti 斯那姆工艺。

氨汽提法尿素工艺核心是采用过量氨作为自气提剂的全循环汽提过程。特点主要在合成回路:操作压力150~155bar ,合成塔入口NH 3/CO 23.3~3.6,反应温度186~189℃,因此合成塔CO 2转化率可达

65~67%,钝化O 2含量0.25%。且由于此塔设有多层孔板阻止返混,有

利用尿素生成反应的进行。由于过量氨的气提作用,反应液进入汽提塔后大部分未转化的甲铵被分解,使得整个合成回路尿素产率(以CO 2计)高达85%。残余的甲铵与游离氨在下游中压(18bar)循环段和低压(4.5bar)循环段予以分解回收。

从气提塔顶部出来的NH 3与CO 2气体,跟中压段打来的甲铵循环

液混合后,在高压甲铵冷凝器冷凝,借助液氨射器吸引返回合成塔。甲铵冷凝器利用冷凝热副产低压蒸汽,供下游分解段和蒸发段利用。

氨气提法还采取了一系列热回收措施,节省蒸汽和用水,如利用低压分解气予热进合成塔的液氨,用工艺冷凝液予热高压甲铵,利用中压分解气加热予蒸发器,工艺冷凝液经水解处理后作锅炉给水,回收的低压蒸汽用于二段蒸发等。氨汽提法可在40%负荷下运行,操作弹性好

2、CO 2汽提工艺

CO 2汽提工艺,即Stamicarbon 斯塔米卡邦工艺

CO 2汽提法是第一个申请汽提专利、工业化较早的汽提技术。采

用该技术在世界围建厂较多,生产能力也较大。其主要特点是高压圈

在CO 2-NH 3-H 2O 系统共沸点温度上运行,并不在意单方面追求较高的CO 2转化率,而是将CO 2转化率与NH 3的转化率同时考虑,综合各方面因素,

以最低的运行成本确定最佳氨碳比。由于采用CO 2作为汽提剂,汽提

效果好,过剩氨较少,不需中压分解回收段,流程短,减少设备投资。

该工艺从六十年代成功地工业化至八十年代初,在世界尿素技术市场占有统治地位,在此期间兴建的大中型尿素装置大部分采用该工艺技术,但随着NH 3汽提,ACES 法的崛起,CO 2汽提法受到了严峻的挑

战,在与其他工艺的竞争中,该工艺对自身的缺陷做了大量的改进,简要叙述如下:

(1)合成部分

增加铂催化脱氢反应器,从CO 2气中脱氢,消除尾气产生爆炸气

体的危险,使之运行更加安全;

改进高压洗涤塔,吸收性能更好,安全性好,并易于检修; 去掉由合成塔至高压喷射器的管线,避免合成系统的不稳定性; 取消氨加热器,以减少高压设备; 增加了4bar 吸收器,以减少高压洗涤器尾气的氨损失;

采用低压启动,缩短启动时间,相应取消合成塔至高压洗涤塔管线上的HIC 控制阀;

采用高效塔板,阻止合成塔介质的返混,提高合成塔的效率,将高压冷凝器改为池式冷凝器,减少高径比,降低框架高度。

(2)循环系统改

进低压精馏塔液体分配器,避免冲击填料层和破坏喷咀。改进加热管道,提高换热能力。改进低压甲铵冷凝器,提高吸收能力。

增加常压吸收器,以减少氨损失。

(3)蒸发系统

修改二段加热器,改善换热并减少夹带尿液;

修改二段分离器,防止堵塞; 改进刮板,提高造粒塔中产品流动的均匀度;

改进造粒喷头,改善颗粒大小分布,并便于检修;

根据需要,造粒塔增加晶种系统,以得到较高冲击强度的产品,增加涂料系统,以减少结块倾向。

(4)增加废水深度解吸系统,使废水含尿素和氨分别降至1ppm ,回收利用作锅炉给水,减少对环境的污染。

(5)特别是近年来对其甲铵冷凝器作了较大的改进,由立式降膜型改为池式冷凝器,被冷凝介质由管改走壳程,为被冷凝介质提供了较长的停留时间,使得气提被冷凝的同时,部分甲铵脱水生成尿素,其既是一个冷凝器,又是一个尿素合成反应器。该改进后的工艺技术较好地克服了原工艺需高框架布置的缺陷,同时由于采用专有的气体分布装置,使得冷凝过程更为合理,温度分布理为均匀,凝点温度也进一步提高,节省了传热面积,降低了投资。同时,也为进一步提高副产蒸汽的压力创造了条件。该改进型的CO 2汽提工艺专利商将其命

名为2000+TM

工艺。

斯塔米卡邦的2000+TM 工艺,根据其在池式冷凝器中尿素合成的程度不同分为两种,一种是在池式冷凝器中完成约60%的CO 2转化率,其

余40%仍在传统的圆筒型合成塔中完成,框架高度由最初的78m 降为33m 。传统合成塔的容积大幅度地减少。另一种是将尿素的合成完全地转移支池式冷凝器中,即所谓的池式冷凝反应器,取消了传统的尿素合成塔,使得尿素框架的布置进一步降低。

本工艺在2003年底,中海石油化学建设的富岛二厂80万吨/年大颗粒尿素投入运行。

目前CO 2汽提法通过上述改进,其效果是:既保持低氨碳比、低

分解压力和高分解率的同时,又使运行更加安全可靠,减轻腐蚀和磨损,延长连续运行周期;降低蒸汽和氨耗,每吨尿素的消耗指标和氨汽提法和ACES 法机同,同时,改善污染;启动时间缩短,24小时可达到满负荷运行。大大降低了框架的高度,操作、检修、安装更为方便,进一步节约了投资。

3、ACES 工艺(TEC 工艺)

ACES 工艺,即TEC 工艺。TEC 公司1982年从三井化学公司获得整个尿素工艺技术的专利用和秘密的所有权,TEC 公司对该工艺不断的改进,使其成为是一种节能工艺,现在的工艺叫做ACES21工艺。

(1)由于合成进料NH 3/CO 2分子比高(3.7),CO 2转化率可以充分提

高;同时降低甲铵冷凝NH 3/CO 2分子比(2.9)减少了冷凝器未反应的物

料量;由于汽提效率较高,使高低压分解段的负荷降低,从而减少了公用工程的消耗。

(2)由于NH 3/CO 2分子比高,设备选材恰当,特别是汽提塔和铁素

体双相钢,设备具备良好的耐腐蚀性。停车后可以较长时间封塔保压而不致于造成腐蚀,因而无需排放。这不仅减少了NH 3和CO 2的损失,

而且提高装备的运转率。另外,另入系统防腐空气的量在大减少,尾气不存在爆炸危险。

(3)热回收率高。由于高压甲铵冷凝器的操作压力较高,相应的凝点温度也提高,为反应冷凝热较高效率地利用创造了条件。其反应热一部分用于副产0.5MPa(G)低压蒸汽,另一部分用于加热汽提塔出来的尿液。中压分解气大部分冷凝热用于尿液的浓缩。

