三角函数两角和差公式及其基本练习题
两角和与差的三角函数公式(含答案)

两角和与差的三角函数公式一、单选题(共10道,每道10分)1.已知函数的图象的一个对称中心是点,则函数的图象的一条对称轴是直线( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:正弦函数的对称性2.若的值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:两角和与差的余弦公式3.在△ABC中,若,则△ABC的形状一定是( )A.等边三角形B.直角三角形C.钝角三角形D.不含60°的等腰三角形答案:B解题思路:试题难度:三颗星知识点:三角形的形状判断4.若△ABC中,,则的值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:两角和与差的余弦公式5.已知,且都是锐角,则的值是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:两角和与差的余弦公式6.设都是锐角,且,则的值是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:两角和与差的余弦公式7.若都是锐角,的值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:两角和与差的余弦公式8.已知,则的值是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:两角和与差的正弦公式9.的值是( )A.2B.4C.6D.8答案:B解题思路:试题难度:三颗星知识点:两角和与差的正切公式10.的值是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:运用诱导公式化简求值。
两角和与差的三角函数、二倍角公式

tan β=-17>-1,所以 0<α<π4,34π<β<π,则 0<2α<π2,-π<-β<-34π,-π<
2α-β<-π4,所以 2α-β=-34π.
总结 提炼
1.解决三角函数求值问题的关键是把“所求角”用“已知角”表示.(1) 当“已知角”有
两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2) 当“已知角”有一个 时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把 “所求角”变成“已知角”.
A.-2245
B.2245
C.274
D.-274
【解析】因为-π3<θ<π6,所以 0<θ+π3<π2,所以 cos θ+π3=35,故 tan θ+π3=43,
tan
2θ+π6 = tan
2θ+3π-π2 =
sin cos
2θ+π3-π2 2θ+π3-π2
=
-
cos sin
2θ+π3 2θ+π3
=
2 2
C.tan 15°=2- 3
D.12sin 40°+ 23cos 40°=sin 70°
【解析】sin 2+π2=cos 2,故 A 正确; cos 73°·cos 28°+sin 73°sin 28°=cos (73°-28°)=cos
45°=
22,故
B
正确;
tan 15°=tan (60°-45°)=1+3-13=2- 3,故 C 正确;
2.常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+2 β-α-2 β,α=α+2 β
+α-2 β,α-2 β=α+β2-α2+β等.
研题型 能力养成 举题说法
1.(2023·梅州一模)已知 sin α+π6=13,则 cos 23π-2α=
两角和与差及二倍角的三角函数公式必修四

2.1两角和与差及二倍角的三角函数公式一、选择题1.sin163°sin223°+sin253°sin313°等于( )A .-12 B.12 C .- 32 D.322.log 2sin π12+log 2cos π12的值为( ) A .4 B .-4 C .-2 D .23.(2011年辽宁)设sin ⎝⎛⎭⎫π4+θ=13,则sin2θ=( )A .-79B .-19 C.19 D.794.若3sin α+cos α=0,则1cos 2α+sin2α的值为( ) A.103 B.53 C.23D .-2 5.(2011年湖北)已知函数f (x )=3sin x -cos x ,x ∈R ,若f (x )≥1,则x 的取值范围为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x ≤k π+π,k ∈Z B.⎩⎨⎧⎭⎬⎫x |2k π+π3≤x ≤2k π+π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π6≤x ≤k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π6≤x ≤2k π+5π6,k ∈Z 二、填空题6.函数y =2cos 2x +sin2x 的最小值是______________.7.(2010年全国)已知α是第二象限的角,tan(π+2α)=-43,则tan α=________. 