第十章 界面现象
物理化学 第十章 界面现象
![物理化学 第十章 界面现象](https://img.taocdn.com/s3/m/98aa605bad51f01dc381f14a.png)
4. 热力学基本公式
考虑了表面功,热力学基本公式中应相应增加一项,即:
dU TdS pdV
dn
B
B
dAS
B
dH TdS VdP
dn
B
B
dAS
B
dA SdT pdV
dn
B
B
dAS
B
dG SdT VdP
dn
B
B
dAS
B
由此可得:
( U AS
Ga 0 1800 任何液体与固体间都能粘湿
在等温等压条件下,单位面积的液固界面分开产生液体表面与固体表 面所需的功称为粘附功。粘附功越 大,液体越能润湿固体,液-固结合 得越牢。
Wa Ga gl (cos 1 )
Wa o
(2)浸湿(work of immersion)
浸湿:固体浸入液体,固体表面消失,液-固界面产生的润湿过程。
当将边长为10-2m的立方体分割成10-9m的小立方体 时,比表面增长了一千万倍。
可见达到nm级的超细微粒具有巨大的比表面积, 因而具有许多独特的表面效应,成为新材料和多相 催化方面的研究热点。
对具有巨大表面积的分散体系,界面分子的 特殊性对体系性质的巨大影响不能忽略
界面与表面:是指两相接触的约几个分子厚度的过渡区 (界面相),若其中一相为气体,这种界面通常称为表 面。
Langmuir吸附等温式的缺点:
1.假设吸附是单分子层的,与事实不符。 2.假设表面是均匀的,其实大部分表面是不均匀的。
3.在覆盖度 较大时,Langmuir吸附等温式不适用。
§ 10.4 液—固界面
接触角 粘附功 浸湿功 铺展系数
1 接触角(contact angle)和Young equation
第十章 界面现象主要公式及其适用条件
![第十章 界面现象主要公式及其适用条件](https://img.taocdn.com/s3/m/82cbffc49ec3d5bbfd0a74d5.png)
第十章 界面现象主要公式及其适用条件1.比表面吉布斯函数、比表面功及表面张力面吉布斯函数为恒T ,p 及相组成不变条件下,系统由于改变单位表面积而引起系统吉布斯函数的变化量,即)B(,,)/(αγn p T s A G ∂∂=,单位为2J m ⋅。
张力γ是指沿着液(或固)体表面并垂直作用在单位长度上的表面收缩力,单位为1N m -⋅。
面功γ为在恒温、恒压、相组成恒定条件下,系统可逆增加单位表面积时所获得的可逆非体积功,称比表面功,即s 'r d /d A W =γ,单位为2J m ⋅。
张力是从力的角度描述系统表面的某强度性质,而比表面功及比表面吉布斯函数则是从能量角度描述系统表面同一性质。
三者虽为不同的物理量,但它们的数值及量纲相同,只是表面张力的单位为力的单位与后两者不同。
2.拉普拉斯方程与毛细现象(1) 曲液面下的液体或气体均受到一个附加压力p ∆的作用,该p ∆的大小可由拉普拉斯方程计算,该方程为r p /2γ=∆式中:p ∆为弯曲液面内外的压力差;γ为表面张力;r 为弯曲液面的曲率半径。
注意:①计算p ∆时,无论凸液面或凹液面,曲率半径r 一律取正数,并规定弯曲液面的凹面一侧压力为内p ,凸面一侧压力为外p ,p ∆一定是内p 减外p ,即外内-p p p =∆②附加压力的方向总指向曲率半径中心;③对于在气相中悬浮的气泡,因液膜两侧有两个气液表面,所以泡内气体所承受附加压力为r p /4γ=∆。
(2) 曲液面附加压力引起的毛细现象。
当液体润湿毛细管管壁时,则液体沿内管上升,其上升高度可按下式计算2cos /h r g γθρ=式中:γ为液体表面张力;ρ为液体密度;g 为重力加速度;θ为接触角;r 为毛细管内径。
注意:当液体不润湿毛细管时,则液体沿内管降低。
3.开尔文公式式中:r p 为液滴的曲率半径为r 时的饱和蒸气压;p 为平液面的饱和蒸气压;ρ,M ,γ分别为液体的密度、摩尔质量和表面张力。
第十章__界面现象2005.11.20
![第十章__界面现象2005.11.20](https://img.taocdn.com/s3/m/758c8dd3c1c708a1284a44ea.png)
有等于系统增加单位面积时所增加的吉布斯函数,
所以也称为表面吉布斯函数
9
例:
20 ℃时汞的表面张力 =4.85×10
-1
N· m
-1
,若在此温度
及101.325 kPa 时,将半径r1 = 1 mm的汞滴分散成半径为 r2 =10-5 mm 的微小液滴时,请计算环境所做的最小功。 解:因为T,p 恒定,所以为常数,环境所做的最小功为可逆过程 表面功W’,
6
此实验证明,液体表面层存在着一个平行于液面,垂直 于分界线的力,此力使表面收缩 —— 表面张力。
对于弯曲液面,表面张力则与液面 相切。
表面张力
7
2. 表面功与表面张力表面吉布斯函数:
dx
当T、p、n不变的条件下,若把 MN移动dx,
F外
l
则增加面积dA=2l· dx,
此时外界必反抗表面张力做功。 WR' F外 dl 在可逆条件下:F外=F表+dF≌F表
15
5. 影响表面张力的因素
(1)表面张力和物质性质有关和它接触的另一相的性质有关。 (i)和空气接触时,液体和固体中的分子间作用力越大表面 张力越大。一般:
(金属键)> (离子键)> (极性共价键)> (非极性共价键)
(ii)同一种物质和不同性质的其它物质接触时,界面层中分 子所处的力场不同,界面张力出现明显差异。(看下表数据)
16
某些液体、固体的表面张力和液/液界面张力
物质 水(溶液) 乙醇(液)
/(10-3
N· -1) m 72.75 22.75
T/K 293 293
物质 W(固) Fe(固)
第十章 界面现象
