高频变压器的分析与计算

合集下载

高频变压器电容量计算公式

高频变压器电容量计算公式

高频变压器电容量计算公式在高频变压器设计中,电容量的计算是非常重要的一部分。

电容量的大小直接影响着变压器的性能和稳定性。

因此,正确地计算电容量是非常关键的。

本文将介绍高频变压器电容量的计算公式,帮助读者更好地理解和应用这一重要知识。

首先,我们需要了解一些基本的概念。

在高频变压器中,电容量是指变压器绕组之间的电容。

电容的大小取决于绕组之间的绝缘性能和绕组的结构。

电容的计算需要考虑绕组的材料、绝缘层的厚度、绕组的布局等因素。

接下来,我们将介绍高频变压器电容量的计算公式。

在实际应用中,电容量的计算可以采用以下公式:C = 0.5 ε A / d。

其中,C表示电容量,单位为法拉(F);ε表示绝缘材料的介电常数;A表示绕组之间的有效面积;d表示绕组之间的绝缘距离。

在这个公式中,介电常数是绝缘材料的一个重要参数,它反映了绝缘材料的绝缘性能。

不同的绝缘材料具有不同的介电常数,因此在计算电容量时需要根据实际使用的绝缘材料来确定介电常数的数值。

绕组之间的有效面积是指绕组之间的有效绝缘面积,它取决于绕组的结构和布局。

通常情况下,绕组之间的有效面积可以通过绕组的几何形状和尺寸来计算得到。

绕组之间的绝缘距离是指绕组之间的绝缘层的厚度,它是影响电容量大小的重要因素。

绝缘距离越小,电容量越大;绝缘距离越大,电容量越小。

在实际应用中,我们还需要考虑一些其他因素。

例如,变压器的工作频率、工作温度、工作环境等因素都会对电容量的计算产生影响。

因此,在进行电容量计算时,需要综合考虑这些因素,以确保计算结果的准确性和可靠性。

除了上述的计算公式,还有一些其他的方法可以用来计算高频变压器的电容量。

例如,有些厂家会提供电容量计算软件,通过输入一些基本的参数,软件就可以自动计算出电容量的大小。

这些方法都可以帮助工程师更快速地进行电容量的计算,提高工作效率。

总之,高频变压器电容量的计算是一个复杂而重要的工作。

在实际应用中,需要综合考虑绝缘材料、绕组结构、工作环境等多个因素,以确保计算结果的准确性和可靠性。

高频变压器匝数

高频变压器匝数

高频变压器匝数【原创版】目录一、高频变压器简介二、高频变压器的匝数计算方法1.确定基本参数2.计算匝数比3.考虑损耗分配系数和电源效率三、高频变压器匝数比的影响因素1.电源频率2.磁芯固定3.电流大小四、高频变压器匝数减少的原因1.感性器件特性2.频率与感抗的关系五、如何计算高频变压器的线包线径及匝数1.线径计算公式2.匝数计算方法正文一、高频变压器简介高频变压器是一种应用于高频开关电源中的变压器,其主要作用是在高频率下进行电压和电流的变换。

与普通变压器相比,高频变压器具有更高的工作频率,更小的体积和更高的效率。

在高频变压器中,匝数是一个重要的参数,直接影响到变压器的性能和效果。

二、高频变压器的匝数计算方法1.确定基本参数在计算高频变压器的匝数之前,首先需要确定一些基本参数,包括交流输入电压的最大值和最小值、电网频率、开关频率、输出电压、输出功率和损耗分配系数等。