8.(2010年浙江)函数f (x )=sin ⎝⎛⎭⎫2x -π4-2 2sin 2x 的最小正周期是________. 9.已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4=________. 三、解答题10.已知向量a =(cos θ,sin θ),向量b =(3,1).(1)当a ⊥b 时,求tan2θ;(2)求|a +b |的最大值.11.(2010年天津)在△ABC 中,AC AB =cos B cos C .(1)证明:B =C ;(2)若cos A =-13,求sin ⎝⎛⎭⎫4B +π3的值.1.B 2.C 3.A 4.A 5.B 6.-2+1 7.-128.π 9.-566510.解:(1)a ⊥b ⇔3cos θ+sin θ=0(cos θ≠0)⇔3+tan θ=0⇔tan θ=-3,∴tan2θ=2tan θ1-tan 2θ=-2 31-(-3)2= 3. (2)∵a +b =(cos θ,sin θ)+(3,1)=(cos θ+3,sin θ+1), ∴|a +b |=(cos θ+3)2+(sin θ+1)2=cos 2θ+2 3cos θ+3+sin 2θ+2sin θ+1=5+2 3cos θ+2sin θ =5+4⎝⎛⎭⎫12sin θ+32cos θ=5+4sin (θ+60°). 当sin(θ+60°)=1时,|a +b |max =5+4=3. 11.解:(1)证明:在△ABC 中,由正弦定理及已知得 sin B sin C =cos B cos C,于是sin B cos C -cos B sin C =0,即sin(B -C )=0. 因为-π<B -C <π,从而B -C =0.所以B =C .(2)由A +B +C =π和(1)得A =π-2B ,故cos2B =cos(π-A )=-cos A =13. 又0<2B <π,于是sin2B =1-cos 22B =2 23. 从而sin4B =2sin2B cos2B =4 29, cos4B =cos 22B -sin 22B =-79. 所以sin ⎝⎛⎭⎫4B +π3=sin4B cos π3+cos4B sin π3=4 2-7 318.。
(完整版)三角函数和差公式练习题

第 12 课时三角函数和差公式及协助角公式1. 函数 y=sin ( 2x+) +cos (2x+)的最小正周期和最大值分别为( )63A,1B, 2 C 2,1D 2, 22、cos 2 =-2,则 cos+sin的值为()sin() 243. 函数 y=sin ( x+) sin ( x+ )的最小正周期 T 是( )324、函数f (x) sin(2x)2 2 sin 2x的最小正周期是 ________ .4y sin(x)cos( 6x) 5. 函数2的最大值为 _________________- 。
6. 已知函数f ( x)cos(2 x)2sin( x)sin(x)344(Ⅰ)求函数(Ⅱ)求函数f ( x) 的最小正周期和图象的对称轴方程f ( x) 在区间 [ , ] 上的值域12 27. 已知函数f ( x ) =3 sin(x)cos( x)(0π,0)本小题满分12 分)为偶函数,且函数 y =f ( x ) 图象的两相邻对称轴间的距离为π.2(Ⅰ)美洲 f (π)的值;8π(Ⅱ)将函数= f ( ) 的图象向右平移个单位后,再将获得的图象上各点的横坐标快乐长到本来的4 倍,yx6纵坐标不变,获得函数 y =g ( x ) 的图象,求 g ( x ) 的单一递减区间 .f ( x)4cos x sin( x) 18. 已知函数 6 。
(Ⅰ)求f (x)的最小正周期:,(Ⅱ)求f (x)在区间64上的最大值和最小值。
f ( x)2sin( 1x), x R.9. 已知函数36f (5)(1 )求4的值;,0,, f (3a)10, f (32 ) 6,)的值.(2 )设22 135 求 cos(f ( x)7 )3 ), x Rsin( xcos(x10、已知函数 44(1 )求 f (x)的最小正周期和最小值;11. 已知函数 f (x ) =2cos (x+)cos (x-) +3 sin2x ,求它的值域和最小正周期44π112.已知 cos α-4 = ,则 sin2 α的值为 ()477 3 3A. 8B.- 8 C. 4D .- 413.已知 sinα-π1π()3 = ,则 cos + α 的值为36112 32 3A. 3B .- 3C.3 D .- 3π214.函数 f ( x ) =sin 2 -- 2x4 2sin x 的最小正周期是 ________.15. y =sin(2 x -π) - sin2 x 的一个单一递加区间是 ()3ππ π7513π 5πA . [ - 6 , 3 ]B . [ 12, 12π]C .[ 12π, 12π ]D .[ 3 , 6 ]16.设函数 f ( x ) = 2 c os(2 x + π) +sin 2x2 4( Ⅰ ) 求函数 f ( x ) 的最小正周期; (2) 写出函数 f ( x ) 的单一递加区间.18.已知函数f ( x ) cos x cos( x) .3(1) 求f ( 2) 的值; (2)求对称轴和对称中心;(3)求使f ( x )1 建立的 x 的取值会合 . 3419.已知函数f (x)3 cos(2 x - )2sin x cos x .3(I) f(x)的最小正周期;(II)求证:当x[, ] 时, f1 x442。