(4)消除污染。由于排出气经最终吸收塔清洗后放空,NH 3含量甚

微,工艺冷凝液经水解后可作锅炉给水。造粒塔顶部设置了粉尘回收系统,顶部排出的气体中含尘量降到20mg/Nm 3以下。

(5)采用特殊结构的汽提塔。上部为板式塔,下部为降膜式热交换器。在抑制尿素水解和缩二脲生成的同时,利用CO 2汽提使未转化

的甲铵和过量氨有效分离,从而降低蒸汽的消耗。

(6)合成塔、高压甲铵冷凝器、高压洗涤器均需高层框架布置,建设费用中土建费用较高。

综合上述情况,本项目尿素生产选用技术先进、成熟的CO 2气提工艺技术。

四、公用工程消耗情况

本工程正常需水量为448.8m 3/h ,最大为526.2m 3/h 。排水总量正常为87.2m 3/h ,最大为115.1m 3/h 。总用电负荷为23963.0 kW 。

五、投资情况及收益情况

本项目总投资146977.29万元,其中建设投资139439.34万元、建设期利息6574.29万元、铺底流动资金963.66万元。

产品售价(不含税价):尿素制造成本1078.68元/吨、尿素销售价格1460.18元/吨,年均销售收入48529.71万元。

项目财务部收益率:所得税前12.18%、所得税后14.98%,项目

财务回收期:所得税前8.00年、所得税后8.93年(含建设期),

中型煤制合成氨-—尿素厂生产技术现状、水污染治理现状及存在问题要点

中型煤制合成氨-—尿素厂 生产技术现状、水污染治理现状及存在问题 王有显 (上海化工研究院上海200062) 摘要 本文为“九、五”攻关项目“煤造气中型合成氨—尿素厂节水减污、清洁生产技术优化集成示范线”调查部分的摘要。 通过调查对我国中型煤制氨—尿素厂合成氨和尿素生产技术现状;典型的生产工艺及产生的主要废水污染源;水污染及治理现状;存在问题及产生原因等作一简单的介绍。 一前言 在中国的氮肥行业中,中氮肥历史最长,不仅是氮肥工业的发源地,而且也可以说是我国重化工的摇篮。目前我国中氮肥厂有54家,其原料结构包括了煤(焦)、油、气(天然气、油田气等),其中以煤(焦)为原料的厂家34家;以油为原料的厂家15家;以气为原料的厂家11家,(其中以兼有油、煤的厂家为6家)。1998年合成氨产量为603.5275万吨,占全国合成氨总厂量3188.5634万吨的19% 54家中氮厂中有尿素厂38家(占总厂数的70%),1998年尿素产量为566.2548万吨,占全国尿素总厂量2568.8853万吨的22%。

综观我国中氮行业的现状,煤(焦)制氨仍占主要地位(占总厂数的63%),而且从我国的能源结构,储量,供应和消耗情况来看,油制氨将逐步为煤制氨所取代。从氮肥产品结构看,由于原来生产碳铵的中氮肥厂转产尿素,使尿素产品成为主要产品,因而煤制氨-尿素厂在中氮行业中占主要地位,为此,研究中型煤制氨-尿素厂的节水、减污、清洁生产技术是非常必要的。 二. 中型煤造气合成氨生产技术现状 (一) 概况 正如前述,我国以煤炭为原料的中型合成氨厂有34家,其工艺流程基本相同。大致可分为:原料气的制备;原料气的净化;气体压缩和氨合成四大部分,只是在使用的具体技术上有不同的差异,现简述如下: 1.原料气的制备 目前我国煤焦制氨采用的气化技术主要有下面两种。 (1)固定床间歇气化。目前我国34家中型煤焦制氨厂均采用该技术,典型的炉型为UGI炉。其直径一般为2.74米、3米和3.6米,由于产量不同而台数各异。 (2)水煤浆加压气化。该法为引进德士古气化技术,首家使用该技术的是山东鲁南化肥厂第二氮肥厂,93年联动试车,94年3月通过国家的审核。

合成氨尿素装置建设经验

18.30合成氨尿素装置建设经验 天脊晋城化工股份有限公司(原晋城第二化肥厂)是1979年投产的年产3kt合成氨的小氮肥厂,历经二十年的艰苦创业,1999年达到60kt/a的合成氨生产规模,虽拥有得天独厚的资源优势,多年来却未见大发展,效益平平。进入新世纪,企业领导审时度势,抓住山西省调产机遇,首先果断兼并了离市区25km的解放军6013厂,为企业拓宽了发展空间,并随即投资8141万元实施改产碳铵为大颗粒尿素的8.13工程(80kt/a氨,130kt/a尿素)。2001年6月初率先建成了华北、东北、中原三大地区第一套大颗粒尿素装置。改产尿素的成功,优化了产品结构,企业的实力和经济效益大幅提升,特别是这一规模发展的业绩成为山西省打造以无烟煤产地晋城为中心的尿素生产基地战略布局的首棋。它更重要的意义在于培养锻炼了发展煤化工事业的生力军,坚定了快速发展、进一步使企业做大做强的决心和信心。晋城二化在认真总结8.13工程经验的基础上,马不停蹄,进一步加快加大建设步伐。 2003年底,在6013厂厂址处,建成投产了全国小氮肥企业首套18.30装置(180kt/a合成氨,300kt/a尿素)。该装置决算投资3.6亿元,建设周期13个月,投产42天即达产达标,试生产第一年(2004年)在电负荷受限的条件下,生产合成氨199.8kt,大颗粒尿素320kt,并联产甲醇14.3kt,实现利润1.2亿元,2005年又取得氨产量240.4kt,大颗粒尿素407.5kt,联产甲醇18.96kt,实现利润1.7898亿元的好成绩。 2001年以前,晋城二化还是一个名不见经传的小碳铵厂,而2003年底两套装置尿素生产能力达到500kt。2005年合成氨总产量376kt,尿素总产量为619.77kt。以实现销售收入9.45亿元,利润3.01亿元,利税3.4亿元的佳绩进入中国石油和化工化肥行业百强,全国小尿素行业综合效益第一名,成为中国石油和化工百强企业十大最具影响力企业之一。晋城二化尿素装置的建设达到了投资省、投产快、运行好、效益高的建设目标,其合理的规模配置,各项先进技术的应用,成功的建设经验和稳定高效的运行效果倍受关注,众多同行前来参观、询问、学习、考察,来者中有的对其投资之少表示怀疑,也有不少同行将其高效益仅仅归结为资源优势带来的效果。 笔者有幸身临其境参加了工程建设和开车运行的全过程,首先肯定的是投资额和效益是实实在在的。至于为什么花这么少的钱取得如此高的效益,我们的体会是:工程造价不单纯是一个花钱的事,它是一门融经济、技术、管理于一体的投资管理科学,从项目的决策、技术方案的选择、设计、实施等涉及到工程的全方位、全过程。而项目的投资效益更是一个综合效果,除市场因素外,主要由投资多少、工期长短、运行效果来决定。只有做到投资少、投产快、运行好,才能保证效益高。与本项目同期同地的另一18.30装置总投资11.6亿元,建设期3年余,3个多月方达产,虽也处原料产地,建成后的效益却远不如晋城二化了,该装置吨尿素投资3860元,而晋城二化吨尿素投资仅1200元(如按达到的实际生产能力计算吨尿素投资不到1000元),前者成本中的利息负担上百元,是晋城二化的三倍多,至于试车费用、运行费用的差别更悬殊。 下面仅就装置建设中的一些做法和体会总结如下: 1 必须有正确的战略决策和建设指导思想 领导的任务就是决策,根据晋城市打造200万吨尿素生产基地的目标,综合企业的优势和经济技术实力,二

