教案:第一讲(力矩和力矩平衡)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014级高一物理竞赛培训第一讲
力矩和力矩平衡 (两课时)
高一物理组 郭金朋
一:力矩的概念
力矩是改变转动物体的运动状态变化的物理量,门、窗等转动物体从静止状态变为转动状态或从转动状态变为静止状态时,必须受到力的作用。但是,我们若将力作用在门、窗的转轴上,则无论施加多大的力都不会改变其转动状态,可见物体的转动运动状态的变化不仅与力的大小有关,还与受力的方向、力的作用点有关。力的作用点离转轴越远,力的方向与转轴所在平面越趋于垂直,力使转动物体运动状态变化得就越明显。在物理学中力对转动物体运动状态变化的影响,用力矩这个物理量来表示,因此,力矩被定义为力与力臂的乘积。力矩概括了影响转动物体运动状态变化的所有规律,力矩是改变转动物体运动状态的物理量。
力矩是表示力对物体产生转动作用的物理量,是物体转动转动状态改变的原因。它等于力和力臂的乘积。表达式为:M=FL ,其中力臂L 是转动轴到F 的力线的(垂直)距离。单位:Nm 效果:可以改变转动物体运动状态。
转轴: 物体转动时,物体上的各点都沿圆周运动,圆周的中心在同一条直线上,这条直
线就叫转轴。
特点:1,体中始终保持不动的直线就是转轴。
2,体上轴以外的质元绕轴转动,转动平面与轴垂直且为圆周,圆心在轴上。 3,转轴相平行的线上各质元的运动情况完全一样。
大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。如:一根长木棒置于水平地面上,它的两个端点为AB ,现给B 端加一个竖直向上的外力使杆刚好离开地面,求力F 的大小。在这一问题中,过A 点垂直于杆的水平直线是杆的转轴。象这样,在解决问题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩平衡条件。
作用于同一物体的同一力,由于所取转轴的位置不同,该力对轴的力矩大小可能发生相应的变化,对物体产生转动作用的方向(简称“转向”)也可能不同。例如如右图中的力F ,若以1o 为轴(即对1o 取矩)其力矩为M 1=FL 1,使物体逆时针转,若以2o 为轴(即对2o 取矩)其力矩为M 2=FL 2,使物体顺时针转,由图可知L 1< L 2,故M 1< M 2,且二者反
向。由此可见,一谈力矩,必须首先明确是以 何处为轴,或对谁取矩。
力矩的方向:
力矩:力臂(L)和力(F )的叉乘(M)。即:M=L×F 。其中L 是从转动轴到着力点的矢量, F 是矢量力;力矩也是矢量。
补充知识:矢量积(叉乘)
1、定义:对矢量b a 与,若矢量c 满足 2,c 的模
θ
sin b a c =,b a 与为θ之间夹角;
3,c 的方向垂直于b a 与所决定的平面,且c 的指向满足右手法则;
则称为b a c 与为的向量积,记为b a ⨯,即b a c ⨯=。
右手法则:伸出你的右手,从力臂(指向力的作用线)向力的方向握,那么大拇指的方向就是力矩的方向。
力矩的计算:
①先求出力的力臂,再由定义求力矩M =FL ,如图中,力F 的力臂为L F =Lsin θ,则力矩M =F •L sin θ
2,把力沿平行于杆和垂直于杆的两个方向分解,平行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的力矩为该分力的大小与杆长的乘积。如图中,力F 的力矩就等于其分力F 1产生的力矩,M =F sin θ•L 。两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。
F
θ
L F
θ
L
F θ L
F 2
F 1
力使物体转动改变的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力矩。①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。 大小一定的力有最大力矩的条件:
1,作用在离转动轴最远的点上;
2,的方向垂直于力作用点和转轴的连线与转轴所构成的平面。
二:定转动轴物体的转动平衡
转动平衡:有转动轴的物体在力的作用下,如果保持静止或匀速转动状态,我们称这个物体处于转动平衡。 平衡条件:
作用于物体上的全部外力对固定转动轴所取力矩的代数和为零。
沿着转轴观察,力矩的转动效应不是使物体沿顺时针转,就是逆时针转,若使物体沿顺时针转的力矩为正,则使物体沿逆时针转的力矩就为负。
当不好判断力是使物体沿哪个方向转动时,可以将力分解带沿杆和垂直于方向沿杆的分力力矩为零(或者垂直于面和平行与面或者轴,其中平行与面或者轴的分力力矩为零)
当作用在有固定转动轴物体上的顺时针方向力矩之和与逆时针方向力矩之和相等时,物体将处于静止或匀速转动状态。有固定转动轴物体的平衡的表达式为:
-+∑=∑=∑M M O M 或
力偶距:
作用在物体上的大小相等.方向相等.作用线平行的两个力组成一个力偶。它对物体只有转动作用,其大小积为力偶距:力偶距=力×力偶臂.力偶臂等于两个力作用线间的距离.力偶距的正负也由它使物体转动方向来确定;逆时针为正,顺时针为负。
利用转动平衡解题的步骤;
(1确定研究对象——哪个物体;
(2分析状态及受力——画示意图;分析研究对象的受力情况,找出每一个力的力臂,分析每一个力矩的转动方向;
(3列出力矩平衡方程:∑M=0或∑M 顺=∑M 逆; (4解出字母表达式,代入数据;
(5作必要的讨论,写出明确的答案。
一般物体的平衡条件
此处所谈的“一般物体”是指没有固定转动轴物体。
对一个“一般物体”来说,作用在它上面的力的合力为零,对任意一点的力矩之和为零时,物体才能处于平衡状态。也就是说必须一并具有或满足下面两个关系式:
⎭
⎬⎫⎩⎨⎧=∑=∑0(0F M 对任意转轴) 注意:∑M=0或∑M 顺=∑M 逆,方程转轴可以根据需要可以任意选取,一般原则是尽量多的力力臂为零,或者让未知的力的力矩为零.
例题分析:
例题1: 如图:BO 是一根质量均匀的横梁,重量G 1=80N ,BO 的一端安在B 点,可绕通过B 点且垂直于纸面的轴转动,另一端用钢绳AO 拉着横梁保持水平,与钢绳的夹角
o 30=θ,在横梁的O 点挂一个重物,重要G 2=240N ,求钢绳对横梁的拉力F 1:
(1)本题中的横梁是一个有固定转动轴的物体; (2)分析横梁的受力:拉力F 1,重力G 1,拉力F 2; (3)找到三个力的力臂并写出各自的力矩:
F 1的力矩:θsin 1l F
G 1的力矩:2
1
l
G F 2的力矩:l G 2 解:据力矩平衡条件有:
02
sin 211=--l G l
G l F θ