第五章 光检测器及光接收机

第五章 光检测器及光接收机
第五章 光检测器及光接收机

第五章 光检测器及光接收机

光接收机:把光发射机发送的携带有信息的光信号转化成相应的电信号并放大、再生恢复为原传输的信号。组成:光检测器、低噪声前置放大器、主放大器、均衡器以及滤波器等。

光检测器:将接收到的光信号转换成电信号。 5.1 光探测原理 一、PN 结的光电效应

光电检测器是利用半导体材料的光电效应实现光电转换的。 1.光电效应:在光的照射下,使物体中的电子脱出的现象叫做光电效应。

2.光电检测器核心器件:光电二极管(PD),是一个工作在反向偏压下的PN 结二极管。

3.PN 结的光电效应及条件:如图5.1 所示,当入射光子能量hf 小于禁带宽度E g 时,不论入射光有多强,光电效应也不会发生,即产生光电效应必须满足以下条件

hf ≥E g (5.1)

即光频f c < 的入射光是不能产生光电效应的,将f c 转换为波长,则 λc = (5.2)

即只有波长λ< λ c 的入射光,才能使这种材料产生光生载流子,故λc 为产生光电效应的入射光的最大波长,又称为截至波长,相应的f c 称为截至频率。

图5.1半导体材料的光电效应

二、光探测过程的基本原理

假设入射光子的能量hf 超过禁带能量E g ,是有几微米宽的耗尽区每次吸收一个光子,将产生一个电子空穴对,发生受激吸收。在PN 结施加反向电压的情况下,受激吸收过程生成的电子-空穴对在电场的作用下,分别离开耗尽层,电子向N 区漂移,空穴向P 区漂移,空穴和从负电极进入的电子复合,电子则离开N 区进入正电极。当电路闭合时,在外电路形成光生电流I P 。当入射功率变化时,光生电流也随之线性变化,从而把光信号变成电流信号。光生电流I P 与产生的电子空穴对和这些载流子运动的速度有关。也就是说直接与入射光功率P in 成正比,即

in P RP I = (5.3)

式中R 是光电检测器响应度(用A/W 表示)。由此式可以得到

in

P

P I R =

(5.4)

响应度R 可以用量子效应表示,其定义是产生的电子数与入射光子数之比,即

h

E g g

E hc

R q

hf

hf P q I in P ==

//η (5.5)

式中q=1.6×10-19

库仑,是电子荷,h=6.63×10-34

焦耳-秒,是普朗克常数,f 是入射光频率。由此式可以得到响应度

24

.1ηλ

η≈

=

hf

q

R (5.6)

式中f

c /=λ

是入射光波长,用微米表示。上式表示光电检测器响应度随波长而增加,这是因为光子能

量hf 减小时可以产生与减少的能量相等的电流。R 和λ的这种线性关系不能一直保持下去,因为光子能量太小时将不能产生电子。当光子能量变得比禁带能量E g 小时,无论入射光多强,光电效应也不会发生,此时量子效率η下降到零,也就是说,光电效应必须满足(5.1)式的光电效应条件。 5.2 半导体光检测器 5.2.1 光检测器 一、概述 1.核心器件:

2.

3.对光检测器的基本要求是:

(1)在系统的工作波长上具有足够高的响应度,即对一定的入射光功率,能够输出尽可能大的光电流; (2)具有足够快的响应速度,能够适用于高速或宽带系统; (3)具有尽可能低的噪声,以降低器件本身对信号的影响; (4)具有良好的线性关系,以保证信号转换过程中的不失真; (5)具有较小的体积、较长的工作寿命等。 二、PN 光电二极管

1、工作原理:入射光从P 侧进入,在耗尽区光吸收产生的电子-空穴对在内建电场作用下分别向左右两侧运动,产生光电流。

2、响应时间:由光功率输入转化为光电流输出,有一定时间迟后,其值主要决定于载流子通过耗尽区的渡越时间,见如下公式及图。

(5.7)

低,响应速度慢,见图5.2所示。

图5.2考虑漂移和扩散运动时PN光电二极管对矩形脉冲的响应

带宽受限的主要因素:产生的光电流中存在扩散分量,它与耗尽区外的光吸收有关。载流子作扩散运动的时

延将使检测器输出电流脉冲后沿的托尾加长,影响光

电二极管的响应速度。

4、解决方法:减小P,N区厚度,增加耗尽区的宽度,使大部分入射光功率在耗尽区吸收,减少P,N区吸收

的光能—PIN。

5.2.2 PIN光电二极管

一、PIN光电二极管的结构及工作原理

1.PIN光电二极管的产生:为改善器件的特性,在PN结中间设置一层掺杂浓度很低的本征半导体(称为I),

这种结构便是常用的PIN光电二极管。

2.PIN光电的工作原理和结构:

(1)中间的I层是N型掺杂浓度很低的本征半导体:I层很厚,吸收系数很小,入射光很容易进入材料内

部被充分吸收而产生大量电子- 空穴对,因而大幅度提高了光电转换效率。

(2)两侧是掺杂浓度很高的P型和N型半导体,用P+和N+表示。两侧P+层和N+层很薄,吸收入射光的比例很小,I层几乎占据整个耗尽层,因而光生电流中漂移分量占支配地位,从而大大提高了响应速度。

另外,可通过控制耗尽层的宽度w,来改变器件的响应速度。

二、PIN光电二极管的特性:

1.波长响应范围:半导体光电检测器只可对一定波长范围的光信号进行有效的光电转换,这一波长范围就是波长响应范围。

材料的选择:(1)材料的带隙决定了截止波长要大于被检测的光波波长(2)材料的吸收系数不能太大。

2.响应度:描述光检测器能量转换效率的一个参量,定义公式如(5.4)。

3.量子效应:表示入射光子转换为光电子的效率。它定义为单位时间内产生的光电子数与入射光子数之比,公式(5.5)。

提高量子效应方法:减小入射表面的反射率,使入射光子尽可能多地进入PN结;同时减少在表面层被吸收的可能性,增加耗尽区的宽度,使光子在耗尽区内被充分吸收。

4.响应速度:是光电检测器的另一个重要参数,通常用响应时间(上升时间和下降时间)来表示。

5.噪声特性:包括量子噪声、暗电流噪声、漏电流噪声以及负载电阻的热噪声。除负载电阻的热噪声以外,其它都为散弹噪声(由于带电粒子产生和运动的随机性而引起的一种具有均匀频谱的白噪声)

5.1.3 雪崩光电二极管(APD)

一、雪崩光电二极管的工作原理与结构

1.定义:雪崩光电二极管,又称APD(Avalanche Photo Diode)。它不但具有光/电转换作用,而且具有内部放大作用,其放大作用是靠管子内部的雪崩倍增效应完成的。

2.工作原理:APD的雪崩效应

APD的雪崩倍增效应,是在二极管的P-N结上加高反向电压,在结区形成一个强电场;在高场区内光生载流子被强电场加速,获得高的动能,与晶格的原子发生碰撞,使价带的电子得到了能量;越过禁带到导带,产生了新的电子—空穴对;新产生的电子—空穴对在强电场中又被加速,再次碰撞,又激发出新的电子—空穴对……如此循环下去,形成雪崩效应,使光电流在管子内部获得了倍增。

APD就是利用雪崩效应使光电流得到倍增的高灵敏度的检测器。

3.结构:例如拉通(又称通达)型。(书上第63页,图3.26)