这些参数对于计算匝数具有重要的影响。

2.计算匝数比根据变压器的工作原理,匝数之比等于电压之比。

因此,可以通过计算输入电压与输出电压的比值,得到高频变压器的匝数比。

此外,还需要考虑电流大小对匝数比的影响。

3.考虑损耗分配系数和电源效率在计算高频变压器的匝数时,还需要考虑到损耗分配系数和电源效率。

损耗分配系数表示次级损耗与总损耗的比值,一般取 0.5。

电源效率一般取 75%~85%,具体取值取决于输出电压的大小。

三、高频变压器匝数比的影响因素1.电源频率电源频率是影响高频变压器匝数比的重要因素。

频率越高,感抗越大,因此需要的匝数就越少。

2.磁芯固定磁芯固定时,其电感量是匝数的正比函数。

因此,磁芯和绕组固定时,电感量就固定了,对匝数比的影响不大。

3.电流大小电流大小对匝数比的影响也非常明显。

电流越大,需要的匝数就越多;电流越小,需要的匝数就越少。

四、高频变压器匝数减少的原因1.感性器件特性变压器绕组是感性器件,磁芯固定时其电感量是匝数的正比函数。

开关电源 高频变压器 计算

开关电源 高频变压器 计算

开关电源高频变压器计算开关电源是一种将交流电转换为直流电的电源设备,广泛应用于各种电子设备中。

而高频变压器则是开关电源中的关键组件之一,用于实现电压的变换和隔离。

本文将从开关电源和高频变压器的工作原理、计算方法以及应用领域等方面进行介绍。

一、开关电源的工作原理开关电源通过不断开关的方式将输入的交流电转换为高频的脉冲电流,再经过整流、滤波等环节得到稳定的直流电。

其主要由输入端的滤波电容、整流桥、开关管、变压器、输出端的滤波电容和稳压电路等组成。

其中,开关管的开关频率决定了开关电源的工作频率,一般为几十kHz到几百kHz不等。

二、高频变压器的工作原理高频变压器是开关电源中的关键元件,主要用于实现输入端与输出端的电压变换和隔离。

其工作原理基于电磁感应定律,通过输入端的脉冲电流在变压器的磁场作用下产生电磁感应,从而实现电压的变换。

高频变压器通常由高导磁率的铁芯和绕组组成,绕组的匝数比决定了输入端与输出端的电压变换比。

三、高频变压器的计算方法在设计高频变压器时,需要根据具体的输入输出电压要求和功率需求进行计算。

一般来说,高频变压器的计算主要包括以下几个方面:1. 输入电压和输出电压:根据实际需求确定输入端和输出端的电压值。

2. 输入功率和输出功率:根据实际需求确定输入端和输出端的功率值。

3. 变压器的变比:根据输入端和输出端的电压值计算变压器的变比,即输入匝数与输出匝数的比值。

4. 变压器的铁芯截面积:根据输入功率和开关频率计算变压器的铁芯截面积,以满足工作时的磁通密度要求。

5. 绕组的匝数和线径:根据变压器的变比和输入、输出功率计算绕组的匝数和线径,以满足工作时的电流和功率要求。

四、开关电源和高频变压器的应用领域开关电源和高频变压器广泛应用于各种电子设备中,包括电脑、手机、通信设备、工控设备、医疗仪器等。

其优势在于体积小、效率高、稳定性好,能够满足现代电子设备对电源的高要求。

总结:开关电源和高频变压器作为现代电子设备中不可或缺的组件,通过将交流电转换为直流电并实现电压变换和隔离,为电子设备提供了稳定的电源供应。

开关电源高频变压器AP法计算方法

开关电源高频变压器AP法计算方法

开关电源高频变压器AP法计算方法开关电源的高频变压器在设计和计算时,常采用AP法(Amplitude and Phase Method),即幅相法。

该方法可以使计算过程更简洁,且准确度较高。

以下是使用AP法计算开关电源高频变压器的方法及步骤。

1.确定设计要求:- 输入电压:Vin- 输出电压:Vout- 输出功率:Pout- 输入频率:Fin- 输出频率:Fout-漏感相对占空比:D-反馈变压器线匝比:Np/Ns2.计算输出电流:输出电流Iout = Pout / Vout3.计算输入电流:输入电流Iin = Pout / Vin4.计算变压器线圈匝数:输入线圈匝数Np = Ns * Vin / Vout5.设计漏感:选择适当的漏感系数k,一般为0.3到1之间。

漏感Lp = k * (Np)^2 / Fin6.计算变压器参考电流:变压器参考电流Ir = Iout * Vin / Vout7.计算变压器参考电压:变压器参考电压Ur = Vout * (1 - D) * (Ns / Np)8.计算变压器的磁链:变压器的磁链Br = Ur / (Fout * A)其中,A为变压器的有效截面积,可根据铁心截面积和线圈层数来计算。

9.根据设计选取合适的磁芯材料:根据计算得到的磁链值Br,选择合适的磁芯材料,常见的磁芯材料有硅钢片、氧化锌和磁性体等。

10.计算变压器的磁芯截面积:由所选磁芯材料的B-H曲线,可以得到磁芯的饱和磁感应强度Bs,通过Ur和Fout的大小关系判断是否选择合适的磁芯尺寸。

11.计算变压器的线圈电流密度:线圈电流密度Jc=Ir/Ap其中,Ap为变压器的有效截面积。

12.计算变压器的线圈匝数:输出线圈匝数Ns = Ap * Jc / (2 * Iout)13.计算输入电压的有效值:输入电压的有效值Vin_rms = Vin / sqrt(2)14.计算输入电流的有效值:输入电流的有效值Iin_rms = Iin / sqrt(2)15.计算变压器的有效值电流密度:有效值电流密度J_rms = Iin_rms / Ap16.计算输入线圈匝数:输入线圈匝数Np = Ap * J_rms / (2 * Iin_rms)17.验证设计结果:使用计算得到的变压器参数进行实际设计和模拟验证,根据设计要求进行调整。

高频变压器简单计算方法

高频变压器简单计算方法

高频变压器简单计算方法
高频变压器是一种用于变换交流电压的电器设备。

虽然计算高频变压器的精确参数需要更加复杂的方法和考虑更多的因素,但是在一些简单的应用中,我们可以使用一些基本的计算方法来估算高频变压器的参数。

首先,我们需要知道高频变压器的输入电压(Vin)、输出电压(Vout)、频率(f)和功率(P)。

如果其中任何一个参数未知,我们可以使用其他已知参数来确定。

请注意,这些计算方法是基于一些基本的假设和限制的,可能会有一定的误差。

1. 估算变压器的输出电流:
变压器的输出电流(Iout)可以通过下面的公式进行估算:
Iout = P / Vout
2. 估算变压器的变比:
变比(N)表示输入电压和输出电压之间的比例关系。

可以通过下面的公式进行估算:
N = Vin / Vout
3. 估算变压器的电感:
变压器的电感(L)可以通过以下公式进行估算:
L = (Vout * N) / (2 * π * f * Iout)
这些是一些基本的计算方法,可以帮助我们初步估算高频变压器的一些参数。

然而,考虑到高频变压器的复杂性和一些特殊的应用要求,更精确的计算方法可能需要进一步的分析和模拟。

因此,在实际设计和应用中,建议咨询专业的电气工程师或使用专业的电路设计软件来确保准确性和可靠性。

请记住,电气设备涉及到高压和高电流,操作时务必小心谨慎,并遵循相应的安全规定。

高频变压器计算公式

高频变压器计算公式
Ip=2*Po / (η*Umin*Dmax)
Is=1.3Ip
S=0.15√pm―
W=1/2(Is+L2 )
Np=2*108 W / (Bm * S *Is)
Ns=Np*(Vo+Vd)Dmax /Umin*(1-Dmax)
公式3:
K=Uimax/Uimin
Dmin=Dmax / [(1-Dmax)k + Dmax]
2. 计算,
Vf=Vmos-Vin(max)dc-150 ; Vf 电感储能电压,150为余留的余量电压.
Np/Ns=Vf/ut
Vin(min)dc * Dmax=Vf*(1-Dmax)
1/2(Ip1+Ip2)*Dmax*Vin(max)dc =Pout/η ;Ip1为开关导通原边电流,Ip2为关断时电流.
一般工作在连续模式: 必须 Ip2=3Ip1
3,原边电感量:
Lp=Dmax*Vin(max)dc/ Fs *ΔIp
Δip=Ip2-Ip1=2Ip1
AwAe=(Lp*Ip22*104/Bw*Ko*Kj)1.14
公式2:
Lp=η*(Umin*Dmax)2 / (2*Po*f)
0805 = 0.125W
Ip=2Po / ( Uimin*Dmax)
Lp=Uimin*Dmax / (Ip*f)
Bmax=B/2
Np=Lp*Ip*104 /(Al*Bmax)
Ns= N1(Uo+Ud)(1-Dmax)/ (Uimin*Dmax)
2512 = 1W
2010 = 0.5W
1206 = 0.25W
高频变压器计算公式