![第十章 界面现象](https://img.taocdn.com/s3/m/d7663b8584868762caaed528.png)
或者是作用在液体表面上任一条线的两侧,垂直
于该线,沿着液面拉向两侧。对于平面界面,如
下图所示。
7
要使膜维持不变,须在金属丝上加一个相反的力 F,它与长度成正比,比例系数为γ。因有两个面, 所以: F = 2 γ l,
,
F γ 2l
8
γ称为表面张力,单位为:N· m-1。
若液膜面积增大dAs,则需抵抗力F使金属丝
的过饱和度。 (2)过热液体
根据相平衡条件,应当沸腾而不沸腾的液
体,称为过热液体。
31
液体沸腾时,不仅在液体表面上进行汽化, 而且在液体内部也要汽化,但在液体内部汽化 的过程表现为自动生成极微小的气泡,且由小 变大,由液体内部转移到液面而破灭,部分液
体变成了气体进入气相。
新生成的小气泡半径很小,所以附加压力很
α
μ
B
B(α )
dnB(α ) γdAs
G U H A γ A A A A s T , p ,nB ( α ) s S ,V ,nB ( α ) s S , p ,nB ( α ) s T ,V ,nB ( α )
表面也有表面张力及表面吉布斯函数。但固体
表面上的分子几乎是不可移动的,不能靠收缩
表面来降低表面吉布斯函数。但可以从外部吸
附气体分子到表面,减小表面分子受力不对称
的程度,降低表面张力和表面吉布斯函数,而 且是自发过程。 吸附剂:具有吸附能力的固体物质。 吸附质:被吸附的物质。
39
1.物理吸附和化学吸附
35
(4)过饱和溶液 在一定温度下,溶液的浓度已超过了饱和浓度, 而仍未析出晶体的溶液称为过饱和溶液。
原因:在相同温度下,小颗粒晶体的饱和蒸 汽压大于普通晶体的饱和蒸汽压,使小颗粒晶体 溶解度大于普通晶体的溶解度,见表10.2.2 。
(完整版)第十章界面现象
![(完整版)第十章界面现象](https://img.taocdn.com/s3/m/e255d1ec69eae009591bec00.png)
产生表面(界面)现象的原因是什么?
§10.1表面张力
1、表面张力、表面功及比表面Gibbs函数
(1)比表面吉布斯函数
在恒温恒压下,可逆 地增加系统的表面积dAs, 则环境对系统所做的功正 比于表面积的增量
δW’= γ dAs
G As
T , p
表面层分子受力与体相不同 比表面吉布斯函数
(2)表面张 力
肥皂膜
l
无摩擦、可自由活动
dx
F
现象:加大外力F,膜面积增大,且F与长度 l 成正比。 结论:若撤去外力F,皂膜自动收缩;即液体表面有自 动收缩的趋势。
产生原因:液体表面处处存在着一种使液面紧张的力( 紧缩力)。 相同体积的几何形状中,球形的表面积最小。 一定量的 液体自其他形状变为球形时,就会伴随面积的缩小
G As
T
,
p ,nB (
)
U As
S ,V
,nB (
)
H As
S,
p ,nB (
)
A As
T
,V
,nB (
)
3.界面张力的影响因素
由来:分子间的Van der Waals 引 力 影响因素:
①与物质的本性有关:分子间相互作用力越大,γ越大 一般对于气液界有: γ(金属键)> γ(离子键)> γ(极性键)> γ(非极性键)
② 可知自发降低表面吉布斯函数 有两种途径
降低表面积 ,降低表面张力
③表面张力、单位面积的表面功、单位面积的表面吉 布斯函数三者的数值 、量纲等同,但它们有不同的物 理意义,是从不同角度说明同一问题。
物理化学第十章界面现象
![物理化学第十章界面现象](https://img.taocdn.com/s3/m/66bd99ff81c758f5f61f677b.png)
第十章界面现象10.1 界面张力界面:两相的接触面。
五种界面:气—液、气—固、液—液、液—固、固—固界面。
(一般常把与气体接触的界面称为表面,气—液界面=液体表面,气—固界面=固体表面。
)界面不是接触两相间的几何平面!界面有一定的厚度,有时又称界面为界面相(层)。
特征:几个分子厚,结构与性质与两侧体相均不同比表面积:αs=A s/m(单位:㎡·㎏-¹)对于一定量的物质而言,分散度越高,其表面积就越大,表面效应也就越明显,物质的分散度可用比表面积αs来表示。
与一般体系相比,小颗粒的分散体系有很大的表面积,它对系统性质的影响不可忽略。
1. 表面张力,比表面功及比表面吉布斯函数物质表面层的分子与体相中分子所处的力场是不同的——所有表面现象的根本原因!表面的分子总是趋向移往内部,力图缩小表面积。
液体表面如同一层绷紧了的富有弹性的橡皮膜。
称为表面张力:作用于单位界面长度上的紧缩力。
单位:N/m,方向:表面(平面、曲面)的切线方向γ可理解为:增加单位表面时环境所需作的可逆功,称比表面功。
单位:J · m-2。
恒温恒压:所以:γ等于恒温、恒压下系统可逆增加单位面积时,吉布斯函数的增加,所以,γ也称为比表面吉布斯函数或比表面能。
单位J · m-2表面张力、比表面功、比表面吉布斯函数三者的数值、量纲和符号等同,但物理意义不同,是从不同角度说明同一问题。
(1J=1N·m故1J·m-2=1N·m-1,三者单位皆可化成N·m-1)推论:所有界面——液体表面、固体表面、液-液界面、液-固界面等,由于界面层分子受力不对称,都存在界面张力。
2. 不同体系的热力学公式对一般多组分体系,未考虑相界面面积时:当体系作表面功时,G 还是面积A的函数在恒温、恒压、组成不变的情况下,使面积减小或表面张力减小,致系统总界面吉布斯函数减小的表面过程可以自发进行。
10-物理化学第十章 界面现象
![10-物理化学第十章 界面现象](https://img.taocdn.com/s3/m/4c2a27e1be1e650e52ea99cc.png)