高一数学两角和与差的三角函数试题答案及解析

高一数学两角和与差的三角函数试题答案及解析1.的值为_____.【答案】【解析】【考点】1.两角和的余弦公式;2.特殊角的三角函数值.2.计算 = .【答案】【解析】.【考点】两角差的正弦公式.3.;【答案】.【解析】把原式提取即,然后利用特殊角的三角函数值及两角和的正弦函数公式化简得原式.【考点】两角和与差的正弦函数.4.已知,,分别为三个内角,,的对边, =sin cos.(1)求;(2)若=,的面积为,求,.【答案】(1) ;(2)【解析】(1) 根据正弦定理可将变形为。
因为角三角形的内角,所以,可将上式变形为。
用化一公式即两角和差公式的逆用将上式左边化简可得,根据整体角的范围可得的值,即可得角的值。
(2)由三角形面积可得。
再结合余弦定理可得的值,解方程组可得的值。
解 (1)由=sin cos及正弦定理得sin sin+cos sin-sin=0,由sin≠0,所以sin(+)=,又0<<π,+故=.(2)△ABC的面积=sin=,故=4.由余弦定理知2=2+2-2cos,得代入=,=4解得,故【考点】1正弦定理;2三角形面积公式;3余弦定理。
5.设的值等于____________.【答案】【解析】由题可知.【考点】两角差的正切公式.6.已知,为第三象限角.(1)求的值;(2)求的值.【答案】(1),; (2),.【解析】(1)由同角间的基本关系式与的范围可得;(2)由两角和的正弦和倍角的正切公式展开可得.试题解析:解:(1),为第三象限角,; 3分; 6分由(1)得, 9分. 12分【考点】同角间的基本关系,两角和的正弦,倍角公式的正切公式.7.在中,内角A,B,C所对的边分别为a,b,c,且.(1)求A;(2)设,为的面积,求+的最大值,并指出此时B的值.【答案】(1)(2)当时,+取得最大值3.【解析】(1)由结合条件,易求得可求出A的值;(2)由,由正弦定理,得出代入+化简可知时取得最大值3.试题解析:(1)由余弦定理,得,又∵,∴A=. (5分)(2)由(1)得,又由正弦定理及,得,∴+=,∴当时,+取得最大值3. (13分)【考点】主要考查正弦定理,余弦定理,两角和的余弦公式.8.已知向量,,且(1)求及(2)若-的最小值是,求的值。
高三数学两角和与差的三角函数试题答案及解析

高三数学两角和与差的三角函数试题答案及解析1.已知0<α<π,sin 2α=sin α,则tan=________.【答案】-2-【解析】由sin 2α=sinα,可得2sin αcos α=sin α,又0<α<π,所以cos α=.故sin α=,tan α=.所以tan===-2-.2.函数y=sin(+x)cos(-x)的最大值为()A.B.C.D.【答案】B【解析】∵sin(+x)cos(-x)=cosx(cos cosx+sin sinx)=cos2x+sinxcosx=(1+cos2x)+sin2x=+cos2x+sin2x=+(cos2x+sin2x)=+sin(2x+)∴函数y=sin(+x)cos(-x)的最大值为3.在中,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)解三角形问题,通常利用正余弦定理进行边角转化.由正弦定理得:,.(2)由(1)及条件知三角形三边,故用余弦定理求角. 由,得,由同角三角函数关系,可得,再由二倍角公式得到,,因此=.试题解析:(1)因为 ,(2)=所以 ,【考点】正余弦定理, 同角三角函数关系, 二倍角公式4.已知,,则.【答案】3【解析】因为,所以【考点】两角和的正切公式5.已知,,则.【答案】3【解析】因为,所以【考点】两角和的正切公式6.已知向量,,,函数.(1)求函数的表达式;(2)求的值;(3)若,,求的值.【答案】(1) (2) (3)【解析】(1)利用两向量内积的坐标计算公式(两向量的横纵坐标对应相乘再相加)即可得到的函数解析式.(2)由(1)可得的函数解析式,把带入函数即可得到的值.(3)把等式带入,利用诱导公式(奇变偶不变符号看象限)化简等式即可得到的值,正余弦的关系即可求出的值,再把带入函数即可得到,再利用和差角和倍角公式展开并把的值带入即可得到的值.试题解析:(1)∵,,,∴,即函数. (3分)(2)(6分)(3)∵,又,∴,即. (7分)∵,∴. (8分)∴,(9分). (10分)∴(11分). (12分)【考点】正余弦和差角与倍角公式诱导公式内积公式7.若sinα=,sinβ=,且α、β为锐角,则α+β的值为__________.【答案】【解析】(解法1)依题意有cosα==,cosβ==,∴cos(α+β)=>0.∵α、β都是锐角,∴ 0<α+β<π,∴α+β=.(解法2)∵α、β都是锐角,且sinα=<,sinβ=<,∴ 0<α,β<,0<α+β<,∴cosα==,cosβ==,sin(α+β)=.∴α+β=.8.已知0<β<<α<π,cos(-α)=,sin(+β)=,求sin(α+β)的值.【答案】【解析】∵<α<,∴-<-α<-,∴-<-α<0.又cos(-α)=,∴ sin(-α)=-.