合成氨生产尿素原理

尿素合成氨生产原理 一、生产原理 尿素分子式(NH2)2C0,是由液氨和二氧化碳,在尿素合成塔反应生成铵基甲酸铵(甲铵),其中一部分脱水生成尿素,其反应式为: 2NH3十C02=NH2COON4 NH2C00NH4 = NH2CONH2十H20 根据此反应机理,采用不同的压力、温度、氨碳比,形成各种生产工艺。 二、二氧化碳汽提工艺 二氧化碳汽提工艺特点是合成压力低,氨碳比低,反应率高而不设中压回收系统,流程短。缺点是由于氨碳比低,反应物料为酸性介质腐蚀性较强,为防腐蚀在二氧化碳气中添加氧较多达到0.55%~0.7%,如操作不当在合成塔顶排气中会产生过量氧与氢的爆炸性气体,故在高压洗涤器设有防爆板。在改进型二氧化碳汽提工艺中,为防止合成塔排气形成爆炸性气体,而采取了将二氧化碳气中氢脱除的方法即二氧化碳压缩机出口气体先经过气体加热器将气体加热,进入脱氢反应器(装有把催化剂),然后再将气体冷却,这样增加了三个高压设备,增加了投资。在70年代一些二氧化碳气提尿素老厂进行技术改造,采用加双氧水技术进行防腐蚀,减少了向二氧化碳气中加氧气量,使其达不到氧氢混合爆炸围,该项技术己得到推广应用。现将典型的二氧化碳汽提尿素的生产流程介绍如下: 1.原料液氨和气体二氧化碳的压缩 由界外供给的液氨,用高压氨泵将压力提高到16.0兆帕,经氨加热器进一步加热到70℃,送入高压喷射器,将高压洗涤器出来的甲铵液增压,一并送人高压冷凝器的顶部。由界外送来二氧化碳气体,经二氧化碳压缩机压缩至13.79兆帕进入其汽提塔底部。 2.合成和汽提 在高压甲铵冷凝器上部送人新鲜的液氨,含有氨和二氧化碳的气提气以及循环返回系统的甲铵液也在14兆帕下送入,出口温度为168~170℃,氨/二氧化碳为2.8~2.9。换热器用压力0.4兆帕温度143℃的沸水冷却,物料中的气体被冷凝,并反应生成甲铵,放出冷凝热和生成热,产生0.4兆帕的蒸汽,用于后续工序。 在高压冷凝器中,使氨与二氧化碳全部生成甲铵,大约有78%的氨和70%二氧化碳冷凝成液体,生成的甲铵液与末冷凝的气体从底部各自的管离开高压甲铵冷凝器,进入合成塔底部。反应物在合成塔自下而上通过,在温度180~185℃、压力13.5~14.0兆帕下,将甲铵转化为尿素,二氧化碳转化率为57%~58%,从部溢流管离开送人气提塔。 在合成塔顶部出气中除氨、二氧化碳外,还有氧、氮、氢、惰性气体等,送人高压洗涤器。高压洗涤器下部是直立管壳式浸没冷凝器,器充满液体,气体鼓泡向上通过,上部为鼓泡段。液体出鼓泡段,一部分从溢流管返回浸没冷凝段底部,一部分外流出去进入喷射泵的吸入口。出口甲铵液的温度保持在160℃,为了防止冷却过度,管外用热水冷却,热水在一个封闭的加压系统中用循环水泵循环。从高压洗涤器顶部出来还含氨、二氧化碳气的惰性气进入吸收塔,被冷凝液吸收后放空。送入吸收塔的冷凝液是从氨水贮槽分别用解吸塔给料泵及升压泵经过顶部加料冷却器送人吸收塔的上段填料层,用闪蒸槽冷凝液泵将闪蒸槽冷凝液送人下段填料层,在塔底所得的稀甲铵液,部分返回下段填料层循环吸收,部分送人低压洗涤器中吸收从低压甲铵冷凝器出来的氨和二氧化碳。最终甲铵液从低压洗涤器或吸收器液位槽底部进入高压甲铵泵,升压后经高压洗涤器返回甲铵冷凝器。

合成氨及尿素生产危险有害因素分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 合成氨及尿素生产危险有害因素分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-6790-12 合成氨及尿素生产危险有害因素分 析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、造气工段 造气工段转动设备多、操作上控制点多、受人为因素影响较大、工艺条件相互制约、操作难度大。介质具有腐蚀、有毒、易燃、易爆的性质(氢气、一氧化碳、甲烷、硫化氢等),并具有引爆的火种;由于机械设备易磨损、易腐蚀、易发生容器的损坏、可燃物质的泄漏等;制气周期短,操作程序要求较严等,极易发生煤气发生炉爆炸、气柜抽瘪和爆炸、人员中毒、伤亡等,它是小氮肥厂中发生事故最多的一个工序。该工段曾发生过“7.22”夹套爆炸事故。 2、脱硫工段 由于半水煤气中的H2、CO、CH4、H2S等都是易燃、易爆、有毒气体。在生产过程中常会因设备管道泄漏