ln
Pr Ps
2 M r RT
凸(液滴)~ “+” 凹(气泡)~ “–”
凸(液滴,固体粉末 or r > 0)— Pr>Ps 凹(气泡 or r < 0 )— Pr<Ps
水平液面(r→∞)— Pr=Ps
❖ 亚稳状态和新相的生成 ——分散度对系统性质的影响
亚稳状态
——热力学不稳定态,一定条件下能相对 稳定的存在。
杨氏方程
cos
s l
sl
润湿条件 s sl 铺展条件 s sl l
❖ 应用
毛细管内液面
凹: 润湿
凸: 不润湿
§10–3 弯曲液面下的附加压
由此产生毛细现象,并影响饱和蒸气压
10·3·1 弯曲液面产生附加压
附加压 △P= P心-P外
➢ 杨-拉普拉斯方程
曲面— P 2 膜— P 4
第十章 界面现象
讨论界面性质对系统的影响
新的系统—多相,小颗粒系统
非体积功—表面功
❖ 需考虑界面影响的系统 界面所占比例大的系统
比表面——
aS
AS m
❖ 本章内容 表面张力
① 表面现象的成因 表面现象的总成因
与AS↓有关 ② 各类现象分析
与γ↓有关
§10–1 表面现象的成因 10·1·1 表面张力 ❖ 表面张力 γ 定义—作用于单位边界上的表面紧缩力 方向—总指向使表面积减小的方向
为降低表面张力而产生 吸附剂 —— 起吸附作用的 吸附质 —— 被吸附的
§10–4 固体表面的吸附 固体对气体的吸附
10·4·1 吸附的产生
固体特点—有大的比表面,不稳定。 通过吸附其它分子间力较小的物质,形成 新的表面能较低的界面。
两个相对的过程——吸附和解吸 吸附量——一定T、P下,吸附和解吸达平 衡时,吸附气体的量。
界面现象PPT课件
![界面现象PPT课件](https://img.taocdn.com/s3/m/debd9797ba0d4a7302763ab7.png)
c.气体分子溶于液相 ↓
一般:p↑10atm, ↓1mN/m,例:
1atm 10atm
H2O = 72.8 mN/m H2O = 71.8 mN/m
13
§10.2 弯曲液面的附加压力及其后果 1. 弯曲液面的附加压力——Laplace方程
pg
一般情况下,液体表面是水
pl
平的,水平液面下液体所受压力
即为外界压力。
Δp = p内-p外
弯曲液面的附加压力
14
球形液滴(凸液面),附加压力为: p p 内 p 外 p l p g
液体中的气泡(凹液面),附加压力:
p p 内 p 外 p g p l
这样定义的p总是一个正值,方向指向凹面曲 率半径中心。
15
弯曲液面附加压力Δp 与液面曲率半径之间关系的推导:
当系统作表面功时,G 还是面积A的函数,若系 统内只有一个相界面,且两相T、p相同 ,
G f( T ,p ,A s,n B ,n C )
d G S d T V d p B ( ) d n B ( ) d A s B
G U H A
A s T , p , n B ( ) A s S , V , n B ( ) A s S , p , n B ( ) A s T , V , n B ( )
:引起表面收缩的单位长度上的力,单位:N·m-1。
7
(2)表面功
当用外力F 使皂膜面积增 大dA时,需克服表面张 力作可逆表面功。
W F d x 2 ld x d A
即:
W r dAs
:使系统增加单位表面所需的可逆功 ,称为表面功。
单位:J·m-2。 (IUPAC以此来定义表面张力)
8
分为1018个
物理化学第六版第十章界面现象课后思考题
![物理化学第六版第十章界面现象课后思考题](https://img.taocdn.com/s3/m/64ecb20f82c4bb4cf7ec4afe04a1b0717fd5b32e.png)
物理化学第六版第十章界面现象课后思考题
(原创版)
目录
1.物理化学第六版第十章界面现象概述
2.课后思考题解答
正文
一、物理化学第六版第十章界面现象概述
物理化学第六版第十章主要讲述了界面现象,界面现象是指发生在两种不同相(如固相与液相、液相与气相等)之间的物理化学现象。
在这一章中,我们学习了界面张力、表面能、润湿现象等相关知识。
通过学习这些内容,我们可以更好地理解不同相之间的相互作用,从而为实际应用提供理论基础。
二、课后思考题解答
课后思考题 1:请简述界面张力的概念及其对界面现象的影响。
答:界面张力是指作用在液体界面上的力,使得液体表面有缩小的趋势。
界面张力的大小取决于液体的性质以及液体之间的相互作用。
界面张力对界面现象有重要影响,它决定了液体滴的形成、液滴的合并以及液体在固体表面的展开等过程。
课后思考题 2:请举例说明表面能的概念,并分析其在实际应用中的意义。
答:表面能是指在标准状态下,将一个物质的表面从完美晶体变为实际表面所需要的能量。
表面能可以通过吉布斯吸附等温线来测量。
在实际应用中,表面能对材料的润湿性、腐蚀性以及催化活性等方面具有重要意义。
课后思考题 3:请简述润湿现象及其分类。
答:润湿现象是指液体在固体表面上的展开过程。
根据液体在固体表面上的行为,润湿现象可分为三种类型:附着润湿、铺展润湿和毛细润湿。
润湿现象对涂料、粘合剂等材料的性能有重要影响。
通过学习物理化学第六版第十章界面现象,我们可以深入了解不同相之间的相互作用,为实际应用提供理论基础。
第十章 界面现象
![第十章 界面现象](https://img.taocdn.com/s3/m/b55ea2cf5fbfc77da269b1bc.png)
第十章界面现象1.液体在毛细管中上升的高度与基本无关。
A.温度 B.液体密度 C.大气压力 D.重力加速度2.微小晶体与同一种的大块晶体相比较,下列说法中不正确的是。