∵ 0<β<,∴<+β<π.又sin(+β)=,∴ cos(+β)=-.∴sin(α+β)=-cos =-cos[(+β)-(-α)]=-cos cos-sin(+β)·sin=9.已知α、β∈,sinα=,tan(α-β)=-,求cosβ的值.【答案】【解析】∵ α、β∈,∴-<α-β<.又tan(α-β)=-<0,∴-<α-β<0.∴=1+tan2(α-β)=.∴ cos(α-β)=,sin(α-β)=-.又sinα=,∴ cosα=.∴ cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=×+×=10.设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=________.【答案】-(x)=,【解析】f(x)=sin(x-φ),则fmax依题意sin θ-2cos θ=,即sin θ=+2cos θ,代入sin2θ+cos2θ=1,得(cos θ+2)2=0.∴cos θ=-.11.如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π),C点坐标为(-2,0),平行四边形OAQP的面积为S.(1)求·+S的最大值;(2)若CB∥OP,求sin的值.【答案】(1)+1(2)【解析】(1)由已知,得A(1,0),B(0,1),P(cos θ,sin θ),因为四边形OAQP是平行四边形,所以=+=(1,0)+(cos θ,sin θ)=(1+cos θ,sin θ).所以·=1+cos θ.又平行四边形OAQP的面积为S=||·| |sin θ=sin θ,所以·+S=1+cos θ+sin θ=sin +1.又0<θ<π,所以当θ=时,·+S的最大值为+1.(2)由题意,知=(2,1),=(cos θ,sin θ),因为CB∥OP,所以cos θ=2sin θ.又0<θ<π,cos2θ+sin2θ=1,解得sin θ=,cos θ=,所以sin2 θ=2sin θcos θ=,cos2θ=cos2θ-sin2θ=.所以sin=sin 2θcos-cos 2θsin=×-×=.12.若α,β∈(0,π),cos α=-,tan β=-,则α+2β=________.【答案】【解析】由条件得α∈,β∈,所以α+2β∈(2π,3π),且tan α=-,tan β=-,所以tan 2β==-,tan(α+2β)==-1,所以α+2β=.13.求证:(1)(2)【答案】证明见解析.【解析】三角恒等式的证明也遵循从繁化简的原则,当然三角函数还有函数名称的转化与角的转化.(1)本题从左向右变化,首先把左边分子用两角差的正弦公式展开,就能证明,当然也可从右向左转化(切化弦),;(2)这个证明要求我们善于联想,首先左边的和怎么求?能否变为两数的差(利用裂项相消的思想方法)?这个想法实际上在第(1)小题已经为我们做了,只要乘以(因为每个分母上的两角的差都是),每个分式都化为两数的差,而且恰好能够前后项相消.试题解析:证明:(1) 3分6分(2)由(1)得() 8分可得10分12分即. 14分【考点】两角差的正弦公式,同角三角函数关系.14.若对∀a∈(-∞,0),∃θ∈R,使asin θ≤a成立,则cos的值为 ().A.B.C.D.【答案】A【解析】∵asin θ≤a⇔a(sin θ-1)≤0,依题意,得∀a∈(-∞,0),有asin θ≤a.∴sin θ-1≥0,则sin θ≥1.又-1≤sin θ≤1,因此sin θ=1,cos θ=0.故cos=sin θsin+cos θcos=.15.已知向量,,函数(Ⅰ)求的最大值;(Ⅱ)在中,设角,的对边分别为,若,且,求角的大小.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)由向量数量积的定义只需将其化为一个角的三角函数就能求出的最大值.(Ⅱ)由(Ⅰ)的结果和正弦定理:,又 ,所以,,由以上两式即可解出,.试题解析:(Ⅰ) 2分4分(注:也可以化为)所以的最大值为. 6分(注:没有化简或化简过程不全正确,但结论正确,给4分)(Ⅱ)因为,由(1)和正弦定理,得. 7分又,所以,即, 9分而是三角形的内角,所以,故,, 11分所以,,. 12分【考点】1.正弦定理;2、两角和与差的在角函数公式、倍角公式;3、三角函数的性质.16.已知是方程的两根,则=_______.【答案】1【解析】本题考查两角和的正切公式,,而与可由韦达定理得.【考点】韦达定理与两角和的正切公式.17.在中,角的对边分别为,已知:,且.(Ⅰ)若,求边;(Ⅱ)若,求的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)先由条件用和差公式化简,再根据三角形内角范围得到角.再由得到角,最后由正弦定理得到;(Ⅱ)先由余弦定理及条件得到,又因为,从而可知为直角三角形,其中角为直角.又,所以.既而得到三角形的面积.试题解析:(Ⅰ)由已知,所以,故,解得. (4分)由,且,得.由,即,解得. (7分)(Ⅱ)因为,所以,解得. (10分)由此得,故为直角三角形.其面积. (12分)【考点】1.两角和差公式;2.正弦定理;3.余弦定理.18.设向量,,其中,若,则.