二、雪崩光电二极管的特性

与PIN相比,雪崩光电二极管的主要特性也包括波长响应范围、量子效应、响应度响应速度等。除此之外,由于APD中雪崩倍增效应的存在,APD的特性还包括雪崩倍增特性、倍增噪声、温度特性等。

1.倍增因子:书上第63页,公式(3.25)

2.噪声特性:除了与PIN相同的噪声外,还有附加的噪声。

三、

四、

5.2 数字光接收机

5.2.1 光接收机

一、光接收机作用:是将光纤传输后的幅度被衰减、波形产生畸变的、微弱的光信号变换为电信号,并对电信号进行放大、整形、再生后,再生成与发送端相同的电信号,输入到电接收端机,并且用自动增益控制电路(AGC)保证稳定的输出。

二、组成:光接收机中的关键器件是半导体光检测器,它和接收机中的前置放大器合称光接收机前端。前端性能是决定光接收机的主要因素。

强度调制—直接检波(IM-DD)的光接收机方框图如下图所示,主要包括光电检测器、前置放大器、主放大器、均衡器、时钟恢复电路、取样判决器以及自动增益控制(AGC)电路等。

图5.2数字光接收机方框图

三、分类:

5.2.2 数字光接收机的组成

一、结构:

1.

2.

二、主要组成部分的作用:

1.光电检测器:光电检测器是把光信号变换为电信号的关键器件

2.放大器:光接收机的放大器包括前置放大器和主放大器两部分。 (1)对前置放大器:要求是较低的噪声、较宽的带宽和较高的增益。

前置放大器的的类型目前有3种:低阻抗前置放大器、高阻抗前置放大器和跨阻抗前置放大器(或跨导前置放大器)。

(2)主放大器:一般是多级放大器,它的功能主要是提供足够高的增益,把来自前置放大器的输出信号放大到判决电路所需的信号电平。并通过它实现自动增益控制(AGC ),以使输入光信号在一定范围内变化时,输出电信号应保持恒定输出。

主放大器和AGC 决定着光接收机的动态范围。

3.均衡器:均衡器的作用是对已畸变(失真)和有码间干扰的电信号进行均衡补偿,减小误码率。

4.再生电路:再生电路的任务是把放大器输出的升余弦波形恢复成数字信号,由判决器和时钟恢复电路组成。再生电路包括:判决电路和时钟提取电路。

5.自动增益控制(AGC ):AGC 就是用反馈环路来控制主放大器的增益。作用是增加了光接收机的动态范围,使光接收机的输出保持恒定。 三、光电集成接收机

1.图5.2中除光检测器以外的所有元件都是标准的电子器件,很容易用标准的集成电路(IC)技术将它们集成在同一芯片上。

2.不论是硅(Si)还是砷化镓(GaAs)IC 技术都能够使集成电路的工作带宽超过2 GHz ,甚至达到10 GHz 。

3.为了适合高传输速率的需求,人们一直在努力开发单片光接收机,即用“光电集成电路(OEIC)技术”在同一芯片上集成包括光检测器在内的全部元件。

4.对于工作在1.3~1.6 μm 波长的系统,人们需要基于InP 的OEIC 接收机。

5.在1991年试验成功的单路InGaAs OEIC 接收机,其运行速率达5 Gb/s 。

6.InGaAs OEIC 接收机也可以用混合法实现。 四、数字光发送机的主要指标:

1.灵敏度:是指在给定误码率条件下,能够检测到的最小信号光功率,通常用dBm 表示。它表示接收机检测微弱信号的能量。

光接收机的灵敏度是指在系统满足给定误码率指标的条件下,光接收机所需的最小平均接收光功率P min (mW )。工程中常用毫瓦分贝(dBm )来表示,即

2.动态范围:指接收机可以正常工作的输入信号的变化范围。

光接收机的动态范围是指在保证系统误码率指标的条件下,接收机的最低输入光功率(dBm )和最大允许输入光功率(dBm )之差(dB )。

动态范围是光接收机性能的另一个重要指标,它表示光接收机接收强光的能力,数字光接收机的动态

)dBm (mW

1lg

10min

R P P =)dB (lg 1010lg 1010lg

10min

max 3min

3max P P P P D =---=

范围一般应大于15 dB。

由于使用条件不同,输入光接收机的光信号大小要发生变化,为实现宽动态范围,采用AGC是十分有必要的。AGC一般采用直流运算放大器构成的反馈控制电路来实现。

对于APD光接收机,AGC控制光检测器的偏压和放大器的输出;对于PIN光接收机,AGC只控制放大器的输出。

3.误码率:误码率是码元被错误判决的概率,可以用在一定的时间间隔内,发生差错的码元数和在这个时间间隔内传输的总码元数之比来表示。

4.信噪比:

5.自动增益控制(AGC):放大器是一个普通的宽带高增益放大器,由于前置放大器输出信号幅度较大,所以主放大器的噪声通常不必考虑。

5.2.3 数字光接收机的噪声

一、数字光接收机的噪声源

1.分类:

(1)外部电磁干扰产生:这部分噪声的危害可以通过屏蔽或滤波加以消除;

(2)内部产生:这部分噪声是在信号检测和放大过程中引入的随机噪声,只能通过器件的选择和电路的设计与制造尽可能减小,一般不可能完全消除。

我们要讨论的噪声是指内部产生的随机噪声。

2.光接收机噪声的主要来源是:光电检测器的噪声和光接收机的电路噪声。

因为前置级输入的是微弱信号,其噪声对输出信噪比影响很大,而主放大器输入的是经前置级放大的信号,只要前置级增益足够大,主放大器引入的噪声就可以忽略。

3.主要两种噪声:

(1)光电检测器的噪声包括量子噪声、暗电流噪声、漏电流噪声和APD的倍增噪声。

(2)电路噪声主要是前置放大器的噪声。前置放大器的噪声包括电阻热噪声及晶体管组件内部噪声。

4.各种噪声产生的原因:

(1)量子噪声:是指当一个光电检测器受到外界光照,其光子激励而产生的光生载流子是随机的,从而导致输出电流的随机起伏。这是检测器固有的噪声。

(2)暗电流噪声:暗电流是指无光照射时光电检测器中产生的电流。由于激励出的暗电流是浮动的,就产生了噪声,称为暗电流噪声。

(3)雪崩管倍增噪声:由于雪崩光电二极管的雪崩倍增作用是随机的,这种随机性,必然要引起雪崩管输出信号的浮动,从而引入噪声。

(4)光接收机的电路噪声:主要指前置放大器噪声,其中包括电阻热噪声及晶体管组件内部噪声。

二、数字光接收机的噪声特性的分析方法

噪声是一种随机过程,应采取随机过程的分析方法。用概率密度和概率分布函数来表示随机过程的统计特性。

光纤通信课后习题解答 第6章 光电检测器与光接收机习题解答

118 习题解答 1、在光纤通信系统中,使用最多的光电检测器有哪些?它们分别使用于什么场合? 答:在光纤通信系统中,使用最多的光电检测器包括PINPD 和APD 两种,它们分别使用于短距离小容量光纤通信系统和长距离大容量光纤通信系统。 2、光电检测器是在什么偏置状态下工作的?为什么要工作在这样的状态下? 答:光电检测器工作于负偏置状态。只有工作于负偏置状态,才能使材料的受激吸收占据主导地位,从而完成光电变换功能。 3、在PINPD 中,I 层半导体材料的主要作用是什么? 答:通过扩展受激吸收的区域提高光电变换的效率及通过一定的内建电场提高器件的响应速度。 4、简述PINPD 的工作原理。 答:当光照射到PIN 光电二极管的光敏面上时,会在整个耗尽区及耗尽区附近产生受激辐射现象,从而产生电子空穴对。在外加电场作用下,这种光生载流子运动到电极。当外部电路闭合时,就会在外部电路中有电流流过,从而完成光电的变换过程。 5、在APD 中,一般雪崩倍增作用只能发生于哪个区域? 答:高场区(即雪崩倍增区)。 6、简述APD 的工作原理。 答:当光照射到APD 的光敏面上时,由于受激吸收而在器件内产生出一次电子空穴对。在外加电场作用下,一次电子空穴对运动到高场区,经过反复的碰撞电离过程而形成雪崩倍增现象,从而产生出大量的二次电子空穴对。在外加电场的作用下,一次电子空穴对和二次电子空穴对一起运动到电极。当外部电路闭合时,就会在外部电路中有电流流过,从而完成光电变换过程。 7、光电检测器的响应度和量子效率有什么样的关系?这两个参数相互独立吗? 答: 响应度从宏观角度描述光电检测器的光电变换效率,而量子效率则从微观角度描述光电检测器的光电变换效率。所以,响应度和量子效率不是相互独立的参数。 8、光电检测器的暗电流由哪些部分组成?这些组成部分分别对PINPD 和APD 的暗电流有何影响? 答:由表面暗电流和体内暗电流组成。对于PINPD ,表面暗电流远大于体内暗电流。对于APD ,由于倍增效应的存在,其体内暗电流远大于表面暗电流。 9、APD 的倍增因子是否越大越好?为什么? 答:当M

新型光接收机说明书

WR8604JL光接收机说明书 WR8604JL是我公司最新推出的高档四输出CA TV网络光接收机,本机前级采用全砷化镓MMIC放大,后级为砷化镓模块放大器,优化的线路设计,加上本公司十多年专业的设计经验,而使本机的达到了较高的性能指标。单片机控制数码显示各项参数,使工程调试格外方便,是构建CA TV网络的主流机型。 一、性能特点 ■高响应度PIN光电转换管。 ■线路优化设计,SMT工艺生产,优化整机信号通道,光电信号传输更流畅。 ■专业的射频衰减芯片,射频衰减和均衡线性好,精度高。 ■砷化镓放大器件,功率倍增输出,增益高、失真低。 ■单片机控制整机工作,数码显示各项参数,操作方便直观,性能稳定。 ■优良的AGC特性,输入光功率-9~+2dBm时,输出电平保持不变,CTB、CSO基本不变。 ■预留数据通讯接口,方便与网管应答器连接,接入网管系统。 二、技术参数

备注:以上给出的正向射频指标是在末级使用砷化镓25dB功率倍增模块时的参数,如果使用其他模块时,指标会略有不同。 三、原理框图 五、功能显示及操作说明 Mode: 当前控制模式选择按钮,共七种工作模式 ▲:为up按钮,在A TT或EQ模式时增加衰减量或均衡量。 ▼:为down按钮,在A TT或EQ模式时减少衰减量或均衡量。 以下做详细图示说明:

六、结构示意图 1、光纤输入口 2、光纤法兰盘 3、过流插片1 4、-20dB输出射频检测口1 5、输出分支或分配器1 6、射频输出口1 7、射频输出口2 8、过流插片2 9、-20dB输出射频检测口10、输出分支或分配器2 11、射频输出口3 12、射频输出口4 13、过流插片3 14、过流插片4 15、反向射频衰减1 16、-20dB反向射频检测口1 17、低通滤波器18、反向射频衰减2 19、反向射频均衡器20、-20dB反向射频检测口2 21、反向射频衰减3 22、状态显示数码管23、控制模式选择按钮24、up按钮 25、down按钮26、数据通讯接口27、AC60V输入口(B型)28、主板电源输入口29、AC220V输入口(A型) 30、开关电源

光发射机平均光功率的测试

光发射机平均光功率的测试 一、实验目的 1.了解数字光发射机平均光功率的指标要求。 2.掌握数字光发射机平均光功率的测试方法。 二、实验内容 1.测试数字光发射机的平均光功率。 三、实验仪器 1.光纤通信实验系统1台。 2.示波器1台。 3.万用表1部。 4.FC/PC光纤跳线1根。 四、实验原理 光发送机的平均输出光功率被定义为当发送机送伪随机序列时,发送端输出的光功率值。ITU-U在规范标准光接口时,为使成本最佳,同时适应运行条件变化,并考虑了活动连接器的磨损、制造和测量容差以及老化因素的影响后,给出了一个允许的范围。其中比较重要的激光器劣化机理是有源层的劣化和横向漏电流的增加所导致的激励电流增加以及光谱特性随时间的变化。通常,光发送机的发送功率需要有1~1.5 dB的富余度。本实验将带领大家测量本实验系统发射光功率。 五、实验注意事项 1.在实验过程中切勿将光纤端面对着人,切勿带电进行光纤的连接。 2.不要带电插拔信号连接导线。 六、实验步骤 1.在实验系统断电的情况下,用信号连接线连接数字信号源模块PN序列二输出口P283和1310nm数字光发模块数字光发信号输入口P261。 2.用光纤跳线连接1310nm光发和光收接口,并将1310nm光收模块开关K3打到“光功率计”。 3.将1310nm光发模块的J1第一位拨为“ON”(数字光调制的通状态),第二位拨为“OFF”(自动光功率控制补偿电流的断状态)。将K1设置为“数字”。 4.将1310nm光发模块的RP300(数字光调制的光发射功率大小的调节旋钮,顺时针旋转为光功率增大),顺时针旋到最大。

5.打开系统电源。此时光功率计的读数,即为光发端机的平均光功率。 6.做完实验后关掉系统电源,拆除实验导线。 7.将各实验仪器摆放整齐。

光接收机的结构及原理

第三部分光接收机的结构及原理 在有线电视HFC网络中,光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为RF信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光/电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中,无论是分离组件还是一体组件,该部分的成本比重都比较大,与光发射机的激光器一样,不仅决定了光接收机的性能指标,还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成,除光接收组件外,功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合,整机也会有显著不同。有线电视技术发展到今天,光接收机采用分离元件制作放大模块已不多见,基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路,它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源,并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等,另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有14dB、18dB、20dB、22dB、27dB等,用于单模块放大器的34dB的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的

不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名,一般以推挽和功率倍增为主要区分,同时附加增益的差异与器件工艺,如果不说是砷化镓工艺模块则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过,根据集中极电流导通时间的长短,通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器;只有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器;在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中,为了提高放大效率通常都需要把工作点移到截止区,即采用半周导通的乙类工作状态,这时若仍采用一个晶体管,输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管,使其中一只晶体管在正半周导通,另一晶体管在负半周导通,最后在负载上合成完整波形,这就是推挽放大电路。下图是推挽放大电路的结构示意图: 输入信号经过高频传输变压器B1,反相加在晶体管VT1和V T2上,被放大后各自在半个周期内产生半个波,在变压器B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点,使变压器中流过电流减少,从而体积可以做得较小,进一步提高了放大器