A.微小晶体的饱和蒸气压大 B.微小晶体的表面张力未变C. 微小晶体的溶解度小D.微小晶体的熔点较低3.水在某毛细管内上升高度为h,若将此管垂直地向水深处插下,露在水面以上的高度为h/2,则。
A.水会不断冒出B. 水不流出,管内液面凸起C. 水不流出,管内凹液面的曲率半径增大为原先的2倍D.水不流出,管内凹液面的曲率半径减小为原先的一半4. 在用最大气泡法测定液体表面张力的实验中,是错误的。
A.毛细管壁必须清洁干净B.毛细管口必须平整C.毛细管必须垂直放置D.毛细管须插入液体内部一定深度5. 在干净的粗细均匀的U形玻璃毛细管中注入纯水,两侧液柱的高度相同,然后用微量注射器从右侧注入少许正丁酸水溶液,两侧液柱的高度将是。
A.相同 B.左侧高于右侧C.右侧高于左侧 D.不能确定6. 在三通活塞两端涂上肥皂液,关闭右端,在左端吹一大泡,关闭左端,在右端吹一小泡,然后使左右两端相通,将会出现什么现象。
A.大泡变小,小泡变大 B.小泡变小,大泡变大C.两泡大小保持不变 D.不能确定7. 在一支干净的、水平放置的、内径均匀的玻璃毛细管中部注入一滴纯水,形成一自由移动的液柱。
然后用微量注射器向液柱右侧注入少量NaCl水溶液,假设接触角不变,则液柱将。
A. 不移动 B.向右移动C.向左移动 D无法判断8. 在潮湿的空气中,放有3只粗细不等的毛细管,其半径大小顺序为:r1>r2>r3,则毛细管内水蒸气易于凝结的顺序是。
A.1,2,3 B.2,3,1C.3,2,1 D无法判断9.人工降雨是将AgI微细晶粒喷洒在积雨云层中,目的是为降雨提供。
A. 冷量 B.湿度 C.晶核 D.温度10. 下面对于物理吸附的描述,不正确。
A.吸附力基于van der Waals力,吸附一般没有选择性B.吸附层可以是单分子层或多分子层C.吸附速度较快,吸附热较小D.吸附较稳定,不易解吸11.下列叙述不正确的是 .A 农药中加入润湿剂可使和减小,药液在植物表面易于铺展;B 防水布上涂表面活性剂使减小,水珠在其上不易铺展;C 泡沫浮选法中捕集剂极性基吸附在矿石表面,非极性基向外易被吸附在泡沫上;D 起泡剂的主要作用是增大液体表面张力。
物理化学第六版第十章界面现象课后思考题
![物理化学第六版第十章界面现象课后思考题](https://img.taocdn.com/s3/m/cccaba8c0408763231126edb6f1aff00bed57091.png)
物理化学第六版第十章界面现象课后思考题摘要:1.物理化学第六版第十章界面现象概述2.课后思考题解答正文:一、物理化学第六版第十章界面现象概述物理化学第六版第十章主要讲述了界面现象,这是物理化学中的一个重要内容。
界面现象是指两种或多种物质相互接触时,由于它们之间的相互作用力不同,会发生的一系列现象。
这些现象包括表面张力、接触角、界面电荷等。
本章主要通过讲述这些现象,使读者了解并掌握界面现象的基本概念和相关知识。
二、课后思考题解答1.问题一:请简述表面张力的概念及其产生原因。
答:表面张力是指液体分子之间的相互作用力。
当液体与气体接触时,液体表面层的分子受到气体分子的吸引,使液体表面层的分子间距大于液体内部分子间距,从而使液体表面形成一个收缩的趋势。
这种使液体表面有收缩趋势的力称为表面张力。
2.问题二:请解释接触角的概念,并举例说明。
答:接触角是指液体与固体接触时,液体与固体的界面形成的角度。
接触角可以用来判断液体与固体的亲水性或疏水性。
当接触角小于90°时,液体与固体呈亲水性;当接触角大于90°时,液体与固体呈疏水性。
例如,水滴在玻璃板上时,水滴与玻璃板接触角大于90°,说明水与玻璃呈疏水性。
3.问题三:请简述界面电荷的概念及其产生原因。
答:界面电荷是指在两种介质接触的界面上,由于介质的极性不同,会产生电荷分布的现象。
当两种介质接触时,如果它们的极性不同,就会在接触界面上产生正负电荷。
这些电荷称为界面电荷。
例如,当金属与非金属接触时,由于金属表面的电子与非金属表面的电子互相转移,会在接触界面上产生界面电荷。
通过以上解答,我们可以更好地理解物理化学第六版第十章界面现象的相关知识。
第十章 界面现象
![第十章 界面现象](https://img.taocdn.com/s3/m/207cddadd1f34693daef3e9c.png)
在恒温恒压、各相组成和量不变时:
dG dAs
dG称为表面吉布斯函数变化dGs。
当界面面积自0到As变化时:Gs=As
在恒温恒压下,系统的自发过程总是 朝着表面吉布斯函数减小的方向进行。
3.影响表面张力的因素 (1)物质的本性
不同物质其分子间作用力不同,表面 张力也不同。分子间作用力大,其表面张 力也大。 同一物质: (固)>(液)>(气)
kc
n
(c为被吸附物质浓度)
Freundlich公式不能说明吸附作用的机理, 公式中n和k没有明确的物理意义。
6.单分子层吸附理论(Langmuir吸附理论) (1)理论要点(基本假设)
表面层分子、 内部分子所处 的力场不同。
表面层的分子受到指向物体内部并垂直 于表面的作用力,使物体表面有自动缩小 的趋势。若将内部分子移至表面,必须对 所移动的分子施加外力(做功)。 产生界面现象的原因:物质表面层分子 与内部分子所具有的能量、作用力不相同。
(2)表面张力(surface tension)
而 r1=r/cos
2 cos 则有: h r g
当液体不能湿润管壁时,>90,cos<0, h为负值,表示管内凸液面下降深度。 毛细现象应用之一:锄地可破坏土壤毛 细管,以减少水分蒸发。
(4)表面张力测定方法
最大气泡法、毛细管法等。 机械、自动、全自动表面张力仪。
2.微小液滴的饱和蒸气压—开尔文公式
对于一定的吸附剂与吸附质的体系,达到吸附
平衡时:
=f (T,P)
通常固定一个变量,求出另外两个变量之间的关系:
(1)T=常数, = f (p),得吸附等温线。 (2)p=常数, = f (T),得吸附等压线。 (3) =常数,P = f (T),得吸附等量线。
第十章 界面现象
![第十章 界面现象](https://img.taocdn.com/s3/m/a5b095ff0242a8956bece4a1.png)
第十章 界面现象第十章 界面现象气、固、液三种相态→五种界面(二种类型) 表面:气/液界面→液体表面; 界面:液/液界面; 液/固界面; 气/固界面→固体表面 固/固界面在一般情况下,界面的质量和性质与体相相比,可忽略不计。
但当物质被高度分散时,界面性质就不能忽略不计。
物质的分散度用比表面积as表示,其定义为物质的表面积As 与质量m之比:界面不是两相接触的几何面,它有一定的厚度,故有时又将界 面称为界面相。
as=As / m对一定量的物质,分散度越高,其表面积越大。
上一内容下一内容回主目录返回上一内容下一内容回主目录返回§10.1 界面张力§10.1 界面张力如图所示,当放松可移动金属气细钢丝框1、液体的表面张力、表面功及表面吉布斯 液体内部任一分子,从平均来看,该分 子与周围分子间的吸引力是球形对称的,各 个相反方向上的力彼此相互抵消,其合力为 零,故液体内部的分子可以无规则的运动而 不消耗功。
表面上的分子处于力场不均匀的情况,净结果使表面层的分子 恒受到指向液体内部的拉力,力图縮小表面积,因为球形表面 积最小,扩展表面就需对体系做功。
上一内容 下一内容 回主目录可移动金属丝丝,肥皂膜会自动收缩以减少表面 积,这时若使膜面积维持不变,需 在金属丝上施加一相反的力F,其l肥皂膜F液大小与金属丝的长度l成正比,比例 系数以γ表示: F=2γ l γ=F/2 l (膜有二个面) (单位:N⋅m-1)γ称为表面张力,它可看成是引起液体表面收缩的单位长度上的力。
返回上一内容 下一内容 回主目录返回§10.1 界面张力§10.1 界面张力从另一个角度看,若使液膜的面积增大dAS,则需抵抗力F使金 属丝向右移动dx距离而作非体积功-表面功,在可逆条件下应 忽略摩擦力,故有可逆表面功:细钢丝框 可移动金属丝在恒温恒压下,可逆非体积功等于系统的吉布斯函数变δ Wr' = dGT , P = γ dASγ =(∂G ) ∂AS T , Pδ W = Fdx = 2γ ldx = γ dAS' r可见,γ又等于系统增加单位面积时所增加的吉布斯函数,所以 γ也称为表面吉布斯函数,单位为J⋅m-2。
物理化学第10章界面现象ppt课件
![物理化学第10章界面现象ppt课件](https://img.taocdn.com/s3/m/5fd5a644773231126edb6f1aff00bed5b9f37336.png)
在1913—1942年期间,美国科学家Langmuir在界面 科学领域做出了杰出的贡献,特别是对吸附、单分 子膜的研究尤为突出。他于1932年获诺贝尔奖,被 誉为界面化学的开拓者。 界面化学的统计力学研 究是从范德华开始的。1893年,范德华认识到在界 面层中密度实际上是连续变化的。他应用了局部
与一般体系相比,小颗粒的分散体系有很大的表 面积,它对系统性质的影响绝对不可忽略。
首 页 刚看的页 上一页 下一页 结 束
物质的分散度用比表面积 as 表示,它的定义为 物质的表面
积 As 与质量 m 的比:
as
As m
10.0.1 单位:m2·kg-1
对于以上水滴的例子,若近似认为其在室温下密度为 1g ·cm-3,则以上两种情况,比表面积 as 分别约为:6 cm2 ·g1 及600 m2 ·g-1 。
αB
4.2.7
首 页 刚看的页 上一页 下一页 结 束
dU TdS pdV μB (α)dnB (α) 4.2.8
αB
dH TdS Vdp μB (α)dnB (α) 4.2.9
αB
dA SdT pdV μB (α)dnB (α) 4.2.10
αB
当体系作表面功时,G 还是面积A的函数
界面现象是自然界普遍存在的现象。胶体指的是 具有很大比表面的分散体系。对胶体和界面现象 的研究是物理化学基本原理的拓展和应用。从历 史角度看,界面化学是胶体化学的一个最重要的 分支,两者间关系密切。而随着科学的发展,现 今界面化学已独立成一门科学,有关“界面现象” 或“胶体与界面现象”的专著在国内外已有多种 版本。本课程主要介绍与界面现象有关的物理化 学原理及应用。它包括各种相界面和表面活性剂 的相关特性,界面上的各种物理化学作用,实验 的和理论的研究方法及其重要应用。对于准备考 研的同学,还应将其作为物理化学课程的一部分。
物理化学第10章界面现象
![物理化学第10章界面现象](https://img.taocdn.com/s3/m/fe7128a4240c844769eaee8e.png)
表面张力(Surface Tension)
请同学们用表面张力的知识思考图中的现象
24
将一含有一个活动边框的金属线框架放在 肥皂液中,然后取出悬挂,活动边在下面。
由于金属框上的肥皂膜的表面张力作用, 可滑动的边会被向上拉,直至顶部。
25
2222222222222222 llllllllllllllll
T . Young P.S. Laplase Gibbs Langmuir
提出界面张力概念 表面张力与曲率半径关系 表面吸附方程 固体吸附等温方程式 19
表面与界面化学虽是物理化学的传统研 究领域,但由于电子能谱、扫描隧道显微镜 等新的实验技术的出现,使得表面、界面效 应及粒子尺寸效应的知识呈指数上升式的积 累,提出了在分子水平上进行基础研究的要 求。当前涉及这一领域的研究已成为催化、 电化学、胶体化学的前沿课题,并与生命科 学、材料科学、环境科学、膜技术及医药学 密切相关,是这些相关学科要研究和解决的 核心课题之一。