【答案】【解析】两边平方化简得,,又,是单位向量,所以即,又,所以.【考点】三角函数、平面向量.19.如图,在半径为、圆心角为60°的扇形的弧上任取一点,作扇形的内接矩形,使点在上,点在上,设矩形的面积为.(Ⅰ) 按下列要求写出函数关系式:①设,将表示成的函数关系式;②设,将表示成的函数关系式.(Ⅱ) 请你选用(Ⅰ)中的一个函数关系式,求的最大值.【答案】(Ⅰ)详见解析;(Ⅱ).【解析】(Ⅰ)①要用表示矩形的面积,关键是把用表示,在中可表示出,在中可表示出,即得;②在中,可用表示和,在在中可用即表示出,即得;(Ⅱ)对(Ⅰ)中函数,是常见的函数或三角函数问题,较为容易解答,求出其最大值.试题解析:(Ⅰ) ①因为,所以,又,所以 2分故() 4分②当时, ,则,又,所以6分故() 8分(Ⅱ)由②得= 12分故当时,取得最大值为 15分【考点】函数的应用、三角函数.20.设是锐角三角形,分别是内角所对边长,并且.(1)求角的值;(2)若,求(其中).【答案】(1) ;(2) .【解析】(1) 利用两角和与差的正弦公式展开化简得,又为锐角,所以;(2)由可得,即,然后利用余弦定理得的另一个关系,从而解出.试题解析:(1)因为,所以,又为锐角,所以.(2)由可得①由(1)知,所以②由余弦定理知,将及①代入,得③③+②×2,得,所以因此,是一元二次方程的两个根.解此方程并由知.【考点】两角和与差的正弦定理、平面向量的数量积、余弦定理.21.,,则的值为( )A.B.C.D.【答案】D【解析】,因为,所以,则.【考点】两角和与差的正余弦公式.22.设是方程的两个根,则的值为A.-3B.-1C.1D.3【答案】A【解析】因为是方程的两个根,所以由二次方程根与系数的关系可以得到,所以【考点】本题主要考查二次方程的根与系数的关系,以及两角和的正切公式。
高一 两角和与差的余弦、正弦、正切公式知识点+例题+练习 含答案

1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β))cos(α+β)=cos αcos β-sin αsin β (C (α+β))sin(α-β)=sin αcos β-cos αsin β (S (α-β))sin(α+β)=sin αcos β+cos αsin β (S (α+β))tan(α-β)=tan α-tan β1+tan αtan β(T (α-β)) tan(α+β)=tan α+tan β1-tan αtan β(T (α+β)) 2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.化简cos 40°cos 25°1-sin 40°= . 答案 2解析 原式=cos 40°cos 25°1-cos 50°=cos (90°-50°)cos 25°·2sin 25°=sin 50°22sin 50°= 2. 2.若sin α+cos αsin α-cos α=12,则tan 2α= . 答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3, 则tan 2α=2tan α1-tan 2α=34. 3.(2015·重庆改编)若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17. 4.(教材改编)sin 347°cos 148°+sin 77°cos 58°= .答案 22 解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°=(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22. 5.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 . 答案 17250解析 ∵α为锐角,cos(α+π6)=45, ∴α+π6∈⎝⎛⎭⎫π6,2π3,∴sin(α+π6)=35, ∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425, ∴cos(2α+π3)=2cos 2(α+π6)-1=725, ∴sin(2α+π12)=sin(2α+π3-π4) =22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= . (2)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是 .答案 (1)-75(2) 3 解析 (1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π, ∴cos α=-45. ∴原式=-75. (2)∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2 α=-231-(-3)2= 3. 思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α= . (2)已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 . 