发生着火爆炸,造成人员中毒。据统计,该工段发生的火灾爆炸中毒事故占小氮肥厂的30%左右。该工段曾发生过多起着火爆炸事故。 3、变换工段 由于半水煤气转化为变换气后,气体中的氢气含量显著增加,高温气体一旦泄漏,遇空气很容易引起燃烧、爆炸;如果设备或系统形成负压,空气被吸入,与煤气混合,形成爆炸性气体,在高温、摩擦、静电等作用下,也会发生爆炸;特别是在检修过程中,如不能对系统有效地隔绝,也极易发生爆炸事故。该工段曾发生过“4.16”热水饱和塔爆炸事故。 4、碳化工段 碳化过程是合成氨原料气净化处理的中间过程,也是生产碳酸氢铵产品的最后工序。由于碳化反应在常温下进行,压力又不太高,因此安全易被人忽视。特别是氨水槽、贫液槽,既是常温又是常压,且又与大气相通,一旦遇上火源就会发生爆炸。此工段的碳化塔检修多,由于不好置换,碳化塔爆炸事故也是小

合成氨与尿素生产工艺指标

银河化工有限责任公司 银化发[2001]69号 峨山银河化工有限责任公司 关于颁发《合成氨及尿素生产工艺指标》的通知 公司所属各部门: 工艺指标是工艺操作的核心和灵魂,是工艺参数控制的科学依据,是实现稳产、高产、优质、低耗的要素,更是实现安全生产的有力保障。现将公司总工办根据技改后的生产工艺及规模实际编制的《合成氨及尿素生产工艺指标》发至各生产车间及有关部门,请认真遵照执行。 本工艺指标自下发之日起执行。 附:《合成氨及尿素生产工艺指标》

(此页无正文) 峨山银河化工有限责任公司 二○○一年七月二十七日 主题词:工艺指标通知 抄报:公司领导生产处各科室各生产车间 峨山银河化工有阴责任公司总部办2001年7月27日印发

银河化工有限责任公司 合成氨及尿素生产 工艺指标 编制:总工办

前言 我公司6万吨尿素装置及配套的合成装置,在峨山化肥厂装置的基础上做了大量的技术改造。采用了粘土煤球制气,碱法脱硫,中低低就换工艺等,无论从原料路线和工艺步骤都较原来有较大变动。但总的运行还是平稳的,由于生产工艺及规模的改变,以前颁发的工艺指标已不能满足生产的要求。这次由总工办编制的工艺指标,是根据我公司实际情况,参照原化工部颁发的工艺指标及兄弟厂的经验编制的。现发到各生产车间及与生产有关的管理部门,要求认真贯彻执行,在运行中个性,以至完善。 工艺指标是工艺操作的核心和灵魂,是工艺参数控制的科学依据,是实现稳产高产优质低耗的要素,是实现安全生产的有力保障。希望生产一线的操作工人和生产管理者严格执行工艺指标,与生产有关的管理人员要熟悉和掌握工艺指标,要做到生产操作与调度指挥以工艺指标为规的协调和统一,要充分认识工艺指标的严肃性、科学性和灵活性。要制定切实可行的考核办法,进行工艺指标的分类和分级管理考核,把哪此与安全生产、高产、优质、低耗、延长设备运行周期的重要指标列为厂控制指标。工艺指标合格率由生产管理部门作为重要指标来考核,以期达到安全、高产、优质、低耗的目的。 本指标自发布之日起实施,以前发布的工艺指标与本指标不同的按本指标执行。 总工办 二○○一年六月一日

尿素生产原理、工艺流程及工艺指标

尿素生产原理、工艺流程及工艺指标 1.生产原理 尿素是通过液氨和气体二氧化碳的合成来完成的,在合成塔D201中,氨和二氧化碳反应生成氨基甲酸铵,氨基甲酸铵脱水生成尿素和水,这个过程分两步进行。第一步:2NH3,CO2 NH2COONH4,Q 第二步:NH4COONH2 CO(NH2)2,H2O,Q 第一步是放热的快速反应,第二步是微吸热反应,反应速度较慢,它是合成尿素过程中的控制反应。 1、2工艺流程: 尿素装置工艺主要包括:CO2压缩和脱氢、液氨升压、合成和气提、循环、蒸发、解吸和水解以及大颗粒造粒等工序。 1、2、1 二氧化碳压缩和脱氢 从合成氨装置来的CO2气体,经过CO2液滴分离器与来自空压站的工艺空气混合(空气量为二氧化碳体积4%),进入二氧化碳压缩机。二氧化碳出压缩机三段进脱硫、脱氢反应器,脱氢反应器内装铂系催化剂,操作温度:入口?150?,出 口?200?。脱氢的目的是防止高压洗涤器可燃气体积聚发生爆炸。在脱氢反应器中H2被氧化为H2O,脱氢后二氧化碳含氢及其它可燃气体小于50ppm,经脱硫、脱氢后,进入压缩机四段、五段压缩,最终压缩到14.7MPa(绝)进入汽提塔。 二氧化碳压缩机设有中间冷凝器和分离器,二氧化碳压缩机压缩气体设有三个回路,以适应尿素生产负荷的变化,多余的二氧化碳由放空管放空。 2 液氨升压 1、2、 液氨来自合成氨装置氨库,压力为2.3 MPa(绝),温度为20?,进入液氨过滤器,经过滤后进入高压氨泵的入口,液氨流量在一定的范围内可以自调,并设有副线以备

开停车及倒泵用.主管上装有流量计.液氨经高压氨泵加压到18.34 MPa(绝),高压液氨泵是电动往复式柱塞泵,并带变频调速器,可在20—110%的范围内变化,在总控室有流量记录,从这个记录来判断进入系统的氨量,以维持正常生产时的原料N/C(摩尔比)为2.05:1。高压液氨送到高压喷射器,作为喷射物料,将高压洗涤器来的甲铵带入高压冷凝器,高压液氨泵前后管线均设有安全阀,以保证装置设备安全。 1、2、3 合成和汽提 生产原理:合成塔、气提塔、高压甲铵冷凝器和高压洗涤器四个设备组成高压圈,这是本工艺的核心部分,这四个设备的操作条件是统一考虑的,以期达到尿素的最大产率和最大限度的热量回收。 从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,液相加气相物料N/C(摩尔比)为2.9—3.2,温度为165--172?。合成塔内设有11块塔板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。物料从塔底至塔顶,设计停留时间1小时,二氧化碳转化率可达58%,相当于平衡转化率90%以上。 尿素合成反应液从塔内上升到正常液位,温度上升到180--185?,经过溢流管从塔下出口排出,经过合成塔出液阀(HPV2201)汽提塔上部,再经塔内液体分配器均匀地分配到每根气提管中,沿管壁成液膜下降,分配器液位高低,起着自动调节各管内流量的作用,尿液在气提管均匀分配并在内壁形成液膜下降,内壁液膜是非常重要的,否则气提管将遭到腐蚀,由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇,气提管外以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被气提气蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出,气提塔出液温度控制在165--174?之间。塔底液位控制在40--80%左右,以 防止二氧化碳气体随着液体流至低压分解工段造成低压设备超压。