29
三、表面热力学基本关系式
根据多组分热力学的基本公式
dU TdS pdV BdnB U U S,V , nB
B
对需要考虑表面层的系统,由于多了一个表 面相,在体积功之外,还要增加表面功,则基本 公式为
dU TdS pdV dAs BdnB
B
U U S,V , As, nB
37
(3) 与温度有关
对绝大多数液体 T↑,γ↓ 对 Cd, Fe, Cu 合金及一些硅酸盐液体,T↑γ↑。
dG SdT Vdp BdnB dA
dp=0, dnB=0时,dG=-SdT+dA, 由全微分性质,
界面现象ppt课件
![界面现象ppt课件](https://img.taocdn.com/s3/m/3da3c6a6172ded630b1cb6b7.png)
第十章 界面现象
Interface Phenomenon
学习要求:
理解界面张力的定义、物理意义及测定方法; 掌握Laplace方程和Kelvin方程及其应用; 亚稳状态及新相生成的热力学; 固体表面的吸附重点掌握Langmuir单分子层吸附等 温式; 掌握接触角与润湿作用,Young方程及其应用; 掌握界面吸附、表面过剩、Gibbs吸附等温方程及 其应用; 了解表面活性剂的结构特征及应用。
i
可见,总界面吉布斯函数减少是很多界面现
象产生的热力学原因。
3.界面张力及其影响因素
(1)界面张力与物质的本性有关 不同的物质,分子之 间的作用力不同,对界面上的分子影响不同。
(2)温度对界面张力的影响 同一种物质的界面张力 因温度不同而异,当温度升高时物质的体积膨胀,分 子间的距离增加,分子之间的相互作用减弱,所以界 面张力一般随温度的升高而减小。
球形对称的,各个方向的力彼此抵销;
但是处在表面层的分子,则处于力场不对称的环 境中。液体内部分子对表面层中分子的吸引力,远远 大于液面上蒸气分子对它的吸引力,使表面层中分子 恒受到指向液体内部的拉力。
表面张力(surface tension): 在两相(特别是气-液)界面上,处处存在
着一种张力,它可看成是引起液体表面收缩的单 位长度上的力,指向液体方向并与表面相切。
B
dG SdT Vdp g dAS BdnB
B
g
(
U As
)S
,V
,nB
(
H As
)S
, P , nB
(
A As
)T
,V
,nB
(
G As
)T
, P , nB
《物理化学教学课件》第十章界面现象
![《物理化学教学课件》第十章界面现象](https://img.taocdn.com/s3/m/88a204753868011ca300a6c30c2259010202f38b.png)
界面现象的基本原理
表面张力
表面张力是物质表面分子或离子间的吸引力,使得物质表 面尽可能收缩。表面张力的大小与物质种类和温度有关。
润湿
润湿是指液体在固体表面铺展或被固体表面吸附的现象。 润湿与固体的表面能、液体的表面张力以及固体与液体之 间的相互作用力有关。
吸附
吸附是指物质在界面上的富集现象。吸附可以分为物理吸 附和化学吸附,物理吸附主要与物质在界面上的范德华力 有关,化学吸附则涉及到化学键的形成。
润湿是指液体在固体表面铺展并覆盖住表面的现象,而不润湿则是指液体不能在固体表面 铺展的现象。
润湿与不润湿产生的原因
润湿与不润湿现象的产生与液体和固体表面的分子间相互作用有关,当液体分子与固体表 面分子间的相互作用力大于液体分子间的内聚力时,就会产生润湿现象;反之则产生不润 湿现象。
润湿与不润湿的应用
能源
能源的储存与转化过程中涉及大量界面现象,如电池、燃料电池等,深入研究 界面现象有助于提高能源利用效率和降低环境污染。
环保
污水处理、大气污染控制等领域涉及大量界面现象,通过优化界面现象可实现 更高效的环保技术。
THANKS
感谢观看
毛细现象
毛细现象定义
毛细现象是指由于液体的表面张力作用,使得液体会在细管中上 升或下降的现象。
毛细现象产生的原因
由于液体的表面张力作用,使得液体会在细管中产生向上的附加压 力,从而使液体在细管中上升。
毛细现象的应用
毛细现象在自然界和日常生活中广泛存在,如植物的吸水、毛细血 管等。
润湿与不润湿
润湿与不润湿定义
04
界面现象的实验研究方法
表面张力测量方法
表面张力是液体表面所受到的垂 直于表面方向的力与表面每单位
十界面现象物理化学
![十界面现象物理化学](https://img.taocdn.com/s3/m/8a091855ba68a98271fe910ef12d2af90342a804.png)
弯曲表面下的附加压力
1.在平面上 研究以AB为直径的一个环作
为边界,由于环上每点的两边都 存在表面张力,大小相等,方向 相反,所以没有附加压力。
设向下的大气压力为Po, 向上的反作用力也为Po ,附加 压力Ps等于零。
Ps = Po - Po =0
剖面图 液面正面图
弯曲表面下的附加压力
气压曲线
Tf < Tf T
一定外压下,温度低于正常凝固点还不凝固 的液体称为过冷液体。
过饱和溶液
• 一定温度下,溶液浓度已超过饱和浓度而仍未析 出晶体的溶液称为过饱和溶液。
产生原因: 同样温度下,小颗粒的溶解度大于普通晶
体的溶解度。 消除:结晶操作中,溶液过饱和程度大会生成
细小的晶粒,不利于后续操作。常采用 投入晶体种子的方法,获得较大颗粒的 晶体。
比表面Av/(m2/m3) 6 ×102
6 ×103 6 ×105 6 ×107
6 ×109
分散度与比表面
从表上可以看出,当将边长为10-2m的立方体分 割成10-9m的小立方体时,比表面增长了一千万倍。
可见达到nm级的超细微粒具有巨大的比表面积, 因而具有许多独特的表面效应,成为新材料和多相 催化方面的研究热点。
影响表面张力的因素