答案 (1)35(2)-1 解析 (1)∵tan(α+π4)=tan α+11-tan α=17, ∴tan α=-34=sin αcos α, ∴cos α=-43sin α. 又∵sin 2α+cos 2α=1,∴sin 2α=925. 又∵α∈(π2,π),∴sin α=35. (2)cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x ) =3cos(x -π6)=-1. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为 . (2)求值:cos 15°+sin 15°cos 15°-sin 15°= . 答案 (1)22(2) 3 解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22. (2)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为 .(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为 . 答案 (1)π4(2)3 解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A ,所以A =π4.(2)f (x )=1-cos ⎣⎡⎦⎤2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎫2x -π3+1, 可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 . 答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β).因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525. (2)∵cos(α-π6)+sin α=453, ∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453, ∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45. 思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2= . 答案 539解析 cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2, ∵0<α<π2,∴π4<π4+α<3π4, ∴sin ⎝⎛⎭⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2, ∴sin ⎝⎛⎭⎫π4-β2=63. 故cos ⎝⎛⎭⎫α+β2=13×33+223×63=539.5.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为 .(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A = . 易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误. (2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角.解析 (1)∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1 =2×49×5729-1=-239729. (2)在△ABC 中,∵cos B =-34, ∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin 2(A +B )=-53, ∴cos A =cos [(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B=⎝⎛⎭⎫-53×⎝⎛⎭⎫-34+23×74=35+2712. 答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧]1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练(时间:40分钟)1.cos 85°+sin 25°cos 30°cos 25°= . 答案 12解析 原式=sin 5°+32sin 25°cos 25°=sin (30°-25°)+32sin 25°cos 25°=12cos 25°cos 25°=12. 2.若θ∈[π4,π2],sin 2θ=378,则sin θ= . 答案 34解析 由sin 2θ=378和sin 2θ+cos 2θ=1得 (sin θ+cos θ)2=378+1=(3+74)2, 又θ∈[π4,π2],∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34. 3.若tan θ=3,则sin 2θ1+cos 2θ= . 答案3 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3. 4.已知cos α=-55,tan β=13,π<α<32π,0<β<π2,则α-β的值为 . 