光纤通信课后习题解答-第6章--光电检测器和光接收机习题解答

习题解答 1、在光纤通信系统中,使用最多的光电检测器有哪些?它们分别使用于什么场合? 答:在光纤通信系统中,使用最多的光电检测器包括PINPD 和APD 两种,它们分别使用于短距离小容量光纤通信系统和长距离大容量光纤通信系统。 2、光电检测器是在什么偏置状态下工作的?为什么要工作在这样的状态下? 答:光电检测器工作于负偏置状态。只有工作于负偏置状态,才能使材料的受激吸收占据主导地位,从而完成光电变换功能。 3、在PINPD 中,I 层半导体材料的主要作用是什么? 答:通过扩展受激吸收的区域提高光电变换的效率及通过一定的内建电场提高器件的响应速度。 4、简述PINPD 的工作原理。 答:当光照射到PIN 光电二极管的光敏面上时,会在整个耗尽区及耗尽区附近产生受激辐射现象,从而产生电子空穴对。在外加电场作用下,这种光生载流子运动到电极。当外部电路闭合时,就会在外部电路中有电流流过,从而完成光电的变换过程。 5、在APD 中,一般雪崩倍增作用只能发生于哪个区域? 答:高场区(即雪崩倍增区)。 6、简述APD 的工作原理。 答:当光照射到APD 的光敏面上时,由于受激吸收而在器件内产生出一次电子空穴对。在外加电场作用下,一次电子空穴对运动到高场区,经过反复的碰撞电离过程而形成雪崩倍增现象,从而产生出大量的二次电子空穴对。在外加电场的作用下,一次电子空穴对和二次电子空穴对一起运动到电极。当外部电路闭合时,就会在外部电路中有电流流过,从而完成光电变换过程。 7、光电检测器的响应度和量子效率有什么样的关系?这两个参数相互独立吗? 答: 响应度从宏观角度描述光电检测器的光电变换效率,而量子效率则从微观角度描述光电检测器的光电变换效率。所以,响应度和量子效率不是相互独立的参数。 8、光电检测器的暗电流由哪些部分组成?这些组成部分分别对PINPD 和APD 的暗电流有何影响? 答:由表面暗电流和体内暗电流组成。对于PINPD ,表面暗电流远大于体内暗电流。对于APD ,由于倍增效应的存在,其体内暗电流远大于表面暗电流。 9、APD 的倍增因子是否越大越好?为什么? 答:当M

光接收机的结构和原理

光接收机的结构和原理 2009-08-31 20:20:03| 分类:电子通信时代| 标签:|字号大中小订阅 在有线电视HFC网络中,光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为RF信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光/电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中,无论是分离组件还是一体组件,该部分的成本比重都比较大,与光发射机的激光器一样,不仅决定了光接收机的性能指标,还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成,除光接收组件外,功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合,整机也会有显著不同。有线电视技术发展到今天,光接收机采用分离元件制作放大模块已不多见,基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路,它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源,并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等,另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有14dB、18dB、20dB、22dB、27dB等,用于单模块放大器的34dB的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名,一般以推挽和功率倍增为主要区分,同时附加增益的差异与器件工艺,如果不说是砷化镓工艺模块 则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过,根据集中极电流导通时间的长短,通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器;只有在输入信号的半个周期内有集中极电流的放大器称为乙类放大器;在小于输入信号半个周期内有集中极电流的放大器称为丙类放大器。在许多实用的放大电路中,为了提高放大效率通常都需要把工作点移到截止区,即采用半周导通的乙类工作状态,这时若仍采用一个晶体管,输出信号中将只出现一半波形,将发生严重的截止失真。为了解决这个问题,可采用两只特性完全相同的晶体管,使其中一只晶体管在正半周导通,另一晶体管在负半周导通,最后在负载上合成完整波形,这就是推 挽放大电路。下图是推挽放大电路的结构示意图: 输入信号经过高频传输变压器B1,反相加在晶体管VT1和VT2上,被放大后各自在半个周期内产生半个波,在变压器B2上反相叠加,重新合成完整波形输出,由于输出信号反相叠加,其中的直流分量和非线性失真中的偶次谐波互相抵消。降低了直流工作点,使变压器中流过电流减少,从而体积可以做得较小,进一步提高了放大器的输出功率和效率;更为重要的是,偶次谐波的抵消,减少了放大器的非线性失真,对提高有线电视系统的非线性失真指标具有重要意义。在实际应用中,通常采用两组推挽电路并接的方法,构成桥式结构,则每级推挽电路在负载上的直流电压可抵消,从而简化电路结构。在推挽电路中,两个极性相同晶体管的特性应尽可能一致,两个极性相反晶体管的特性应尽可能互补,才能最大限度的抵消输出信号中的偶次谐波失真,若在电电路中引入负反馈,非线性失真还可进一步减小。 下图是商用化模块常采用的电路结构。 该模块用了共射——共基极放大推挽输出,4个NPN型晶体管两两接成共射—共基极组合放大电路,它们再通过输入、输出变压器接成推挽电路。共射—共基电路的特点是:简单高效,在选定最佳e极电流的情况下,此电路能有效的减小集电极非线性及e—b结非线性。此电路采用低射极电阻和高并联电阻取得高增益,又由于采用了低噪声晶体管使模块的噪声系数降到了尽可能低的程度。总之该电路集中了共射—共基

光工作站的结构及原理

光工作站地结构及原理 第四部分光工作站地结构及原理 传统地广播分配网,随网络地改造,向通信式地双向交互网发展,光纤网络和无源电缆分配网将是网络架构地主导模式.网络地目标就是成为一个能为本地区(城市)提供多种信息业务服务地宽带多媒本通信平台;从目前地网络发展态势看起具有明显地特点:光纤向用户逐步延伸,光接点地服务半径越来越小,双向用户逐渐增多,放大器地应用越来越少,光接点以后地网络可靠性得到大幅度提高.随着用户对服务质量要求地提高,光接点最终将是无源分配网络,即不采用放大器,只由光接收设备提供高电平信号,覆盖结点周围用户.普通地光接收机将无法再胜任作为光接点接收设备地高要求,为适应这一发展,解决双向用户共享带宽地制约,提高网络服务质量,可升级地通信型光站应运而生,其将是宽带用户接入网地主导设备. 各个生产厂家推出地光工作站地具体结构及功能并不一致,作为光工作站其与光接收机有明显地区别.()按功能结构区分.光工作站一般具有多于个独立地高电平输出端口,每端输出电平一般要求大于,以适应直接用于用户分配,增加覆盖地要求.而光接收机地输出电平一般不高,既使是高电平输出光接收机,其最大输出也一般低于;光工作站具有完备地功能模块(或预留插口),而光接收机由于采用小外壳,功能模块单元相对很小,主要功能仅是实现光电转换,即使有回传发射模块,也相当简单,无法适应未来双向光接点地较高要求.()按可靠性区分.光工作站一般都采用高冗余度,通常都对关键地功能模块实现备份,常见地功能备份有如下几种:、电源备份,通常光工作站可插入两个高效开关电源,在一个电源出现故障时,内部控制单元可自动切换到另一个电源.、光备份,光备份有光接收备份、光发射备份.光接收备份:光工作站可插入个以上地光接收功能模块,分别接收不同路由地光信号,当一路出现故障时,控制单元将及时切换到另一路;光发射备份:光工作站可插入个以上地回传发射模块,