高频变压器参数计算方法

高频变压器参数计算方法

高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S ⑴ Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l ⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:E L =⊿Ф / ⊿t * N ⑷E L = ⊿i / ⊿t * L ⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得:⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2 ⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系:Q L = 1/2 * I2 * L ⑼Q L -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特)N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用VRRM=100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM* k / 2) ⑾N1 ----- 初级匝数 VIN(max)------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿Vin(max)----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/V in(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全在设计变压器时,需要考虑多个因素,包括输入和输出电压、电流、功率、频率、磁通密度、磁路结构等。

下面是一些常用的变压器设计计算公式:1.需求计算公式:(1)计算输入和输出功率:P=V*I其中,P是功率,V是电压,I是电流。

(2)计算变压器变比:N=V1/V2其中,N是变比,V1是输入电压,V2是输出电压。

(3)计算输入和输出电流:I1=P/V1,I2=P/V2其中,I1是输入电流,I2是输出电流。

2.磁路计算公式:(1)计算磁路截面积:A=B/(f*μ*H)其中,A是磁路截面积,B是磁感应强度,f是频率,μ是磁导率,H 是磁场强度。

(2)计算磁通量:Φ=B*A其中,Φ是磁通量。

(3)计算铁心横截面积:S=Φ/B其中,S是铁心横截面积。

3.匝数计算公式:(1)计算初级匝数:N1=(V1*10^8)/(B*f*A)其中,N1是初级匝数。

(2)计算次级匝数:N2=(V2*10^8)/(B*f*A)其中,N2是次级匝数。

4.器件尺寸计算公式:(1)计算铁芯尺寸:U=1.8*(Lc/μ)*B*H/Bm其中,U是铁芯尺寸,Lc是直径或长度,B是磁感应强度,H是磁场强度,Bm是饱和磁感应强度。

(2)计算绕线长度:Lw=π*D*(N1+N2)其中,Lw是绕线长度,D是变压器内径。

(3)计算线径:d=(I*K)/(0.4*J*D)其中,d是线径,I是电流,K是充填系数,J是电流密度,D是变压器内径。

这些公式提供了一些变压器设计的基本计算方法。

在实际设计中,还需要考虑到其它因素,如损耗、效率、温升等,以确保设计的变压器满足要求。

高频变压器计算

高频变压器计算

高频变压器计算
高频变压器的计算可以按照以下步骤进行:
1. 确定输入电压和输出电压:根据需求确定输入电压和输出电压。

2. 确定输入电流和输出电流:根据功率平衡关系,可以通过输入电压和输出电压的比值,计算得到输入电流和输出电流。

3. 确定变比:根据输入电压和输出电压的比值,计算得到变比。

4. 确定变压器的参数:根据变比和输入输出电流的比值,可以计算得到变压器的参数,例如匝数比、绕组电流密度等。

5. 选择合适的铁芯:根据输出功率和工作频率,选择合适的铁芯材料和规格。

6. 计算绕组:根据变压器参数,计算得到绕组的匝数和截面积。

7. 考虑损耗:根据工作频率和功率大小,考虑变压器的铜损和铁损,进行损耗的计算和估计。

8. 进行热设计:根据变压器的功率和工作条件,进行热设计,确定散热方式和散热器的尺寸。

以上是高频变压器的计算步骤的一般流程,具体的计算方法还需要根据实际情况进行适当调整和估计。

高频变压器参数计算

高频变压器参数计算

高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷EL = ⊿i / ⊿t * L⑸⊿Ф----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S可得下式:N = ⊿i * L / ( B * S )⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I2 * L⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D))⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特)N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压:200--- 340 V输出直流电压:23.5V输出电流: 2.5A * 2输出总功率:117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿Vin(max) ----- 输入电压最大值Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