答案 54π 解析 因为π<α<32π,cos α=-55,所以sin α=-255,tan α=2,又tan β=13,所以tan(α-β)=2-131+23=1,由π<α<32π,-π2<-β<0得π2<α-β<32π,所以α-β=54π. 5.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= . 答案 322解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎫β-π4, 所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 6.sin 250°1+sin 10°= .答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α= . 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)= . 答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2), 所以cos 2θ=1-sin 22θ=35, 所以sin(2θ+π4) =sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210. 9.已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值.解 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. B 组 专项能力提升(时间:20分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)= . 答案 -255解析 由tan(α+π4)=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0, 所以sin α=-1010. 故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α =-255. 12.已知α∈⎝⎛⎭⎫0,π2,且sin 2α-sin αcos α-2cos 2α=0,则tan ⎝⎛⎭⎫π3-α= . 答案 8-5311解析 ∵sin 2α-sin αcos α-2cos 2α=0,cos α≠0,∴tan 2α-tan α-2=0.∴tan α=2或tan α=-1,∵α∈⎝⎛⎭⎫0,π2,∴tan α=2, tan ⎝⎛⎭⎫π3-α=tan π3-tan α1+tan π3tan α =3-21+23=(3-2)(23-1)(23-1)(23+1)=8-5312-1=8-5311. 13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3= . 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23, 又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝⎛⎭⎫π2-x +sin x +a 2sin ⎝⎛⎭⎫x +π4的最大值为2+3,则常数a = . 答案 ±3解析 f (x )=1+2cos 2x -12cos x+sin x +a 2sin ⎝⎛⎭⎫x +π4=cos x +sin x +a 2sin ⎝⎛⎭⎫x +π4 =2sin ⎝⎛⎭⎫x +π4+a 2sin ⎝⎛⎭⎫x +π4 =(2+a 2)sin ⎝⎛⎭⎫x +π4. 依题意有2+a 2=2+3, ∴a =±3.15.已知函数f (x )=1-2sin ⎝⎛⎭⎫x +π8 ·⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8. (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π2,π12,求函数f ⎝⎛⎭⎫x +π8的值域. 解 (1)函数f (x )=1-2sin ⎝⎛⎭⎫x +π8[sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8] =1-2sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π8cos ⎝⎛⎭⎫x +π8 =cos ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x +π4=2sin ⎝⎛⎭⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π. (2)由(1)可知f ⎝⎛⎭⎫x +π8=2cos ⎝⎛⎭⎫2x +π4. 由于x ∈⎣⎡⎦⎤-π2,π12, 所以2x +π4∈⎣⎡⎦⎤-3π4,5π12, 所以cos ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 则f ⎝⎛⎭⎫x +π8∈[-1,2], 所以f ⎝⎛⎭⎫x +π8的值域为[-1,2].。
高三数学两角和与差的三角函数试题

