i第八章 单因素方差分析共28页

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幻灯片1

【例】调查了5个不同小麦品系的株高,结果如下。试判断这5个品系的株高是否存在显著性差异。

5个小麦品系株高(cm)调查结果

幻灯片2

第八章单因素方差分析

One-factor analysis of variance

幻灯片3

本章内容

第一节方差分析简述

第二节固定效应模型

第三节随机效应模型

第四节多重比较

第五节方差分析应具备的条件

幻灯片4

第一节方差分析简述

一、方差分析的一般概念

1、概念

方差分析( analysis of variance,ANOVA):是同时判断多组数据平均数之间差异显著性的统计假设检验,是两组数据平均数差异显著性t 检验的延伸。

ANOVA 由英国统计学家R.A.Fisher首创,用于推

断多个总体均数有无差异。

幻灯片5

单因素方差分析(一种方式分组的方差分析):研究对象只包含一个因素(factor)的方差分析。

单因素实验:实验只涉及一个因素,该因素有a个水平(处理),每个水平有n次实验重复,这样的实验称为单因素实验。

水平(level):每个因素不同的处理(treatment)。

幻灯片6

方差分析

Analysis of Variance (ANOVA )

因素也称为处理因素(factor)(名义分类变量),每一处理因素至少有两个水平(level)(也称“处理组”)。

一个因素(水平间独立)——单向方差分析

(第八章)

两个因素(水平间独立或相关)——双向方差分析

(第九章)

一个个体多个测量值——重复测量资料的方差分析 ANOVA与回归分析相结合——协方差分析

目的:用这类资料的样本信息来推断各处理组间多个总体均数的差别有无统计学意义。

幻灯片7

【例】随机选取4窝动物,每窝中均有4只幼仔,称量每只幼仔的出生重,结果如下。判断不同窝的动物出生重是否存在显著性差异。

4窝动物的出生重单位:g

幻灯片8

2、单因素方差分析的数据格式:

幻灯片9

二、不同处理效应与不同模型 1、方差分析中每一观测值的描述

——线性统计模型

yij :在第i 水平下的第j 次观测值; μ:总平均数,是对所有观测值的一个参数;

αi :处理效应,是仅限于对第i 次处理的一个参数; εij :随机误差成分。

32.9 31.4 25.7 28.0

27.1 23.3 27.8 26.7

33.2 26.0 28.6 32.3

34.7 33.3 26.2 31.6

1 2 3 4 Ⅳ Ⅲ Ⅱ Ⅰ

窝 别 动物号

yi1 yi2 yi3 … yij … Yi

ya1 ya2 ya3 ... yaj ... y31 y32 y33 (3)

y21 y22 y23 … y2j … y11 y12 y13 … y1j … 1 2 3 … j … Ya Y3 Y2 Y1

1y •

2y •

3y •

i y

a y

2、①固定效应:由固定因素所引起的效应。

②固定因素:所研究因素各个水平是经过特意选择的,这样的因素称为固定因素。

固定因素的水平可以严格地人为控制,在水平固定之后,它的效应值也是固定的。

③固定模型:处理固定因素所用的模型。

在固定模型中,方差分析所得到的结论只适合于选定的那几个水平,不能将结论扩展到未加考虑的其它水平上。

幻灯片11

3、①随机效应:由随机因素所引起的效应。

②随机因素:所研究因素各个水平是从该因素水平总体中随机抽出的,这样的因素称为随机因素。

随机因素的水平是不能严格人为控制的,在水平确定之后,它的效应值并不固定。

③随机模型:处理随机因素所用的模型。

在随机模型中,方差分析所得到的结论,可以推广到这个因素的所有水平上,是对水平总体的推断。

第二节 固定效应模型 一、线性统计模型

要检验a 个处理效应的相等性,就要判断各αi 是否为0。 H0:α1= α2 =……= αa =0

HA :αi ≠ 0 (至少有1个i )

若接受H0,则不存在处理效应,每个观测值是由总平均数加上随机误差构成;

若拒绝H0,则存在处理效应,每个观测值是由总平均数、处理效应及误差三部分构成。

幻灯片13

● 总变异是测量值yij 与总的均数间的差异。 ● 处理间变异是由处理效应引起的变异。 ●

处理内变异是由随机误差引起的变异。

用离均差平方和的平均(均方、方差)反映变异的大小 幻灯片14

二、平方和与自由度的分解

处理间 (组间)变异

总变异

误差或处理内 (组内)变异

1. 总平方和(total sum of squares, SST): 每个测量值与总平均数离差的平方和的总和,反应了一组数据总的变异程度。计算公式为:

dfT=N-1=an-1

校正项(校正系数,correction):

幻灯片15

2. 处理间平方和(sum of squares among treatments, SSA): 各个处理组的平均数与总平均数离差的平方和,SSA反映了各处理组均数的变异程度。计算公式为:

dfA=a-1

(含有误差成分)

处理均方(treatment mean square,MSA):处理间平方和除以自由度。

幻灯片16

3.在同一处理组内虽然每个受试对象接受的处理相同,但观测值仍各不相同,这是由随机因素(误差)引起的。

误差平方和(error sum of squares, SSe)或称处理内平方和(sum of squares within treatment):各处理内部观测值与相应处理平均数离差的平方和,SSe反映了各处理组内观测值的变异程度。计算公式为:

dfe=dfT-dfA=an-a

误差均方(error mean square,MSe):误差平方和除以误差自由度。MSe反映了随机因素所造成的

方差的大小。

幻灯片17

相关文档
最新文档