高频变压器计算

高频变压器计算

高频变压器计算1. 引言高频变压器在电子领域中具有广泛的应用,尤其在通信、电力电子、医疗器械等领域中扮演着重要的角色。

在设计高频变压器时,正确的计算方法可以保证其性能和可靠性。

本文将介绍高频变压器计算的基本原理和方法。

2. 变压器的基本原理变压器是基于电磁现象工作的电子设备,它通过电流的变化在一个线圈中产生磁场,进而将磁场传递给另一个线圈,并在另一个线圈中产生电流。

根据电磁感应定律,当一个线圈的磁场变化时,另一个线圈中就会产生感应电动势。

变压器是根据线圈的匝数比来调整输出电压和电流的。

在高频变压器中,由于工作频率较高,需要更细致的计算方法。

3. 高频变压器的主要参数在高频变压器的设计中,需要考虑以下几个主要参数:3.1 匹配阻抗在高频电路中,要达到最大功率传输,输入和输出线圈的阻抗需要匹配。

当输入线圈的阻抗与输出线圈的阻抗相等时,能够实现最大功率传输效率。

因此,通过计算输入线圈和输出线圈的等效电阻,并进行匹配阻抗计算,可以得到最佳的转换效率。

3.2 磁芯选材高频变压器中磁芯的选材非常重要。

磁芯的材料应具有低磁滞、低损耗和高饱和磁感应强度等特性。

常用的磁芯材料有硅钢片、铁氧体、纳米晶等。

根据应用需求和工作频率的不同,选择适合的磁芯材料可以提高变压器的效率和稳定性。

3.3 匝数比计算变压器的匝数比决定了输出电压与输入电压之间的比例关系。

在高频变压器设计中,需要根据所需的输出电压和输入电压计算匝数比。

根据变压器的工作原理以及电压和匝数的关系,可以使用以下公式进行计算:匝数比 = 输出电压 / 输入电压3.4 磁链密度计算磁链密度是指磁场中磁感应强度的大小。

磁链密度的计算是为了保证变压器在工作时不出现过磁和饱和现象,从而提高变压器的性能和可靠性。

通过根据磁芯的特性和工作条件,计算磁链密度的大小,并进行合理的选择和优化。

4. 高频变压器计算实例以一个具体的高频变压器为例,假设输入电压为12V,输出电压为120V,工作频率为1MHz。

开关电源高频变压器计算方法

开关电源高频变压器计算方法

开关电源高频变压器计算方法开关电源的高频变压器是将输入电压转换为所需的输出电压的重要组成部分。

它通过高频变换的方式实现高效的能量转换,广泛应用于电子设备中。

高频变压器的设计计算方法主要包括两个方面:核心参数的选择和线圈参数的计算。

首先,选择合适的核心材料和尺寸。

核心材料具有一定的磁导率和饱和磁感应强度,核心尺寸则决定了变压器的功率和体积。

常用的核心材料有铁氧体、磁性粉末等。

选材时需要考虑到工作频率、变压器功率和尺寸等因素。

通常情况下,铁氧体具有较高的磁导率和饱和磁感应强度,适合高功率和高频率应用。

对于线圈参数的计算,首先需要确定变压器的变比,即输入电压与输出电压的比值。

根据变比关系可以计算出变压器的匝数比,即一边的匝数与另一边的匝数的比值。

线圈的匝数选择是根据匝数比和变压器的额定功率决定的,一般情况下,使用更细的线条,匝数更多的线圈,可以提高输出压缩。

同时,还需要考虑到线圈的直径、绕线方式和绝缘层等因素。

其次,根据变压器的功率和工作频率,计算出线圈的电流和电压。

功率P1等于输入电流I1与输入电压U1的乘积,功率P2等于输出电流I2与输出电压U2的乘积。

然后,根据选定的核心材料的饱和磁感应强度,计算出变压器的磁通,进而可计算出变压器的感应电势。

最后,根据上述参数计算出线圈的匝数N,根据线圈的直径和形状计算出线圈的尺寸,根据变压器的额定功率计算出线圈的截面积,根据线圈的长度和材料的电阻率计算出线圈的电阻。

当上述参数计算完成后,还需要进行电磁特性仿真和电路参数优化,以确保变压器的性能与设计要求相符。

总之,开关电源高频变压器的计算方法涉及到核心参数的选择和线圈参数的计算。

通过合理的设计和优化,可以实现高效、稳定的能量转换。

高频变压器绕组绕制方式与分布电容大小分析与计算

高频变压器绕组绕制方式与分布电容大小分析与计算

⾼频变压器绕组绕制⽅式与分布电容⼤⼩分析与计算 随着开关变换器⾼频化,变压器分布电容对电流波形影响越来越明显,由于电容电压不能突变,模态转换时,电容等效为电压源释放电能产⽣尖峰电流。

以下是变压器绕组层间常见的四种绕制⽅法。

下⾯以实际的模型,推导计算C型与Z型绕法分布电容的⼤⼩。

规定沿绕组⾼度⽅向由底端向顶端为y⽅向,初级侧绕组底端电位差为Ua,顶端电位差为Ub,单层绕组的长度为h,两绕组之间的距离为m。

假设绕组均匀分布,则沿着绕组⾼度⽅向的电位线性变化。

若每⼀层绕组两端压差为U,则C型绕法任意⾼度y的电位差为: 根据电场能量的密度的定义: 可得,电场能量为: 其中:MLT为绕组平均周长 电场能量等效为: 解得: 同理:根据Z型绕法U(y)=U,为⼀个常数,可以得到等效的原边电容为: 以下是变压器绕组间常见的绕制⽅法: 初级侧绕组与次级侧绕组层间电容的分析不涉及绕组连接处绕制⽅式的问题,因此可以以平⾏板电容器为模型进⾏类⽐[2]。

式中:d:绝缘层厚度 S:两极板正对有效⾯积 h:绕组⾼度 下图左边为⼀般绕制⽅法的,右图为三明治⽅法绕制。

由于三明治绕制⽅法,Ns绕组两边都与Np绕组接触,所以,平⾏板电容正对⾯⾯积S较⼤。

但由于电压分布的原因,分布带内容不是严格的两倍关系。

故三明治绕制绕组间分布电容⼤于⼀般绕制⽅法。

下图为不同绕组布局,分布电容实验数据[1]。

验证了上⽂理论分析。

结论: 1、因为C型层间电压差数学关系,C型绕制分布电容⽐Z型绕制⼤。

2、将线圈匝数分为相等的n等分,相邻匝间的电压差为原来的1/n。

3、累进式绕法减⼩绕组分布电容的效果最佳参考⽂献: [1] 赵志英等.⾼频变压器分布电容的影响因素分析[J].中国电机⼯程学报,2008,28(9):55-60 [2] 杨欢等.⾼频变压器分布电容的影响因素分析[J].⼭西⼤学学报,2019,42(3):576-583。