18万吨合成氨、30万吨尿素

一、市场情况 (一)产品用途 尿素是一种含氮量最高的中性固体肥料,也是重要的化工原料。农业用尿素占90%,10%用于工业。农业上尿素可作单一肥料、复合肥料、混合肥料及微肥使用,也用作饲料添加剂。在工业上,尿素可生产脲醛树脂、氰尿酸、氯化异氰尿酸、三羟基异氰酸酯、水合肼、盐酸氨基脲、脲烷、氨基磺酸、发泡剂AC 、尿囊素等;尿素可制氨基甲酸酯、酰尿、造影显影剂、止痛剂、漱口水、甜味剂等医药品;尿素可生产石油炼制的脱蜡剂;尿素用于生产含脲聚合物,也可作纤维素产品的软化剂;尿素还可以作炸药的稳定剂,选矿的起泡剂,也可用于制革颜料生产。 (二)市场情况 2000年到2006年,我国尿素产能从 二、产品方案及生产规模 (1)合成氨:600吨/日(中间产品),公称能力18万吨/年 (2)尿素:1052吨/日,公称能力30万吨/年 工厂年运行天数:330天/年、按8000小时 三、工艺技术方案 原料煤与水在棒磨机湿法研磨,浓度达到61%的水煤浆加压后与高压氧气一起进行部分氧化,生产出含有CO 、H 2的粗合成气。合成气送到变换工段,在变换工段,大部分的CO 和水蒸汽反应生成H 2和CO 2,变换气中的CO 2和H 2S 等酸性气体在低温甲醇洗工段中被脱除,得到的净化气送入液氮洗工段精制,并配氮使合成气中的氢氮比达到3:1,精制气进入合成气压缩机,升压至后送入氨合成系统生产合成氨。低温甲醇洗的CO 2部分送往尿素装置,经压缩与液氨合成为尿素。

(一)气化工艺技术简介 气化工艺一般分为三种类型:移动床(有时也被称为固定床),流化床和气流床。 1、固定床气化炉是最老的气化炉,它很长时间在煤气化工艺中占主要地位。固定床煤气技术经历了固定层间歇气化法、富氧连续气化法和鲁奇加压气化法。 固定床气化炉中的氧化剂与煤的流动方向相反,通过由煤变为焦油,再到灰等一系列反应区。当空气被作为氧化剂时,温度通常不会超过灰熔点,而纯氧气流床气化炉既可以是干灰也可以是熔渣。由于粗煤气出口温度(400~500℃)相对较低,粗合成气中通常会有液态碳氢化合物。固定层间歇气化法因吹风过程中放空气对环境污染严重而被淘汰,富氧连续气化法因原料只能用焦炭和无烟煤,原料价格高,且生成气中甲烷含量高;富氧气化的特点是投资少,操作简单,在中型氮肥厂中具有丰富的操作经验,是国家重点推荐的中氮厂造气技术。由于国家大力整治小煤窑和国家经济发展和重化工业的强力拉动,全国各地的煤价格随着需求的增加正在节节上扬,使合成氨成本大幅上升,所以必须采用先进的煤气化工艺,提高煤的利用率和水煤气中有效气组成。鲁奇(Lurgi)加压气化技术,在我国建有3套装置。该技术虽然能连续加压气化,但由于气化温度低,生成气中甲烷含量大,同时生成气中含苯、酚、焦油等一系列难处理的物质,净化流程长;尤其是该技术只能用碎煤不能用粉煤,因而原料利用率低,大量筛分下来的粉煤要配燃煤锅炉进行处理。 2、流化床气化炉采用粉碎了的煤作为原料,用氧化剂(氧气或空

合成氨的方法及其应用

闽南师范大学 合成氨的方法及其应用 姓名: 学号: 专业:应用化学 年级: 10应化2 2013年12月30

合成氨的方法及其应用 【摘要】介绍不同原料的合成氨和合成氨各个工段工艺流程,指出了我国合成氨工艺技术现状及其未来发展趋势,认为未来合成氨技术进展的主要趋势是大型化、低能耗、结构调整、清洁生产、长周期运行;介绍合成氨工业产品的用途,指出合成氨对化肥的重要意义。 关键词:合成氨工艺流程发展现状意义 前言 氨是一种重要的含氮化合物。氮是蛋白质质中不可缺少的部分,是人类和一切生物所必须的养料;可以说没有氮,就没有蛋白质,没有蛋白质,就没有生命。大气中存在有大量的氮,在空气中氨占78%(体积分数)以上,它是以游离状态存在的。但是,如此丰富的氮,通常状况下不能为生物直接吸收,只有将空气中的游离氮转化为化合物状态,才能被植物吸收,然后再转化成人和动物所需的营养物质。把大气中的游离氮固定下来并转变为可被植物吸收的化合物的过程,称为固定氮。目前,固定氮最方便、最普通的方法就是合成氨,也就是直接由氮和氢合成为氨,再进一步制成化学肥料或用于其它工业

我国合成氨装置很多,但合成氨装置的控制水平都比较低,大部分厂家还停留在半自动化水平,靠人工控制的也不少,普遍存在的问题是:能耗大、成本高、流程长,自动控制水平低。这种生产状况下生产的产品成本高,市场竞争力差,因此大部分化肥行业处于低利润甚至处于亏损状态。为了改变这种状态,除了改变比较落后的工艺流程外,实现装置生产过程优化控制是行之有效的方法。 合成氨生产装置是我国化肥生产的基础,提高整个合成氨生产装置的自动化控制水平,对目前我国化肥行业状况,只有进一步稳定生产降低能耗,才能降低成本,增加效益。而实现合成氨装置的优化是投资少、见效快的有效措施之一。 合成氨装置优化控制的意义是提高整个合成氨装置的自动化水平,在现有工艺条件下,发挥优化控制的优势,使整个生产长期运行在最佳状态下,同时,优化系统的应用还能节约原材料消耗,降低能源消耗,提高产品的合格率,增强产品的市场竞争能力。 1.氨的性质 1.1物理性质 无色气体,有刺激性恶臭味。分子式NH3。分子量17.03。相对密度0.7714g/l。熔点-77.7℃。沸点-33.35℃。自燃点651.11℃。蒸气密度0.6。蒸气压1013.08kPa(25.7℃)。 1.2化学性质 蒸气与空气混合物爆炸极限16~25%(最易引燃浓度17%)。