(1)分子间相互作用力的影响 对纯液体或纯固体,表面张力决定于分子间形成
的化学键能的大小,一般化学键越强,表面张力越大。
g (金属键)>g (离子键)> g g (极性共价键)> (非极性共价键)
两种液体间的界面张力,界于两种液体表面张力之间。
(2)温度的影响 温度升高,表面张力下降。
2g R'
RTln(p p0)g2gR Vm '(l)2r gR M '
《物理化学教学》第十章 界面现象
![《物理化学教学》第十章 界面现象](https://img.taocdn.com/s3/m/c7cc1eee844769eae109ed07.png)
由于 dn
2
M2 r=
Vm r
4 r 2(dr ) / M
——Kelvin公式
由Kelvin公式可知: 1) r 越小,pr 越大;
2) p凸> p平> p凹
整理ppt
23
3. 亚稳态及新相生成
(1) 过饱和蒸气
在t0温度下缓慢提高蒸 气的压力 (如在气缸内缓慢 压缩)至A点,蒸气对通常 液体已达到饱和状态p0, 但对微小液滴却未达到饱 和状态,所以蒸气在A点 不能凝结出微小液滴。要 继续提高蒸气的压力至B 点,达到小液滴的饱和蒸 气压p 时,才可能凝结出 微小液滴。
22
饱和蒸气压与液滴曲率半径关系的推导:
dn的微量液体转移到小液滴表面 小液滴面积A:4r2 4(r+dr)2
面积的增量:dA = 8rdr
dG = dA= 8rdr
又:dn液体由p pr:
所以有 (dn)RT ln pr p
可导出:
RT
ln
pr p
dG = (dn)RTln(pr/p)
8 rdr
合力对凸液面下液体造成额外压力。将凹
液面一侧压力以p内表示,凸液面一侧压力 用p外表示,附加压力
Δp = p内-p外
整理ppt
13
球形液滴(凸液面),附加压力为: p p内 p外 pl pg
液体中的气泡(凹液面),附加压力: p p内 p外 pg pl
这样定义的p总是一个正值,而力的方向指向凹面曲率半 径中心。
这种在正常相平衡条件下应该凝结而未凝结的蒸气,
称为过饱和蒸气。
整理ppt
24
(2) 过热液体
液体内部产生气泡所需压力:
pi = p大+ p静+Δp 由此所需的温度: Ti >T正常 因此很容易产生暴沸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加热
5
10.3 固体表面 dG = γ dA + Adγ
固体不能通过减小表面面积来减小G,但可以通过 吸附气体分子来减小表面张力,从而降低G,所以,固 体表面会自发的将气体富集到表面
BB. . 向向右右移移动动
CC. . 不不移移动动
99 如如图图在在毛毛细细管管中中装装入入润润湿湿性性液液体体,,当当在在毛毛细细管管左左端端加加热热时时,, 则则管管内内液液体体将将____B______..
AA. . 向向左左移移动动 CC. . 不不发发生生移移动动
BB. . 向向右右移移动动 DD. . 来来回回移移动动
第十章 界面现象
气-液界面
气
表面 界 固-气界面
面
液
液-液界面 现
固-液界面
固
象 固-固界面
界面:所有两相的接触面
“界面相”,约几个分子厚 表面积是原来的106倍,此时表面效应不可忽略
物质的分散度可用比表面积as来表示,其定义为 as = As/m
单位为m2⋅kg–1。
10.1 界面张力 1. 液体的表面张力,表面功及表面吉布斯函数
=
⎛ ⎜ ⎝
δU dAs
⎞ ⎟ ⎠ S ,V ,nB(α )
=
⎛ ⎜ ⎝
δH dAs
⎞ ⎟ ⎠ S , p,nB(α )
=
⎛ ⎜ ⎝
δA dAs
⎞ ⎟ ⎠T ,V ,nB(α )
恒T,p,γ,恒组分下积分,有 Gs = γ As
全微分得 dGTs , p = γ dAs + Asdγ
可以通过降低AS或γ 来降低G
=
56.1mN ⋅ m −1
例3 2255℃℃半半径径为为11μμmm的的水水滴滴与与蒸蒸气气达达到到平平衡衡,,试试求求水水滴滴的的 内内外外压压力力差差及及水水滴滴的的饱饱和和蒸蒸气气压压.. 已已知知2255 ℃℃时时水水的的表表面面张张力力 为为7711.9.977××1100--33 NN·m·m--11,, 体体积积质质量量((密密度度))为为00.9.9997711gg··ccmm--33,, 蒸蒸气气 压压为为33..116688kkPPaa,摩,摩尔尔质质量量为为1188.0.022gg·m·mooll--11..
因为T, p 恒定, 所以γ为常数, 环境所做的最小功为可逆过
程表面功W′, 设 A1, A2分别为汞滴分散前后的总面积, N为分 散后的汞的滴数, 则:
∫ W ′ =
A2 γdA = γ
A1
(
A2
−
A1 )
A1 = 4π r12
A2
=
N
⋅
4πr22
=
⎜⎛ ⎜⎝
4πr13 4πr23
/ /
3 3
⎟⎞ ⎟⎠
⋅
4πr22
=
4πr13
/
r2
W′
=
γ
⋅
4π
⎢⎣⎡⎜⎝⎛ r13
r2
⎟⎞ ⎠
−
r12
⎤ ⎥⎦
=
4.85×10−1J ⋅ m−2
×
4
×
3.14×
⎡ ⎢ ⎣
(1×10−3 10−8
)3
− (1×10−3)2
⎥⎤m2 ⎦
= 0.609J
例2泡泡压压法法测测定定丁丁醇醇水水溶溶液液的的表表面面张张力力.. 2200℃℃实实测测最最大大泡泡压压力力为为 00..44221177kkPPaa,, 2200℃℃时时测测的的水水的的最最大大泡泡压压力力为为00..55447722 kkPPaa,, 已已知知2200℃℃时时 水水的的表表面面张张力力为为7722..7755××1100--33NN··mm--11,,请请计计算算丁丁醇醇溶溶液液的的表表面面张张力力..