高频变压器计算

高频变压器计算

高频变压器计算1. 引言高频变压器是一种在高频电路中使用的特殊类型的变压器。

它常用于无线电设备、通信设备和电力变换器等应用中。

本文将介绍高频变压器的基本理论和计算方法。

2. 高频变压器基本原理高频变压器是由至少两个线圈构成的互感器。

其基本原理是利用电磁感应现象,通过交流电的变化来传递能量。

在高频电路中,电流的变化非常快,因此需要采用特殊的材料和设计来满足高频环境下的要求。

3. 高频变压器的基本参数3.1 线圈匝数线圈匝数是高频变压器设计中的一个重要参数。

它决定了输入和输出的电压比例。

在选择线圈匝数时,需要考虑到负载要求和功率传输效率。

3.2 磁芯材料高频变压器的磁芯材料通常选择磁性材料,例如硅钢片或铁氧体。

这些材料具有较高的磁导率和低的磁滞损耗,可以提高变压器的效率和性能。

3.3 输入和输出电流输入电流和输出电流是高频变压器设计中的另外两个重要参数。

输入电流通常由电源提供,而输出电流则由负载消耗。

设计变压器时,需要确保输入和输出电流在可接受范围之内。

4. 高频变压器的计算方法4.1 计算输入和输出电压输入和输出电压是高频变压器设计中的首要考虑因素。

根据应用需求和电路特性,可以通过以下公式计算输入和输出电压:V_out = V_in * (N_out / N_in)其中,V_out 是输出电压,V_in 是输入电压,N_out 是输出线圈匝数,N_in 是输入线圈匝数。

4.2 计算变压器的工作频率高频变压器的工作频率通常在10 kHz到1 MHz之间。

确定工作频率是设计变压器的关键一步,它影响变压器的材料选择和线圈设计。

4.3 计算变压器的功率功率是变压器设计中的另一个重要参数。

可以通过以下公式计算变压器的输入和输出功率:P_in = V_in * I_inP_out = V_out * I_out其中,P_in 是输入功率,P_out 是输出功率,V_in 和 V_out 是输入和输出电压,I_in 和 I_out 是输入和输出电流。

基于高频变压器纳米晶磁芯损耗分析与计算

基于高频变压器纳米晶磁芯损耗分析与计算

基于高频变压器纳米晶磁芯损耗分析与计算一、纳米晶磁芯的特性纳米晶磁芯是指由纳米级晶粒组成的非晶态磁性材料,其在高频领域具有一系列优异的特性,包括低损耗、高饱和磁感应强度、高电导率等。

与传统的硅钢片相比,纳米晶磁芯具有更低的磁滞损耗和涡流损耗,因此在高频应用中能够更好地满足要求。

纳米晶磁芯的高饱和磁感应强度和低磁滞损耗使其能够在小体积和轻量化的电子设备中得到广泛应用。

二、高频变压器的损耗分析高频变压器的损耗主要包括铜损耗、铁心损耗和漏磁损耗。

铁心损耗是指由于磁芯材料在交变磁场中产生的磁滞损耗和涡流损耗。

纳米晶磁芯的低磁滞损耗和低涡流损耗使得其在高频变压器中能够显著降低铁心损耗,从而提高整个变压器的工作效率和稳定性。

三、纳米晶磁芯损耗的计算纳米晶磁芯的损耗可以通过磁滞损耗和涡流损耗两部分进行计算。

磁滞损耗主要与磁芯材料的磁滞特性有关,其计算公式为:\[P_{h} = \frac{\pi f B_{m}V}{6} \times 10^{-3} \]\(P_{h}\)为磁滞损耗(W),\(f\)为工作频率(Hz),\(B_{m}\)为有效磁感应强度(T),\(V\)为磁芯体积(m³)。

涡流损耗主要与磁芯材料的电导率和工作频率有关,其计算公式为:\[P_{e} = \frac{K_{e} B_{m}^2 f^2 t^2 V}{\rho} \]\(P_{e}\)为涡流损耗(W),\(K_{e}\)为涡流损耗常数,\(f\)为工作频率(Hz),\(B_{m}\)为有效磁感应强度(T),\(t\)为磁芯厚度(m),\(V\)为磁芯体积(m³),\(\rho\)为材料电导率(Ω·m)。

四、纳米晶磁芯的损耗特性纳米晶磁芯的损耗特性主要受到材料本身的特性和工作条件的影响。

纳米晶磁芯的损耗与工作频率呈正相关关系,即在高频条件下,其损耗会增加。

纳米晶磁芯的磁滞损耗主要与材料的饱和磁感应强度有关,而涡流损耗主要与材料的电导率有关。

高频变压器 效率

高频变压器 效率

高频变压器效率
高频变压器是指工作频率较高的变压器,其工作频率通常在数十千赫兹到数兆赫兹的范围内。

与传统的低频变压器相比,高频变压器在尺寸小、重量轻、效率高等方面具有一些优势。

变压器的效率通常是通过功率传输的效率来衡量,计算公式为:
Efficiency (%)=Input Power/Output Power×100高频变压器的效率受到多种因素的影响,以下是一些可能影响高频变压器效率的因素:
1.磁芯材料:高频变压器通常采用特殊的磁芯材料,如磁性材料
和铁氧体。

这些材料的选择直接影响变压器的磁导率和损耗,
从而影响效率。

2.绕组设计:高频变压器的绕组设计需要考虑电流密度、匝数等
因素,以最大限度地减小电阻和焦耳热损耗。

3.绝缘材料:高频变压器需要使用能够在高频条件下保持稳定性
的绝缘材料,以防止电容损耗和漏电流的增加。

4.开关频率:高频变压器通常与开关电源等高频电路一起使用。

开关频率的选择会影响变压器的性能和效率。

5.冷却系统:高频变压器在工作时可能会产生较多的热量,因此
高效的冷却系统对于维持其效率至关重要。

6.磁耦合和电容耦合:在高频条件下,磁耦合和电容耦合的影响
可能会比低频更为显著。

合理设计变压器结构以减小这些耦合
效应对效率的影响。

总体而言,高频变压器的设计和制造需要在上述多个方面进行综合考虑,以达到较高的效率水平。

高频变压器通常用于需要小型化和高效率的电源系统,例如电子设备、通信设备以及一些新能源技术中。

高频变压器参数计算公式

高频变压器参数计算公式

设计实例:要求:输入AC 220V±10%效率:80%工作频率 40KHZ输出电压 62V 电流:2A辅助绕组电压:20V/0.1A最大占空比: 0.48一.计算最小直流电压和最大直流电压Emin=220*0.9*1.1=218VEmax=220*1.1*1.4=339V二.计算输入功率和视在功率Pin==Po/η=62*2/0.8=155WPt=Po/η+Po=155+124=279w三.计算AP 值选择磁芯Pin*10²2*F*Bm*J*Ku*Ki279*10²2*40*103*0.15*4*0.4*1== 1.45选择PQ32/30磁芯Ae=1.6Aw=0.994Ap=1.6*0.994=1.59结果大于计算的值,符合要求。