合成氨及尿素生产工艺指标

云南玉溪银河化工有限责任公司 银化发[2001]69号 云南峨山银河化工有限责任公司 关于颁发《合成氨及尿素生产工艺指标》的通知 公司所属各部门: 工艺指标是工艺操作的核心和灵魂,是工艺参数控制的科学依据,是实现稳产、高产、优质、低耗的要素,更是实现安全生产的有力保障。现将公司总工办根据技改后的生产工艺及规模实际编制的《合成氨及尿素生产工艺指标》发至各生产车间及有关部门,请认真遵照执行。 本工艺指标自下发之日起执行。 附:《合成氨及尿素生产工艺指标》

(此页无正文) 云南峨山银河化工有限责任公司 二○○一年七月二十七日 主题词:工艺指标通知 抄报:公司领导生产处各科室各生产车间 峨山银河化工有阴责任公司总部办2001年7月27日印发

银河化工有限责任公司 合成氨及尿素生产 工艺指标 编制:总工办

前言 我公司6万吨尿素装置及配套的合成装置,在峨山化肥厂装置的基础上做了大量的技术改造。采用了粘土煤球制气,碱法脱硫,中低低就换工艺等,无论从原料路线和工艺步骤都较原来有较大变动。但总的运行还是平稳的,由于生产工艺及规模的改变,以前颁发的工艺指标已不能满足生产的要求。这次由总工办编制的工艺指标,是根据我公司实际情况,参照原化工部颁发的工艺指标及兄弟厂的经验编制的。现发到各生产车间及与生产有关的管理部门,要求认真贯彻执行,在运行中个性,以至完善。 工艺指标是工艺操作的核心和灵魂,是工艺参数控制的科学依据,是实现稳产高产优质低耗的要素,是实现安全生产的有力保障。希望生产一线的操作工人和生产管理者严格执行工艺指标,与生产有关的管理人员要熟悉和掌握工艺指标,要做到生产操作与调度指挥以工艺指标为规范的协调和统一,要充分认识工艺指标的严肃性、科学性和灵活性。要制定切实可行的考核办法,进行工艺指标的分类和分级管理考核,把哪此与安全生产、高产、优质、低耗、延长设备运行周期的重要指标列为厂控制指标。工艺指标合格率由生产管理部门作为重要指标来考核,以期达到安全、高产、优质、低耗的目的。 本指标自发布之日起实施,以前发布的工艺指标与本指标不同的按本指标执行。 总工办 二○○一年六月一日

合成氨工艺

合成氨工艺 合成氨的介绍 基本简介: 生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。 合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:“高温高压”,下为:“催化剂”) 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1 亿吨以上,其中约有80%的氨用来生产

第1讲 合成氨及尿素的生产现状和未来发展趋势

第一讲合成氨及尿素的生产现状和未来发展趋势 一、合成氨工业的历史和发展现状 (一)氨合成的历史 在探索合成氨崎岖的道路上,它不仅使两位杰出的化学家勒夏特列和能斯特折戟蒙羞,而且使一位对人类社会发展作出巨大贡献,并因此获得诺贝尔化学奖的哈伯堕落成为助纣为虐与人民为敌的可耻下场。后来人们把合成氨称为化学发展史上的“水门事件”。 (水门事件(Watergate scandal,或译水门丑闻)是美国历史上最不光彩的政治丑闻之一。其对美国本国历史以及整个国际新闻界都有着长远的影响。水门事件之后,每当国家领导人遭遇执政危机或执政丑闻,便通常会被国际新闻界冠之以“门”(gate)的名称,如“伊朗门”、“拉链门”、“虐囚门”等。 在1972年的总统大选中,为了取得民主党内部竞选策略的情报,1972年6月17日,以美国共和党尼克松竞选班子的首席安全问题顾问詹姆斯·麦科德(James W. McCord, Jr.)为首的5人闯入位于华盛顿水门大厦的民主 党全国委员会办公室,在安装窃听器并偷拍有关文件时,当场被捕。 事件发生后尼克松曾一度竭力掩盖开脱,但在随后对这一案件的继续调查中,尼克松政府里的许多人被 陆续揭发出来,并直接涉及到尼克松本人,从而引发了严重的宪法危机。1973年10月20日尼克松为了要罢免要求他交出证据的特别检察官,迫使拒绝解任特别检察官的司法部长辞职,司法次长继任司法部长後,又因为 拒绝罢免这位特别检察官而辞职,最後司法部的三号人物才答应罢免特别检察官,尼克松更动员FBI封锁特别检察官及司法长官、次长的办公室,宣布废除特别联邦检察局,把此案的调查权移回司法部。面对尼克松滥用 行政权力来维护自己,招来国民严重指责。 10月31日,美国众议院决定由该院司法委员会负责调查、搜集尼克松的罪证,为弹劾尼克松作准备。1974年6月25日,司法委员会决定公布与弹劾尼克松有关的全部证据。7月底,司法委员会陆续通过了三项弹劾尼克松的条款。尼克松于8月8日宣布将于次日辞职,从而成为美国历史上首位辞职的总统。)1900年,法国化学家勒夏特列在研究平衡移动的基础上通过理论计算,认为N2和H2在高压下可以直接化合生成氨,接着,他用实验来验证,但在实验过程中发生了爆炸。他没有调查事故发生的原因,而是觉得这个实验有危险,于是放弃了这项研究工作,他的合成氨实验就这样夭折了。后来才查明实验失败的原因,是他所用混合气体中含有O2,在实验过程中H2和O2发生了爆炸的反应。 稍后,德国化学家能斯特通过理论计算,认为合成氨是不能进行的。因此人工合成氨的研究又惨遭厄运。后来才发现,他在计算时误用一个热力学数据,以致得到错误的结论。 在合成氨研究屡屡受挫的情况下,哈伯知难而进,对合成氨进行全面系统的研究和实验,终于在1908年7月在实验室用N2和H2在600℃、200个大气压下合成氨,产率仅有2%,却也是一项重大突破。当哈伯的工艺流程展示之后,立即引起了早有用战争吞并欧洲称霸世界野心的德国军政要员的高度重视,为了利用哈伯,德国皇帝也屈尊下驾请哈伯出任德国威廉研究所所长之职。而恶魔需要正好迎合了哈伯想成百万富翁的贪婪心理。从1911年到1913年短短的两年内,哈伯不仅提高了合成氨的产率,而且合成了