光接收机模块操作及调试

1光接收机模块操作及调试 6.1光接收机操作及调试说明 6.1.1光接收机显示和操作说明 LED数码显示屏下方有4个控制按键,其中: Up键:按此键为向上翻页或在设置参数时数字递减。 Down键:按此键为向下翻页或在设置参数时数字递增。 Ok键:短按此键1s,为进入子菜单或设置参数时确认保存,但在网络地址分组显示时为跳转到下页;长按此键2s,为进入设置模式。 Esc键:按此键退出到上层菜单或取消设置。 图6-1 光接收机模块 表6-1 光接收机模块LED显示值含义

1:输入光功率(不可设置) 2:输入电压(不可设置) 3:机壳温度(不可设置) 4:输出电平(不可设置) AGC:自动增益模式(不可设置) A1:OUT1和OUT2端口下行衰减(可设置),长按Ok键出现数字闪烁,再按Up、Down键调节(设置范围0~15 dB ,步进为1dB,此项用来调节输出电平大小,衰减值加1dBm,输出电平减1 dBm),短按Ok保存且退出闪烁设置状态。 E1:OUT1和OUT2端口下行均衡(可设置),长按Ok键出现数字闪烁,再按Up、Down键调节(设置范围0~15 dB,步进为1dB,此项是对光接收机高低频输出电平进行差值补偿,均衡值加1dBm,差值减小1 dBm),短按Ok保存且退出闪烁设置状态。 C:射频频道数(可设置),长按Ok键出现数字闪烁,再按上下键调节(设置范围1~99,步进为1,设置不同的值会影响输出电平的精度,此项通常使用出厂默认设置),短按Ok保存且退出闪烁设置状态。 BASE:设备基本信息,短按Ok键进入后,依次显示以下内容:

P/H/G:分别是IP地址,子网掩码,网关等网络地址,其设置方法相同且如下: 一个有效的网络地址格式为A.B.C.D ,在这里是分组显示和设置的 1)进入显示条目 2)按设置(长按Ok 键>2s), 到条目内容闪动, 进入设置状态 3)按Down/Up 设置网络地址A 组内容 4)按Ok (短按) 切换到网络地址B 显示, 按Down/Up 设置 5)按Ok (短按) 切换到网络地址C 显示, 按Down/Up 设置 6)按Ok (短按) 切换到网络地址D 显示, 按Down/Up 设置 7)按Ok (短按) 保存以上显示内容, 回到显示条目, 取消闪烁。 按Down 步进为加10, 按Up 步进为减1,在设置期间, 如取消设置可随时按“Esc”键取消设置,回到LED 显示条目, 并取消闪烁。更改完成后立即生效。 UE:输入波长(可设置,设置不同的值会影响输入光功率的精度),长按Ok键出现数字闪烁,再按上下键调节,设置范围为:13/15 二个值,“UE.13”既表示当前输入波长为1310nm,“UE.15”既表示当前输入波长为1550nm,短按OK保存且退出闪烁设置状态。 AS.xx:光机重启(可设置),其中AS表示指示该项为重启,而no表示默认为不重启, Gd 表示立即重启。设置方法是,长按OK键出现数字闪烁,再按上下键调节,短按Ok保存且退出闪烁设置状态。 AE.xx:光机恢复出厂(可设置),其中AE表示指示该项为恢复出厂,而no表示默认为不恢复, Gd 表示下次重启后所有内容为恢复到出厂值。设置方法是,再按Ok键出现数字闪烁,在按上下键调节,短按Ok保存且退出闪烁设置状态。 6.1.2光接收机的调试 1.清洁光纤端面 使用脱脂棉蘸无水酒精清洁光纤尾缆或尾纤的活动接头顶端部。 2.连接光纤尾缆 将光纤尾缆或尾纤的活动接头与本机光纤适配器连接,要确保接头的匹配,连接要准确(活动接头对准适配器缺口)可靠。注意妥善保持光纤的弯曲半径足够,并且减少活动连接器处的径向受力。 3.查看输入光功率

光电检测技术题库》

《光电检测》题库 一、填空题 1.光电效应分为内光电效应和外光电效应,其中内光电效应包括 和。 2.对于光电器件而言,最重要的参数是、 和。 3.光电检测系统主要由光电器件、和等部分组成。 4.为了取得很好的温度特性,光敏二极管应在较负载下使用。 5.光电倍增管由阳极、光入射窗、电子光学输入系统、和 等构成。 6.光电三极管的工作过程分为和。 7.激光产生的基本条件是受激辐射、 和。 8.检测器件和放大电路的主要连接类型有、 和等。 https://www.360docs.net/doc/a03726410.html,D的基本功能是和。 =1.2eV,则该半导体材料的本征吸收长波限 10.已知本征硅材料的禁带宽度E g 为。 11. 非平衡载流子的复合大致可以分为和。 12.在共价键晶体中,从最内层的电子直到最外层的价电子都正好填满相应的能带,能量最高的是填满的能带,称为价带。价带以上的能带,其中最低的能带常称为,与之间的区域称为。 13.本征半导体在绝对零度时,又不受光、电、磁等外界条件作用,此时导带中没有,价带中没有,所以不能。 14.载流子的运动有两种型式,和。 15. 发光二极管发出光的颜色是由材料的决定的。 16. 光电检测电路一般情况下由、、组成。 17. 光电效应分为内光电效应和效应,其中内光电效应包括和,光敏电阻属于效应。

18.导带和价带中的电子的导电情况是有区别的,导带愈多,其导电能力愈强;而价带的愈多,即愈少,其导电能力愈强。 19.半导体对光的吸收一般有、、、和这五种形式。 20. 光电器件作为光电开关、光电报警使用时,不考虑其线性,但要考虑。 24.半导体对光的吸收可以分为五种,其中和可以产生光电效应。 22.光电倍增管由阳极、光入射窗、电子光学输入系统、和等构成,光电倍增管的光谱响应曲线主要取决于材料的性质。 23.描述发光二极管的发光光谱的两个主要参量是和。 25.检测器件和放大电路的主要连接类型有、和等。 26.使用莫尔条纹法进行位移-数字量变换有两个优点,分别是和。 27、电荷耦合器件(CCD)的基本功能是和。 28、光电成像器件的输出物理量与对应的输入物理量的比值关系常用转换特性来表示,不同的光电成像器件往往用不同的参量来描述其转换特性,像管通常使用转换系数,像增强管常使用,摄像器件采用。 29、几何中心检测法进行光学目标的形位检测主要的处理方法有差分法、调制法、补偿法和跟踪法等,这些方法的主要依据是。亮度中心检测法主要的处理方法有光学像分解和多象限检测等,这些方法的主要依据是。 30.光电编码器可以按照其构造和数字脉冲的性质进行分类,按照信号性质可以分为和。 31.交替变化的光信号,必须使所选器件的大于输入信号的频率才能测出输入信号的变化。 32.随着光电技术的发展,可以实现前后级电路隔离的较为有效的器件是。 33.硅光电池在偏置时,其光电流与入射辐射通量有良好的线性关系,且动态范围较大。 34.发光二极管的峰值波长是由决定的。 35.光电成像器件的分辨率是用来表示能够分辨图像中明暗细节的能力,分辨率常用二种方式来描述,一种为,另一种为。 二、名词解释 1. 光亮度:

光纤通信实验二 光发射机与光接收机

实验二光发射机与光接收机实验 一、实验目的 1.了解光源的调制的原理 2.学习光发送模块的电路原理 3.了解光接收机的组成 4.了解光收端机灵敏度的指标要求 二、实验内容 1.介绍光源的调制方法 2.介绍光发射电路的框图 3.了解光接收机的组成 三、实验仪器 1.光纤通信实验系统1 台 2.示波器1台 3.光纤跳线1根 4.万用表 5.光功率计 四、实验原理 1、光发射机、光调制。 根据调制与光源的关系,光调制可以分为直接调制和间接调制两大类。直接调制方法仅适用于半导体光源(LD和LED),这种方法是把要传送的信息转变为电信号注入LD或LED,从而获得相应的光信号,所以是采用电源调制方法。直接调制后的光波电场振幅的平方与调制信号成一定比例关系,是一种光强度调制(IM)的方法。 间接调制是利用晶体的光电效应、磁光效应、声光效应等性质来实现对激光辐射的调制,这种调制方式既适应于其他类型的激光器。间接调制最常用的外调制的方法,即在激光形成以后加载调制信号。对某些类型的激光器,间接调制也可以采用内调制的方法,即在激光器的谐振腔内放置调制元件,用调制信号控制调制元件的物理性质,将改变谐振腔的参数,从而改变激光输出特芯以实现其调制。 光源的调制方法及所利用的物理效应如下表所示。 2、模拟信号调制与数字信号调制 模拟信号调制是直接用连续的模拟信号(如话音、电视等信号)对光源进行调制从而使LED或LD的输出光功率跟随模拟信号变化,如下图所示:

由于光源,尤其是激光器的非线性比较严重,所以目前模拟光纤通信系统仅仅用于对线性要求较低的地方,要实现大容量的频分复用还比较困难,仅自一些小系统中使用。对一些容量较大、通信距离较长的系统,多采用对半导体激光器进行数字调制的方式。 数字调制主要是用数字信号的“1”和“0”来控制激光的“有”和“无”,如下图所示: 与LED 相比,LD 的调制问题要复杂得多。尤其在高速率调制系统中,驱动条件的选择、调制电路的形成和工艺、激光器的控制等,都对调制性能至关重要。 3、光发射机模拟部分与数字部分的实现 1310nm 和1550nm 光发射机具有相同的结构。他们是由模拟光发和数字光发部分组成: 1、模拟光发电路的框图如下: 2、数字光发电路的框图如下: LD 输出光功 率 LED 输出光功 率 LED 和LD 的模拟调制 P -I 特性曲线与波形 模拟信号 输入

光接收机总结

光接收机总结 1,普通PIN接收机和APD接收机(直接检测) PIN光电二极管是在普通光电二极管的PN结中加入低掺杂的近乎本征半导体的I区形成的,用以加宽PN结的耗尽层(电子移动快)而减小扩散区(电子扩散慢),使电子空穴能够快速通过耗尽层到达P和N区,大大加快响应速度。PIN的探测效率也很高。 PIN探测器拥有极宽的带宽,商业化的超过了50GHz。PIN探测器的结构也非常简单,如图所示是PIN接受机的基本结构,光信号经过PIN光电探测器后经射频放大器,在通过窄带滤波器滤波,采样后经阈值判决得到数据。 图1 PIN接收机 PIN的噪声来源主要是散弹噪声,但是比APD的噪声小得多。PIN是无增益器件,一个光子至多产生一个电子空穴对,不适合用来检测微弱信号。对于 10Gbps的OOK信号,若BER要达到10^-9,这种接收机要求需要6200PPB[1]。 APD是利用雪崩特性制成的高增益光电二极管,APD接收机原理图与PIN接收机一致。一个光子产生一个电子空穴对后发生碰撞电离效应产生了大量电子空穴对,因此能够探测很微弱的信号。APD接收机灵敏度一般比PIN接收机好5~10dB,对于10Gbps的信号,误码率达到10^-9需要1000PPB[2]。 APD的噪声很大,主要是倍增噪声,而且APD一般需要很高的反向偏压来产生雪崩效应。同时,和PIN相比,APD只有很窄的线性效应(光电流和光功率成比例)。 2,光电倍增管PMT(单光子检测) 光电倍增管是利用外光电效应和二次电子发射效应来探测光信号的电真空器件,由阴极、电子倍增极、打拿极和收集极阳极等构成。阴极和阳极之间加上高压,光子在阴极表面产生光电子,这些光电子被电场加速后通过倍增系统产生大量二次电子,经阳极吸收形成输出电流。 PMT的计数频率可以达到几十MHz,具有高灵敏度和低噪声的特点,同时探测面积大直径可达几英寸、响应速度快上升时间小于1ns、高增益超过以及 宽谱宽等特点。PMT的量子效率受阴极材料和工作频率的影响:在紫外和可见光谱范围中,材料是GaAsP时,量子效率可以达到40%,在近红外区域,材料为GaAsInP时,量子效率小于1%,限制了PMT的使用。 LCTSX的LCT终端的接收机用的是PMT,碲镉汞APD作为备份接收机。 3,APD接收机(单光子检测) APD单光子检测器的原理是让偏置电压大于雪崩电压(即盖革模式),当有光子进入时,会产生uA甚至mA级别的光电流。由于任何光子或噪声都将产生

光接收机的结构及原理(精)

第三部分光接收机的结构及原理 在有线电视 HFC 网络中, 光接收机通常位于光纤接点和有线电视的前端位置,它的主要功能是把光信号转变为 RF 信号,前面已经详细讲述了光探测器、光接收组件的原理及应用。光探测器是实现光 /电转换的关键部件,其质量的优劣决定了光接收机的性能指标与档次,光接收组件是光探测器与前置放大器的组合,在光接收机中, 无论是分离组件还是一体组件, 该部分的成本比重都比较大, 与光发射机的激光器一样, 不仅决定了光接收机的性能指标, 还将决定光接收机的价格。光接收的整机组成主要由光接收组件、功率放大模块及其附属功能电路组成, 除光接收组件外, 功率放大模块是光接收机的第二大核心元件。即使是采用相同的组件,由于采用不同档次、不同价位的放大模块组合, 整机也会有显著不同。有线电视技术发展到今天, 光接收机采用分离元件制作放大模块已不多见, 基本上全采用集成一体化组件结构。该结构模块大多属于厚膜集成电路, 它是用丝网印刷和烧结等工艺在同一陶瓷基片上制作无源网源, 并在其上组装分立的半导体芯片或单片集成电路、放大三极管管芯等, 另外再外加塑料密封,防止潮气、杂质的进入。 一、光接收机常用的放大模块介绍 能用于光接收机的模块有众多型号,排除品牌命名的差异,根据放大模块的增益划分有 14dB 、 18dB 、 20dB 、 22dB 、 27dB 等,用于单模块放大器的 34dB 的放大模块在光接收机中少有应用,当然也不排除低档光接收机应用的可能。根据放大模块具体放大电路结构的 不同划分:有推挽放大模块、功率倍增放大模块两种,而根据放大元件工艺的不同,放大模块又分为硅放大工艺、砷化镓工艺两种,在光接收机中采用的模块的命名, 一般以推挽和功率倍增为主要区分, 同时附加增益的差异与器件工艺, 如果不说是砷化镓工艺模块则所说的放大模块一般都是指硅工艺。 1.推挽放大模块的原理及结构。在实用的放大电路中,三极管的集电极并非总有电流流过, 根据集中极电流导通时间的长短, 通常把放大器分成甲类、乙类、丙类等。在输入信号的整个周期中都有电流流过集电极的放大器称为甲类放大器; 只