材质选用PC40型。

四.计算初级电流峰值和有效值设定电路工作在连续模式,根据输入电压的范围取Krp 为0.6 2Pin Emin*Dmax*(2-Krp) 2*155 218*0.48*(2-0.6)= 2.1AIrms =Ip* Dmax*(Krp²/3-Krp+1)=2.1* 0.48*(0.6²/3-0.6+1)=1.05A五.计算初级电感量连续模式 Emin*Dmax Ip1 =Ip2(1-Krp) F*(Ip2-Ip1) =2.1*(1-0.6)=0.84 218*0.48 40*103*(2.1-0.84) =2.076mH 断续模式 Emin²*Dmax² 2*Pin*F 218²*0.48² 2*155*40*103=883.0uH=Lp==AP ==Aw*Ac== ==Ip = = Lp =六.计算初级、次级、反馈绕组的圈数 Dmax Upmin 计算变压比:n=1-Dmax Up2 =0.482181-0.4862= 3.2454初级圈数 Emax*104 4*F*Bm*Ae339*1044*40*103*0.15*1.61=87.7TS 取整数88TS 次级圈数 Np Np*(1-Dmax)*Us1n Upmin* Dmax= Np 88n 3.2454=27TS反馈圈数Np*(1-Dmax)*Us1 Upmin* Dmax=8.7TS 取9TS 八.核算临界电感量(H )T2Pin 2 0.000025 2*155=882.8uH计算出的结果和断续模式的电感一致。

开关电源高频变压器计算方法

开关电源高频变压器计算方法

开关电源高频变压器计算方法高频开关电源是一种采用高频变压器工作的电源装置,其工作原理是:将输入电压通过高频开关元件进行开关控制,将电能储存于磁性器件中,再经过变压器转换为需要的输出电压。

在高频开关电源中,高频变压器起着关键的作用。

本文将详细介绍高频变压器的计算方法。

一、高频变压器的基本参数在计算高频变压器之前,需要了解以下几个基本参数:1. 输入电压(Vin):即交流电源的输入电压,一般选择标准的电压值,如220V。

2. 输出电压(Vout):根据实际电路需求选择适当的输出电压。

3. 输出功率(Pout):根据实际电路负载情况选择适当的输出功率。

4.工作频率(f):高频开关电源的工作频率一般在10kHz以上,常见的有20kHz、50kHz等。

5. 变比(N):高频变压器的变比是指输入电压与输出电压的比值,即N=Vout/Vin。

二、主要计算步骤计算高频变压器的方法主要包括以下几个步骤:1. 计算输入电流(Iin):根据输出功率和输入电压,可以通过Pout=Vin*Iin计算得到输入电流的值。

2.计算变压器的变比(N):一般情况下,变比N的取值范围为1到10之间,通常的选择是在1.5到2之间。

3. 计算变压比(Vratio):变压比是指输入电压与输出电压之间的比值,即Vratio=Vout/Vin。

4. 计算变压器的一次侧(primary)匝数(Np):一次侧匝数的计算公式为Np = Vout*Vratio/(4*f*Vin)。

5. 计算变压器的二次侧(secondary)匝数(Ns):二次侧匝数的计算公式为Ns = Np/N。

6. 计算变压器的磁路积(Ap):磁路积是变压器的一个重要参数,定义为Ap = Np*Iin/(Bmax*f),其中,Bmax是磁路中磁感应强度的最大值,通常取1.2T。

7.计算磁路截面积(Ae):变压器的磁路截面积决定了磁路元件的尺寸和负载能力,一般情况下,可以通过取Ap的值选择适当的磁路截面积。

高频变压器参数计算方法.pdf

高频变压器参数计算方法.pdf

高频变压器参数计算一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S ⑴ Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米)B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l ⑶ I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:E L =⊿Ф / ⊿t * N ⑷ E L = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S ) ⑹且由⑸式直接变形可得: ⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:Q L = 1/2 * I 2 * L ⑼Q L -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D)) ⑽N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特)N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用V RRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式: N1/N2 = V IN(max) / (V RRM * k / 2) ⑾N1 ----- 初级匝数 V IN(max) ------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿ V in(max) ----- 输入电压最大值 Vo ----- 输出电压Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V) 4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/V in(min)+N1/N2*(Vo+Vd) ⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

EE型变压器参数及高频变压器计算

EE型变压器参数及高频变压器计算

EE型变压器参数及高频变压器计算变压器是电能传输和配电系统中常用的电器设备之一、根据国家标准,变压器分为EE型变压器和EI型变压器两种,其中EE型变压器是指芯片截面面积比较大的变压器。