合成氨工艺原理

合成氨工艺原理 合成氨不论采用什么原料与生产方法,大体上包括三个工艺过程:(1)原料气的制造;(2)原料气的净化(包括脱硫、变换脱除CO,碳化、脱碳脱除CO 2 ,精炼脱 除微量的CO、CO 2、H 2 S、O 2 等);(3)氨的合成与为了满足气体净化及合成各工序 工艺条件提供能量补偿的压缩工序。生产出氨以后再根据需要加工成碳铵、尿素、硝铵等。其详细原理如下(以煤为原料): 一、造气工段 合成氨生产所用的半水煤气,要求气体中(CO+H 2)与N 2 的比例为3:1左右。因 此生产上采用间歇地送入空气与蒸汽进行气化,将所得的水煤气配入部分吹风气制成半水煤气。即以石灰碳化煤球、无烟块煤为原料,在高温下交替与空气与过 热蒸汽进行气化反应(C+O点燃CO 2+Q 、2C+O点燃2CO+Q 、2CO+ O点燃2CO 2 + Q 2H 2O(气)+C△CO+2H 2 -Q制得半水煤气,半水煤气经过除尘,余热回收,水洗降温制 得合格的半水煤气,供后工段使用。 二、脱硫工段 从造气工段的半水煤气中,除氢气与氮气外,还含有27%左右CO、9%左右的CO 2 以及少量的硫化物,这些硫化物对合成氨生产就是有害的。它会腐蚀设备、管道,会引起催化剂中毒,会损坏铜液成份。因此,必须除去少量硫化物,其原理:用 稀氨水(10—15tt)与硫化氢反应(NH 3+H 2 S=NH 4 HS)将H 2 S脱除至0、07g/m3(标)以下, 使半水煤气净化,以满足合成氨生产工艺要求。 三、变换工段 将脱S后的半水煤气(含CO25%—28%)由压缩工段加压后经增温、加热,在一定的温度与压力下,在变换炉内借助催化剂的催化作用,使半水煤气中CO与H 2 O(气) 进行化学反应,转变为CO 2与H 2 (CO+H 2 O(气)催化剂高温CO 2 +H 2 +Q),制得合格的变 换气,以满足后工段的工艺要求。其次,系统中设有饱与热水塔、甲交、一水加、二水加、冷却塔等换热设备,以便合理利用反应热与充分回收余热,降低能耗,同时降低变换气温度。 四、碳化与脱碳工段 1、碳化

2021年合成氨及尿素生产危险有害因素分析

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021年合成氨及尿素生产危险有 害因素分析

2021年合成氨及尿素生产危险有害因素分析导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 1、造气工段 造气工段转动设备多、操作上控制点多、受人为因素影响较大、工艺条件相互制约、操作难度大。介质具有腐蚀、有毒、易燃、易爆的性质(氢气、一氧化碳、甲烷、硫化氢等),并具有引爆的火种;由于机械设备易磨损、易腐蚀、易发生容器的损坏、可燃物质的泄漏等;制气周期短,操作程序要求较严等,极易发生煤气发生炉爆炸、气柜抽瘪和爆炸、人员中毒、伤亡等,它是小氮肥厂中发生事故最多的一个工序。该工段曾发生过“7.22”夹套爆炸事故。 2、脱硫工段 由于半水煤气中的H2、CO、CH4、H2S等都是易燃、易爆、有毒气体。在生产过程中常会因设备管道泄漏发生着火爆炸,造成人员中毒。据统计,该工段发生的火灾爆炸中毒事故占小氮肥厂的30%左右。该工段曾发生过多起着火爆炸事故。 3、变换工段

合成氨尿素生产企业危险(危害)因素分析

合成氨尿素生产企业危险(危害)因素分析 合成氨尿素企业安全生产的主要特点是:易燃易爆易腐蚀易中毒,高温高压连续性作业等,其危险伤害因素可总结为以下几个方面: (1)触电伤害 触电是电气事故中最为常见的一种事故,有电击和电伤两种形式。 1)电击是指电流通过人体的内部,破坏人的心脏、肺部以及神经系统的正常工作,直至危及生命的伤害。电流通过人体,会引起针刺感、压迫感、打击感、痉挛、疼痛、血压升高、昏迷、心律不齐、心室颤动等症状。事故经验表明,绝大部分触电死亡事故都是电击造成的。 2)电伤是电流的热效应、化学效应等对人体外部造成的伤害,主要包括以下几种: ①电弧烧伤、指弧光放电造成的烧伤,是电伤事故中最常见、最严重的。在高压系统中,由于错误操作或人体接近带电体(其间距小 于放电距离)时,会产生强烈的电弧,造成烧伤乃至死亡;在低压系统,带负荷操作刀闸或断路故障合闸时,电弧可能烧伤人的手部和面部。 ②皮肤金属化:指金属微粒渗入皮肤,使皮肤粗糙而张紧的伤害。皮肤金属化多在弧光放电时发生和形成。 ③电光眼:指发生弧光放电时,由红外线、可见光、紫外线对眼睛的伤害。电光眼表现为眼角膜炎或结膜炎。

④电烙印:指人体与带电体接触的部位留下的永久性斑痕。斑痕处的皮肤失去弹性,表皮坏死。 发生触电事故,当在高压带电体(主变装置、输电母线、各种开关刀闸、输电线路、高压配电装置等)、低压带电体(变电站内用电直流、交流用电设备、水源泵站低压配电设备、启动柜等),因人员接触、设计不合理、违反操作规程和安全防护规定、设计安装不合格产品等原因可能发生触电烧伤甚至死亡。 (2)机械伤害、起重伤害 1)动力驱动的传动件、转动部位,若防护护罩失效或残缺,工作人员人体有发生机械伤害的危险。 2)在重物起吊过程中,若操作人员注意力不集中或其它人员的违章,可能发生挤压、坠落、物体打击等机械伤害的危险。 (3)火灾爆炸危险 用油清洗设备、油气作业区、燃气储罐、管道等处,若出现不规范作业、焊缝开裂、腐蚀穿孔、泄漏现象,遇火源可能发生火灾爆炸事故 (4)其它伤害 1)高处坠落或落物伤害:在杆塔上作业时,由于防护措施不当,可能造成作业人员的高处坠落,高处作业人员携带的工具、小金具等物品坠落伤及地面人员。 2)噪声危害:主要指由变电站内变压器等高压配电装置产生的电磁噪声;泵站转水泵运行时产生的噪声。长期接触这些强烈的噪声,

合成氨及尿素生产危险有害因素分析(最新版)