1
(2) 表面功
当用外力F 使皂膜面积
增大dAs时,需克服表面张 力做可逆表面功。
δW ' = Fdx = 2γ l ⋅ dx = γ dAs dAs = 2l ⋅ dx 为增大的液体表面积
γ = δW ' dAs
γ ⎯⎯ 使系统增加单位表面所需的可逆功,称为表面 功,单位为J·m–2(IUPAC以此来定义表面张力)
(3) 表面吉布斯函数 恒温、恒压下的可逆非体积功等于系统的吉布斯函数变 δW ' = dGT , p = γ dAs
γ
=
⎛ ⎜ ⎝
δG dAs
⎞ ⎟ ⎠T , p,N
γ ⎯⎯ 恒温恒压下,增加单位表面时系统所增加的 Gibbs函数,单位为J·m-2
三者物理意义不同,但单位均可化为N·m–1
2.热力学公式
RT ln pr = − 2γVm 气泡
p0
r
3. 亚稳状态及新相的生成 (1) 过饱和蒸气
OC 宏观液体-蒸气 平衡曲线 O’C’ 微小液滴-蒸气 平衡曲线
气相微小液体饱和 气相对普通液体已经饱和, 但是对微小液体尚未饱和
这种在正常相平衡条件下应该凝结而未凝结的蒸气, 称为过饱和蒸气。
(2) 过热液体
液体内部产生气泡所需压力: pi = p大+ p静+Δp
由此所需的温度: Ti >T正常 因此很容易产生暴沸。
这种按照相平衡条件,应当沸腾而不沸腾的液 体,称为过热液体。
(3) 过冷液体
(4) 过饱和溶液
溶液浓度已超过饱和液 体,但仍未析出晶体的 溶液称为过饱和溶液。
这种按照相平衡条件,应当凝固而未凝固的液 体,称为过冷液体
= 1.049 ×10−3
pr∗ p∗
= 1.001
pr∗ = 3.173kPa
例4 2200℃℃时时,,汞汞的的表表面面张张力力为为448833××1100--33NN··mm--11,, 体体积积质质量量 ((密密度度))为为1133..5555××110033kkgg··mm--33..把把内内直直径径为为1100--33mm的的玻玻璃璃管管垂垂直直 插插入入汞汞中中, , 管管内内汞汞液液面面会会降降低低多多少少??已已知知汞汞与与玻玻璃璃的的接接触触角角为为 118800°°,,重重力力加加速速度度gg==99.8.811mm·s·s--22..
毛细现象
汞
水
当接触角θ<90o时,液体在毛细管中上升;
当接触角θ>90o时,液体在毛细管中下降
接触角:气、液、固三相点处,气-液界面的切线与 固-液界面的夹角。
接触角<90°
接触角>90°
3
附加压力等于液面高度差产生的压力 Δp = 2γ = ρ gh r1 cosθ = r r1
液体在毛细管中的上升高度为 h = 2γ cosθ θ < 90D ,h > 0 液面上升 rρ g θ > 90D ,h < 0 液面下降
设Δp1, Δp2, γ1, γ2 分别为丁醇溶 液及水的最大泡压力与表面张力.
根据拉普拉斯公式及泡压法的原理
压入空气
可知:
Δp1
=
2γ 1 r
Δp2
=
2γ r
2
实验使用同一根毛细管, r为定值,
故
2γ 1 = 2γ 2
Δp1 Δp2
Δp(最大)
γ1
=
γ2
⋅
Δ p1 Δp2
=
72.75mN ⋅ m −1 × 0.4217kPa 0.5472kPa
2. 微小液滴的饱和蒸气压⎯⎯开尔文(Kelvin)公式 Gl0 = Gg0
Gl = Gg
恒温下 ΔGl =
Vldp
= VlΔp
=
2γ Vl r
∫ ΔGg
= Vgdp
=
nRT p
dp
=
nRT
ΔGl
= ΔGg
RT ln
pr p0
=
2γ Vm r
pr d ln p = nRT ln pr
p0
p0
液珠
开尔文公式
液体分子之间主要表现为引力还是斥力?
(1) 液体的表面张力
表面分子受力不对称 所以液体表面有自动收缩的倾向,扩展表面要做功
若使膜维持不变,需在金属丝上加一力F,其大
小与金属丝长度 l 成正比,比例系数 γ 。因膜有两
个表面,故有
F = γ ⋅ 2l
γ = F 2l
γ ⎯⎯ 引起表面收缩的单位长度上的力,单位为N·m-1
(4)压力的影响 a. 表面分子受力不对称的程度↓
p↑ b. 气体分子可被表面吸附,改变表面相成分 γ ↓ c. 气体分子更多地溶于液相
一般:p↑10 atm,γ ↓1 mN⋅m–1,
例:
2
10.2 弯曲液面的附加压力及其后果
1. 弯曲液面的附加压力——拉普拉斯(Laplace)方程
表面张力的方向
2γcosθ = ρgh
r
h
=
2γcos θ rρg
=
5 ×10 −4
2 × 483 ×10 −3 N ⋅ m −1 × m ×13.55 ×10 3 kg ⋅ m −3
(−1) × 9.81m
⋅s−2
= −0.0145 m
管内汞面会降低 0.0145 m.
1 液体在玻璃毛细管中是上升还是下降, 取决于该液体的什么 性质? __D____ A. 粘度 B. 界面张力 C. 密度 D.固-液接触角
3.表面张力及其影响因素
(1)与物质的本性有关——分子间相互作用力越大,γ 越大。
例:气-液界面:γ (金属键) > γ (离子键) > γ (极性键) > γ (非极性键)面张力 17.0
乙醇 22.3
H2O 72.75
NaCl Hg 113.8 485.48