一、EE型变压器参数:1.铁芯参数:EE型变压器的铁芯由铁芯片和绝缘胶片组成。

铁芯片的材料通常是硅钢片,其主要特点是磁导率较高,电阻较低,有效地利用磁能量。

绝缘胶片的材料通常是聚酯薄膜,其主要作用是隔离铁芯与绕组之间的电场,以减小绝缘损耗。

2.匝数参数:EE型变压器的绕组由一组主绕组和若干组辅助绕组组成。

主绕组是用来实现变压器的升压和降压功能,通常由导线绕制在铁芯上。

辅助绕组是用来实现变压器的附加功能,如供电、测量等。

EE型变压器的匝数参数通常通过变压器的额定容量和额定电压来确定。

3.额定容量和额定电压:额定容量指的是变压器所能承受的最大功率,通常以千瓦(kVA)为单位。

额定电压指的是变压器的输入端和输出端的电压,通常以伏特(V)为单位。

EE型变压器的额定容量和额定电压是根据实际需要来确定的,以保证变压器的运行稳定性和安全性。

二、高频变压器计算:高频变压器是指工作频率在100kHz以上的变压器。

在设计高频变压器时,需要考虑以下几个参数:1.工作频率:高频变压器的工作频率通常是由所需应用决定的。

在选择变压器的铁芯和绕组材料时,需要考虑到电磁感应损耗和磁滞损耗对变压器性能的影响。

2.铁芯参数:高频变压器的铁芯由磁性材料构成,通常使用高导磁率的金属合金或软磁性粉末材料。

铁芯的选择应考虑到材料的损耗特性、磁场饱和特性以及成本等因素。

3.匝数参数:高频变压器的绕组通常采用多层绕线或Litz线。

多层绕线可以减小相邻线圈之间的尽线电容,提高变压器的工作效率。

Litz线则可以减小自感和互感效应,提高变压器的频率响应。

4.温升参数:高频变压器的运行温度通常比低频变压器高,需要通过有效的绕组散热设计来保证变压器的可靠性和寿命。

在设计过程中,需要考虑到变压器的功率损耗和材料的热传导系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3高频变压器的分析与计算采用现代电力电子技术的设备,其工作频率都在KHz到几十KHz。

设备中所使用的各种变压器的磁芯一般都选用铁氧体、坡莫合金等适合高频应用的材料而不能使用普通的硅钢片,另外,由于集肤效应的存在,变压器的各绕组多采用多股并绕的方式,这些特点都与工频变压器完全不同。

多种电力电子变换电路都采用高频变压器,但由于电路结构的不同,高频变压器的工作电磁过程也不相同,因此高频变压器的设计方法也各有特点。

研究高频变压器的设计计算方法,不但是开发电力电子产品所必需的,同时也可以加深对电力电子设备工作过程中电磁量变化规律的理解,定量地掌握各电参数之间的关系,因此对更好地使用和维护电力电子设备也有重要的意义。

5.3.1 单端正激式输出变压器的计算图5-8是正激式直流变换器的输出部分,图中电力电子开关S是单向的,与初级绕组Np 串联;次级绕组Ns与整流二极管VD1相串联,将变换后的电能整流后输出给负载;Ni是消磁绕组,将S关断后磁路中储存的剩余电能回馈给电源。

单端正激式电路的输出变压器的工作模式属于电流单方向变化的情况,B-H的运动轨迹在第一象限,与纵轴相交,如图5-5所示。

图5-8 单端正激式变换器的高频变压器对高频变压器的设计内容是,根据工程要求,把电源电压U i、输出功率P O、效率η、工作频率f、占空比D等做为已知条件,再通过选择磁性和导电材料确定最大磁感应强度变化量ΔB m,最后计算出各绕组的匝数、导线截面积或直径、以及磁芯的形状和尺寸。

磁芯的形状和尺寸一般无法专门定做,可在系列产品中选取符合计算结果的磁芯。

一般通过如下步骤进行计算。

1.确定磁芯大小反映磁芯尺寸和形状一般由磁芯窗口面积W 和磁芯截面积S C 的乘积来反映,乘积WS C 越大,说明磁芯体积越大。

一般采用以下经验公式来计算WS C143.1)9.11(fB K P WS m OC η∆= (5.7) 式中ΔB m 为磁感应强度变化量(T ),对于铁氧体磁芯一般为0.15T ;P O 为输出功率(W );f 为占波器的工作频率(Hz )。

系数K=K O K P 。

K O 为窗口使用系数,反映窗口被绕组填充的情况,一般取0.35;K P 为绕线系数,一般取0.43。

计算出的WS C 乘积的单位为cm 4。

计算出WS C 后,应从有关磁芯资料中查找与计算结果相近的WS C 实际值,但实际值不应小于式(5.7)的计算结果。

2.计算初级绕组的匝数初级绕组的计算公式为4max min 10×∆=fB S D U Np mC i (5.8) 式中:U imin ——电源电压最小值(V );D max ——最大占空比;f ——工作频率(Hz );S C —— 磁芯截面积(cm 2); ΔB m ——磁感应强度变化量(T )。

式(5.8)可由法拉第定律得出,在电子开关闭合时,dt Npd U i /Φ=。

如果认为磁通随时间是线性增长的,则t Np U i ∆∆Φ=/。

每次磁通增长过程的时间是工作周期T 与占空比的乘积,即f D DT t /==∆。

而在上述时间中,磁感应强度从0增长到ΔB m ,B 与S C 的乘积就是磁通,所以C m S B ∆=∆Φ。

考虑到电源电压最低、占空比最大时最容易出现输出功率不足的情况,将U i 用U imin 代替,D 用D max 代替,整理后就是式(5.8)。

3.计算次级绕组和消磁绕组的匝数由于次级绕组N S 与初级绕组N P 为同一磁路,所以在电子开关闭合时,N S 与N P 的端电压符合变比关系,即S i S P U U N N //=。

次级绕组两端的电压为脉冲形式,占空比为D ,经二极管整流后,电压平均值也就是输出电压U O 应再乘以D 。

多数单端式直流变换器为降压型,输出电压比较低,这样就不能忽略整流二极管的直流压降U D 。

根据上述原则,次级绕组由下式计算P i O D S N U D U U N minmax )(+= (5.9) 至于消磁绕组,其电压与初级绕组是一样的,所以它的匝数与初级绕组也应该相同,p i N N = (5.10)4.计算各绕组导线的截面积和直径首先计算初级绕组的电流。

初级绕组的电流平均值与电源电压U i 的乘积就是输入功率P i ,但初级电流是不断变化的,即使在S 导通期间,电流也是从小到大线性增长的,所以初级最大电流I P 要比初级平均电流大。