合成氨及尿素生产危险有害因素分析(最新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0939

合成氨及尿素生产危险有害因素分析(最 新版) 1、造气工段 造气工段转动设备多、操作上控制点多、受人为因素影响较大、工艺条件相互制约、操作难度大。介质具有腐蚀、有毒、易燃、易爆的性质(氢气、一氧化碳、甲烷、硫化氢等),并具有引爆的火种;由于机械设备易磨损、易腐蚀、易发生容器的损坏、可燃物质的泄漏等;制气周期短,操作程序要求较严等,极易发生煤气发生炉爆炸、气柜抽瘪和爆炸、人员中毒、伤亡等,它是小氮肥厂中发生事故最多的一个工序。该工段曾发生过“7.22”夹套爆炸事故。 2、脱硫工段 由于半水煤气中的H2、CO、CH4、H2S等都是易燃、易爆、有毒

气体。在生产过程中常会因设备管道泄漏发生着火爆炸,造成人员中毒。据统计,该工段发生的火灾爆炸中毒事故占小氮肥厂的30%左右。该工段曾发生过多起着火爆炸事故。 3、变换工段 由于半水煤气转化为变换气后,气体中的氢气含量显著增加,高温气体一旦泄漏,遇空气很容易引起燃烧、爆炸;如果设备或系统形成负压,空气被吸入,与煤气混合,形成爆炸性气体,在高温、摩擦、静电等作用下,也会发生爆炸;特别是在检修过程中,如不能对系统有效地隔绝,也极易发生爆炸事故。该工段曾发生过“4.16”热水饱和塔爆炸事故。 4、碳化工段 碳化过程是合成氨原料气净化处理的中间过程,也是生产碳酸氢铵产品的最后工序。由于碳化反应在常温下进行,压力又不太高,因此安全易被人忽视。特别是氨水槽、贫液槽,既是常温又是常压,且又与大气相通,一旦遇上火源就会发生爆炸。此工段的碳化塔检修多,由于不好置换,碳化塔爆炸事故也是小氮肥厂多发事故之一。

合成氨工艺原理

合成氨工艺原理 合成氨不论采用什么原料和生产方法,大体上包括三个工艺过程:(1)原料气的制造;(2)原料气的净化(包括脱硫、变换脱除CO,碳化、脱碳脱除CO 2 , 精炼脱除微量的CO、CO 2、H 2 S、O 2 等);(3)氨的合成和为了满足气体净化及合 成各工序工艺条件提供能量补偿的压缩工序。生产出氨以后再根据需要加工成碳铵、尿素、硝铵等。其详细原理如下(以煤为原料): 一、造气工段 合成氨生产所用的半水煤气,要求气体中(CO+H 2)与N 2 的比例为3:1左右。 因此生产上采用间歇地送入空气和蒸汽进行气化,将所得的水煤气配入部分吹风气制成半水煤气。即以石灰碳化煤球、无烟块煤为原料,在高温下交替与空气和 过热蒸汽进行气化反应(C+O点燃CO 2+Q 、2C+O点燃2CO+Q 、2CO+ O点燃2CO 2 + Q 2H 2O(气)+C△CO+2H 2 -Q制得半水煤气,半水煤气经过除尘,余热回收,水洗降 温制得合格的半水煤气,供后工段使用。 二、脱硫工段 从造气工段的半水煤气中,除氢气和氮气外,还含有27%左右CO、9%左右的CO 2 以及少量的硫化物,这些硫化物对合成氨生产是有害的。它会腐蚀设备、管道,会引起催化剂中毒,会损坏铜液成份。因此,必须除去少量硫化物,其原理: 用稀氨水(10—15tt)与硫化氢反应(NH 3+H 2 S=NH 4 HS)将H 2 S脱除至0.07g/m3(标) 以下,使半水煤气净化,以满足合成氨生产工艺要求。 三、变换工段 将脱S后的半水煤气(含CO25%—28%)由压缩工段加压后经增温、加热,在一定的温度和压力下,在变换炉内借助催化剂的催化作用,使半水煤气中CO与H 2 O (气)进行化学反应,转变为CO 2和H 2 (CO+H 2 O(气)催化剂高温CO 2 +H 2 +Q), 制得合格的变换气,以满足后工段的工艺要求。其次,系统中设有饱和热水塔、甲交、一水加、二水加、冷却塔等换热设备,以便合理利用反应热和充分回收余热,降低能耗,同时降低变换气温度。 四、碳化与脱碳工段

化肥厂工艺反应原理简介

化肥厂生产装置工艺反应原理简介 化肥厂技术科 2008-12-15

第一章合成氨装置工艺原理 1、合成氨工艺反应机理 化肥厂合成氨装置工艺采用烃类蒸汽转化法。整套工艺共有七个主反应,按照工艺流程顺序分别为钴钼加氢反应、氧化锌脱硫反应、转化反应(包括一段转化和二段转化反应)、变换反应(包括高温变换和低温变换反应)、脱碳反应、甲烷化反应、合成氨反应。合成氨装置的原料为油田伴生气、空气和水蒸气,这三种原料经过上述七个主反应最后生成产品氨。

注: ①第三步转化反应分为一段和二段转化反应的原因是:如果要求在一段转化反应就使原料气中的甲烷完全转化为氢气、一氧化碳和二氧化碳,则必须要加大水碳比或者提高温度。前一种方法必将导致耗用过多的水蒸气,而后一种方法对于采用外加热方式的一段反应炉来说对设备材质的要求也会更高。因此在自热式的二段转化炉内通过气体自身燃烧放热,只需要在炉内做一层耐火衬里就能既解决高温对设备材料的要求又能增加反应温度,可使原料气中的甲烷完全转化,同时二段转化工段在加入空气助燃的同时又加入了合成氨反应所需的氮气。 ②第四步变换反应分为高温变换和低温变换反应的原因是:采用Fe3O4催化剂的高变反应只能使96-98%的一氧化碳转化为二氧化碳,要想使一氧化碳含量降低到0.2-0.5%的指标范围内,只有在单质铜催化剂存在下的低温变换反应才能达到,如果在高温变换反应中应用单质铜催化剂,由于单质铜催化剂较昂贵会增加催化剂的使用成本,而且由于单质铜催化剂的作用温度低将导致废热的利用价值降低。 2、工艺流程简述 油田伴生气加压至4.05MPa,经预热升温到371℃在脱硫工序脱硫后与水蒸汽混合,进入一段转化炉进行转化制H2反应,一段转化炉出来的转化气进入二段转化炉,在此引入空气,转化气在二段炉内燃烧掉一部分H2,放出热量以供进一步转化,同时获得N2。二段转化气经余热回收后,进入变换系统,气体中的CO与水蒸汽反应,生成CO2和H2,从变换系统出来的气体经脱碳、甲烷化后为合成氨提供纯净的氢氮混合气,氢氮混合气经压缩至14.0MPa,送入合成塔进行合成氨反应。

相关文档
最新文档