光发射机、光接收机的安装与调试

CATV光发射机、光接收机的安装与调试 光纤传输系统的光发射机和光接收机,应按以下步骤安装与调试。 一、光发射机的安装与调试 1.光发射机应安放在通风良好的位置,周围应留有足够的散热空间, 光发射机外壳应接上安全地线。 2.光发射机电源插头应插入具有自动稳压电源输出的防雷电源插座 上。 3.从CATV 前端来的多频道RF 激励信号,用75 - 5 电缆跳线,接入 光发射机。根据光发射机的设备型号不同,调整适合光发射机的前端信号强度,一般不低于80DB。若前端激励信号过强,可插入一个(0~15) DB 的可调衰减器,接入光发射机,因所需的RF驱动电平要求不同,用可调衰减器进行调节。 4.光发射机的光功率输出端口,用FC/APC 跳线连接光分路器输入 端。分光路的输出端尾纤与光缆熔接,请确认光纤接头是FC/APC 形式。 二、光发射机通电前的系统检查 1.在前端用1 台光源从光分路器输入, 这是检查光纤传输网络是否 连接好,光功率损耗是否正常。 2.检查光分路器、熔接头、活接头FC/APC 尾纤的连接是否正常。

3.检查光发射机接地是否可靠,供电电源是否正常,有无防雷措施。最 好接有防雷插座。 4.检查RF 激励信号电平是否正常。 5.检查光发射机钥匙开关,应放置在“关”位置。 三、光发射机通电时测试 1.将检查完的RF 激励信号接入光发射机RF 信号输入端。同时 将光发射机的输出FC/APC 跳线从分光路输入端拔出。 2.打开光发射机钥匙开关,检查光发射机面板上的各个指示是否 正常, (绿灯亮) ,若红灯亮即为报警信号。 3.检查无误后,将光发射机关机,把光发射机输出光纤尾纤接入光 分路器输入端,即接通光发射机至光纤传输系统。 4.将光发射机再次开机,把光发射机钥匙开关置于“开”状态,在前 面板LCD 显示器可显示是否正常。 四、光接收机的安装与调试 1.室内型光接收机应安装于机柜中,机柜、光接收机及供电电源 要统一安全接地。 2.光接收机交流电源插头插入防雷插座。 3.光缆与光节点接续盒、光接收机连接:将光缆中光纤与光节点 盒输入端FC/APC 跳线连接,再连接光节点盒输出与光接收机 输入端。

光发射机的原理及其选择与使用

光发射机的原理及其选择与使用作者:佚名来源:慧聪发布时间:2006-4-15 20:52:34 [收藏] [评论] 光发射机的原理 用光波传输电视信号和数据信息是20世纪末发展起来的一门新的科学技术,它的出现使世界信息产业得到了飞速发展,现在光纤传输技术正以超出人们想像的速度发展,其光传输速度比10年前提高了100倍,在今后的发展中估计还要提高100倍左右。随着光纤传输技术的不断发展,在光域上可进行复用、解复用、选路、交换,网络可利用光纤的巨大带宽资源,增加网络的容量,实现多种业务的“透明”传输。 光传输系统主要由光发射机、光接收机、光分路器和光纤电缆及其它器件组成。 一光纤传输光信号的基理 光传输是在发送方和接收方之间以光信号形态进行传输的技术。光传输电视信号的工作过程是在光发射机、光纤和光接收机三者之间进行的; 在中心机房的光发射机把输入的RF电视信号变换成光信号,它由电/光变换器(Electric-Optical Transducer,E/O)完成,变换成的光信号由光纤传输导向接收设备(光接收机)接收,光接收机把从光纤中获取的光信号变换还原成电信号。因此光传输信号的基理就是电/光和光/ 电变换的全过程,也称为光链路。 目前光传输方式采用光强度调制。如采用激光器的光发器件发出相位一致的所谓相干光,因此采取了使发光强度整体发生变化的调制方式,它利用了输出光功率对应于电/光变换器输入信号电流的变化而线性 变化的特性。 在光/电变换器(Optical-Electric Transducer,O/E)中,输出正比于输入光信号强度的电流,光/电变换器的输出电流波形因而与电/光变换器输入电流波形相似,达到了信号传输的目的。 那么,光纤又是如何导向光信号的呢?目前有线电视系统使用的光纤是圆柱体的光纤,它由光纤圆柱体和包层组成,是石英玻璃材料。包层起着把光严密地封闭在光纤内的作用,保护纤芯,增强光纤本身的强度。而纤芯的作用是传输光信号。纤芯和包层虽然都是石英玻璃材料生产而成,但在生产时对两者的掺杂成份有区别,因而导致了所产生的折射率大小不同(纤芯为1.463~ 1.467,包层为1.45~1.46),当然也与所采用的材料不同有关。当激光器发射的光源进入纤芯后,光入射到包层界面时,只要入射角大于临界角,就会在纤芯内产生全反射,光不会漏射到包层中,这样聚入到纤芯内的光信号就会不间断地传播下去,直到导向光接收机为止。这个过程就是光信号在光纤中传输的基理。 二光传输中产生的失真 光在光纤中传输时,也会产生一些失真,产生失真的原因有以下几点: (1)在光纤传输系统中,由于半导体激光器的电/光转换特性的非线性,使输出的光信号与激励电流的变化不一致导致了失真,它称为调制失真。调制指数M值不允许太大,选择高性能、预失真处理技术强的光发射机很有必要,预失真处理技术是利用人为的设计产生预失真改善调制线性,达到消除和减轻光纤传 输系统中CSO与CTB的目的。 (2)在光传输系统中,由于驱动RF放大器和接收RF放大器产生失真的机会很小,线性PIN光电二极管因信号电平不太高,产生的微小失真可不计,而它的主要原因来自于半导体激光器调制特性的失真和光 纤的色散。 (3)激光器在光强度调制时,光的波长会发生变化,出现附加频率调制,使信号频率展宽,出现啁啾 效应,主要表现为CSO失真。 (4)光纤的色散特性会使不同波长的群时延发生差异,形成到达终端的时间会先后不一致所引起的失 真,主要是CSO失真。

光发送机

光发射机模型设计与仿真 一、光发送机原理简介 1、光发送机的结构 光发送机是它的一个光通信系统中重要的组成部分,它的作用是将电端机送来的电信号转变为光信号,并送进光纤线路进行传输。光发送机的核心是光源及其驱动电路。一般光发送机由以下三个部分组成: 1)光源(Optical Source):一般为LED和LD,此次用的为连续波激光器 2)脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。 3)光调制器(Optical Modulator):将电信号(数字或模拟量)“加载”到光波上。 2、设计光发送机的原理图 此次设计是利用光源为频率193.1Thz的激光二极管CW Laser,同时使用一个Pseudo-Random Bit Sequence Generator模拟所需的数字信号序列,利用用户自定义码发生器,经过一个NRZ非归零码脉冲发生器转换为所需要的电脉冲信号,再通过低通高斯滤波器,再使信号通过一个LiNb Mach-Zehnder调制器,通过电光效应加载到光波上,成为最后入纤所需的载有“信息”的光信号。 图1 光纤发送机原理图 图中存在4个观察仪,分别为两个示波器观察仪和一个光时域观察仪和一个光谱仪,用来观察输出的光信号的时域特点和光谱特点。