而确定导线的直径或截面积要依据最大电流,由于材料、功率、频率等因素的差异,精确地计算初级电流最大值有一定的难度。

通常计算的方法是在平均电流的基础上再除以一个小于1的系数K T ,根据经验,可取K T =0.707。

Ti O P K U P I ηmin = (5.11) 有了最大电流的数值,在根据绕组的导线材料所允许的最大电流密度,就可以确定导线的截面积了。

对于铜质导线,可选电流密度J m =4A/mm 2。

这样初级绕组导线的截面积S P 由下式确定m P P J I S /= (5.12)为了克服集肤效应的不良影响,通常对工作频率较高的变压器绕组采用多股并绕的方法,设初级绕组的股数为G P ,则每股导线的直径d P 为πP P P S G d 1= (5.13) 类似地,次级绕组的导线截面积S S 、直径d S 分别为m O S J I S /= (5.14)式中I O ——负载电流。

πS S S S G d 41= (5.15) 消磁绕组的匝数与初级绕组相同,其中也不会通过较大的电流,所以不必多股并绕,只确定其导线直径和截面积即可。

当电子开关关断后,消磁绕组中流过的电流为激磁电流,这个电流通常在初级总电流的5%到10%范围,因此消磁绕组的导线截面积S i 和导线直径d i 分别为mP i J I S )1.0~05.0(= (5.16) πi i S d 4= (5.17) 5.3.2 单端反激式输出变压器的计算就磁场的变化规律而言,反激式变压器与正激式变压器是一样的。

但是,反激式变换器的电路工作原理与正激式是不同的,所以在变压器的设计和计算方面两者有着较大的差别。

图5-9是反激式变换电路输出部分的原理图,图中的变压器更多地存在着一些电感的属性。

当电子开关闭合时,由于次级感应电压的极性使得二极管承受反压,二极管截止而次级绕组中没有电流,电流流过初级绕组相当于给一个电感储存能量。

在电子开关断开时,初级电流即刻消失,电感的储能通过次级绕组经导通着的二极管向负载释放。

所以,这种变压器的计算应从计算电感入手。

图5-9 反激式变换电路的输出部分1.初级电感的计算首先计算初级绕组的电流最大值。

电子开关S 闭合后,初级电流从0开始上升,如果忽略回路的电阻,电流的变化规律是线性的。

当S 再度断开时,电流上升到最大值I Pm 。

在S 导通期间(t on )初级电流的平均值为I Pm /2。

接下来是S 关断的一段时间t off ,这段时间初级绕组中没有电流。

两段时间之和为周期T 。

令占空比D = t on /T ,不难看出,整个周期中电流的平均值为I PA V =D I Pm /2。

这样就可以确定,电源的输出功率P i =U i I PA V 。

如果效率为η,输出功率为P O =P i I PA V 。

这样,初级电流最大值可由下式得出DU P I i O Pm η2= (5.18) 由初级电流最大值可求出由初级绕组形成的电感L 1,初级绕组中的电流i P 在S 导通时直线上升,其变化规律为t U L i i P 11= 当t = t on 时,i P 恰好为最大值I Pm ,即I Pm = t on U i /L 1,由此可得出fI D U L Pm i =1(H ) (5.19) 2.磁芯气隙的计算 反激式变压器相当与一个电感,为了防止电感磁饱和,通常在磁路中留有气隙。

气隙的厚度l g 是电感设计中的一个重要参数。

l g 可由下式求出2214.0mC Pm g B S I L l ∆=π(cm ) (5.20) 式中S C ——磁芯截面积(cm );ΔB m ——磁感应强度变化量(T );I Pm ——初级电流最大值(A )对于式(5.20)可做以下解释,对于有气隙的磁路,由于气隙中的磁阻比其它部位大得多,可以认为磁场能量绝大部分集中在气隙中。

气隙的体积V =S C l g ,气隙中磁场能量密度为2/BH w L =,气隙中的导磁率μ=4π×10-7H/m ,如果B 的单位为G S ,则W L =BH =B 2/(2×0.4π),由图5-5可看出,对于单方向激磁的变压器,如果忽略了剩磁B r ,最大磁感应强度变化量ΔB m 就是最大磁感应强度的绝对值B m 。

最大能量密度为)4.02/(2π×∆=m Lm B w ,这样最大磁场能量为 π4.0212m C g Lm Lm B S l V w E == (5.21) 另一方面,从电路的角度,电感的储能为2121Pm Lm I L E = (5.22) 联立式(5.21)和式(5.22)就可得到式(5.20)。

3.初级匝数N P 的计算初级绕组的匝数为N P ,电流为I P ,设磁路长度为l ,磁场强度为H 。

如果磁路各点的导磁率相等,有N P I P =l H = lB/μ。

但是加入气隙后,气隙中的导磁率要比其它部位大得多,方程变为N P I P =l 1 B/μ1+l g B/μg式中l 1为减去气隙后磁路其它部分的长度,μ1为其导磁率;l g 为气隙长度,μg 为气隙中的导磁率。

由于μ1比μg 大得多,上式可近似为N P I P = l g B/μg将最大磁场强度变化量ΔB m (T )、最大初级电流I Pm (A ),代入上式,并取l g 单位为cm ,可得出4104.0×∆=Pm g m P I l B N π (5.23)4.次级绕组N S 的计算 电子开关接通时电路的电压方程为U i =N P d φ/dt ,认为磁场的变化是线性增长的,在t =DT 时,磁通量达到最大值Φm ,则此时方程为DTN U m P i Φ= (5.24) 电子开关断开时,整流二极管导通,次级电路的 电压方程为U S =N S d φ/dt 。

由于磁通不能突变,磁通Φm 从开始下降,到t =(1-D )T 时下降到0,此瞬间的电压方程为TD N U m S S )1(−Φ= (5.25) 式中U S 应包括负载电压U O 和二极管导通压降U D 。

联立式(5.24)和(5.25)得次级匝数的计算公式为iO D P S DU D U U N N )1)((−+= (5.26) 导线直径和截面积的计算与正激式变压器相同,不再重复。

相关文档
最新文档