二、电路的仿真图与参数设计 1、示波器的显示与设计 由原理图的驱动电路1的电压改变量ΔV1和驱动电路2的电压改变量ΔV2是相同的。下图为MZ调制器的参数设定窗口。其中MZ调制器以正交模式工作,外置偏压位于调制器光学响应曲线的中点,使偏压强度为其峰值的一半。而消光系数设为200dB,以避免任何由于不对称Y型波导而导致的啁啾声。 图2 MZ调制器参数设计图 下面两个图为示波器的显示图,两个图的正负相反,是由于电增益的增益为负值, 图3 两个示波器的显示图

第五章 光检测器及光接收机

第五章 光检测器及光接收机 光接收机:把光发射机发送的携带有信息的光信号转化成相应的电信号并放大、再生恢复为原传输的信号。组成:光检测器、低噪声前置放大器、主放大器、均衡器以及滤波器等。 光检测器:将接收到的光信号转换成电信号。 5.1 光探测原理 一、PN 结的光电效应 光电检测器是利用半导体材料的光电效应实现光电转换的。 1.光电效应:在光的照射下,使物体中的电子脱出的现象叫做光电效应。 2.光电检测器核心器件:光电二极管(PD),是一个工作在反向偏压下的PN 结二极管。 3.PN 结的光电效应及条件:如图5.1 所示,当入射光子能量hf 小于禁带宽度E g 时,不论入射光有多强,光电效应也不会发生,即产生光电效应必须满足以下条件 hf ≥E g (5.1) 即光频f c < 的入射光是不能产生光电效应的,将f c 转换为波长,则 λc = (5.2) 即只有波长λ< λ c 的入射光,才能使这种材料产生光生载流子,故λc 为产生光电效应的入射光的最大波长,又称为截至波长,相应的f c 称为截至频率。 图5.1半导体材料的光电效应 二、光探测过程的基本原理 假设入射光子的能量hf 超过禁带能量E g ,是有几微米宽的耗尽区每次吸收一个光子,将产生一个电子空穴对,发生受激吸收。在PN 结施加反向电压的情况下,受激吸收过程生成的电子-空穴对在电场的作用下,分别离开耗尽层,电子向N 区漂移,空穴向P 区漂移,空穴和从负电极进入的电子复合,电子则离开N 区进入正电极。当电路闭合时,在外电路形成光生电流I P 。当入射功率变化时,光生电流也随之线性变化,从而把光信号变成电流信号。光生电流I P 与产生的电子空穴对和这些载流子运动的速度有关。也就是说直接与入射光功率P in 成正比,即 in P RP I = (5.3) 式中R 是光电检测器响应度(用A/W 表示)。由此式可以得到 in P P I R = (5.4) 响应度R 可以用量子效应表示,其定义是产生的电子数与入射光子数之比,即 h E g g E hc

光电检测考试复习题1

1、光源选择的基本要求有哪些? 答:①源发光的光谱特性必须满足检测系统的要求。按检测的任务不同,要求的光谱范围也有所不同,如可见光区、紫外光区、红外光区等等。有时要求连续光谱,有时又要求特定的光谱段。系统对光谱范围的要求都应在选择光源时加以满足。②光对光源发光强度的要求。为确保光电测试系统的正常工作,对系统采用的光源的发光强度应有一定的要求。光源强度过低,系统获得信号过小,以至无法正常测试,光源强度过高,又会导致系统工作的非线性,有时还可能损坏系统、待测物或光电探测器,同时还会导致不必要的能源消耗而造成浪费。因此在设计时,必须对探测器所需获得的最大、最小光适量进行正确估计,并按估计来选择光源。③对光源稳定性的要求。不同的光电测试系统对光源的稳定性有着不同的要求。通常依不同的测试量来确定。稳定光源发光的方法很多,一般要求时,可采用稳压电源供电。当要求较高时,可采用稳流电源供电。所用的光源应该预先进行月化处理。当有更高要求时,可对发出光进行采样,然后再反馈控制光源的输出。④对光源其他方面的要求。光电测试中光源除以上几条基本要求外;还有一些具体的要求。如灯丝的结构和形状;发光面积的大小和构成;灯泡玻壳的形状和均匀性;光源发光效率和空间分布等等,这些方面都应该根据测试系统的要求给以满足 2、光电倍增管的供电电路分为负高压供电与正高压供电,试说明这两种供电电路的特点,举例说明它们分别适用于哪种情况? 答:采用阳极接地,负高压供电。这样阳极输出不需要隔直电容,可以直流输出,一般阳极分布参数也较小。可是在这种情况下,必须保证作为光屏蔽和电磁屏蔽的金属筒距离管壳至少要有10~20mm,否则由于屏蔽筒的影响,可能相当大地增加阳极暗电流和噪声。如果靠近管壳处再加一个屏蔽罩,并将它连接到阴极电位上,则要注意安全。采用正高压电源就失去了采用负高压电源的优点,这时在阳极上需接上耐高压、噪声小的隔直电容,因此只能得到交变信号输出。可是,它可获得比较低和稳定的暗电流和噪声 3、在微弱辐射作用下,光电导材料的光电灵敏度有什么特点,?为什么要把光敏电阻制造成蛇形? 答:在微弱辐射下,光电导材料的光电灵敏度是定值,光电流与入射光通量成正比,即保持线性关系。 因为产生高增益系数的光敏电阻电极间距需很小(即t dr小),同时光敏电阻集光面积如果太小而不实用,因此把光敏电阻制造成蛇形,既增大了受光面积,又减小了极间距。 4、为什么结型光电器件在正向偏置时,没有明显的光电效应?它必须在那种偏置状态?为什么? 答:因为p-n结在外加正向偏压时,即使没有光照,电流也随着电压指数级在增加,所以有光照时,光电效应不明显。p-n结必须在反向偏压的状态下,有明显的光电效应产生,这是因为p-n结在反偏电压下产生的电流要饱和,所以光照增加时,得到的光生电流就会明显增加。 二~论述光电检测系统的基本构成,并说明各部分的功能。 1、下面是一个光电检测系统的基本构成框图: (1)光源和照明光学系统:是光电检测系统中必不可少的一部分。在许多系统中按需要选择一定辐射功率、一定光谱范围和一定发光空间、分布的光源,以此发出的光束作为载体携带被测信息。 (2)被测对象及光学变换:这里所指的是上述光源所发出的光束在通过这一环节时,利用各种光学效应,如反射、吸收、折射、干涉、衍射、偏振等,使光束携带上被检测对象的特征信息,形成待检测的光信号。光学变换通常是用各种光学元件和光学系统来实现的,实现将被测量转换为光参量(振幅、频率、相位、偏振态、传播方向变化等)。3)光信号的匹配处理:这一工作环节的位置可以设置在被检测对象前面,也可设在光学变换后面,应按实际要求来决定。光信号匹配处理的主要目的是为了更好地获得待测量的信息,以满足光电转换的需要。 (4)光电转换:该环节是实现光电检测的核心部分。其主要作用是以光信号为媒质,以光电探测器为手段,将各种经待测量调制的光信号转换成电信号(电流、电压或频率),以利于采用目前最为成熟的电子技术进行信号的放大、

相关文档
最新文档