高三数学两角和与差的三角函数试题1.在△ABC中,己知,sinB= sinCcos,又△ABC的面积为6(Ⅰ)求△ABC的三边长;(Ⅱ)若D为BC边上的一点,且CD=1,求.【答案】(Ⅰ) 3,4,5;(Ⅱ)【解析】(Ⅰ)由及sinB= sinCcos得sinCcos= =,所以=0,因为,所以,所以,由平面向量数量积及三角形面积公式即可求出tanA的值,在Rt△ACB中,tanA=,求出,代入三角形面积公式求出,利用勾股定理求出c;(Ⅱ)由(Ⅰ)知tan∠BAC=,由三角函数定义知tan∠DAC=,利用两角差的正切公式可求得tan∠BAD.试题解析:(Ⅰ)设三边分别为∵,∴sin(A+C)=sinCcosA,化为sinAcosC+cosAsinC=sinCcosA,∴sinAcosC=0,可得又两式相除可得令则三边长分别为3,4,5,(8分)(Ⅱ)由(Ⅰ)知tan∠BAC=,由三角函数定义知tan∠DAC=,所以tan=tan(∠BAC-∠DAC)=== (12分)【考点】三角变换,平面向量数量积,三角形面积公式,运算求解能力2.函数y=sin(+x)cos(-x)的最大值为()A.B.C.D.【答案】B【解析】∵sin(+x)cos(-x)=cosx(cos cosx+sin sinx)=cos2x+sinxcosx=(1+cos2x)+sin2x=+cos2x+sin2x=+(cos2x+sin2x)=+sin(2x+)∴函数y=sin(+x)cos(-x)的最大值为3.已知函数的最小正周期是.(1)求的单调递增区间;(2)求在[,]上的最大值和最小值.【答案】(1) ; (2)最大值、最小值【解析】(1)首先利用三角恒等变换将函数解析式化为,然后根据周期公式确定的值.最后利用正弦函数的单调性求出的单调递增区间(2)由试题解析:解:(1)= 3分最小正周期是所以,从而 5分令,解得 7分所以函数的单调递增区间为 8分(2)当时, 9分11分所以在上的最大值和最小值分别为、. 12分【考点】1、三角函数的恒等变换;2、函数的性质;4. sin75°cos30°-sin15°sin150°=__________.【答案】【解析】sin75°cos30°-sin15°sin150°=sin75°cos30°-cos75°·sin30°=sin(75°-30°)=sin45°=5.已知tan(α+β)=,tan β=-,则tan α=________.【答案】1【解析】tan α=tan[(α+β)-β]==1.6.已知向量,.(1)若,求的值;(2)若,,求的值.【答案】(1);(2).【解析】(1)由易得,代入式子中可约去为求出其值;(2)先求出,再对两边平方化简可得关于和的关系式,联立正弦余弦的平方关系解方程组可得和的值,代入的展开式,就可求出其值.试题解析:⑴由可知,,所以, 2分所以. 6分(2)由可得,,即,① 10分又,且②,由①②可解得,, 12分所以. 14分【考点】向量的数量积、模的计算,同角三角函数的关系、两角和与差的正弦.7.已知函数f(x)=2cos2x―sin(2x―).(Ⅰ)求函数的最大值,并写出取最大值时x的取值集合;(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=,b+c=2,求实数a的最小值。
三角函数的两角和差及倍角公式练习题之令狐文艳创作

三角函数的两角和差及倍角公式练习题令狐文艳一、选择题:1、若)tan(,21tan ),2(53sin βαβπαπα-=<<=则的值是A .2B .-2C .211D .-2112、如果sin cos ,sin cos x x x x =3那么·的值是 A .16B .15C .29D .3103、如果的值是那么)4tan(,41)4tan(,52)tan(παπββα+=-=+A .1318B .322C .1322D .-13184、若f x x f (sin )cos ,=⎛⎝ ⎫⎭⎪232则等于A .-12B .-32C .12D .325、在∆ABC A B A B 中,··sin sin cos cos ,<则这个三角形的形状是A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形二、填空题: 6、角αβαβ终边过点,角终边过点,则(,)(,)sin()4371--+=; 7、若αα23tan ,则=所在象限是;8、已知=+-=⎪⎭⎫⎝⎛+θθθθθπsin 2cos cos sin 234cot ,则; 9、=︒︒-︒+︒70tan 65tan 70tan 65tan ·;10、化简3232sin cos x x +=。
三、解答题: 11、求的值。
·︒︒+︒100csc 240tan 100sec12、的值。
,求已知)tan 1)(tan 1(43βαπβα--=+13、已知求的值。
cos ,sin cos 23544θθθ=+14、已知)sin(2)(sin 053tan ,tan 22βαβαβα+++=-+的两个根,求是方程x x·cos()αβ+的值。
答案: 一、 1、B2、D 提示: tan x = 3, 所求122sin x , 用万能公式。
3、B 提示:()απαββπ+=+--⎛⎝ ⎫⎭⎪444、A 提示: 把x =π3代入5、B 提示: ∵cos(A + B ) > 0∴角C 为钝角。
专题03 两角和与差的三角函数(知识串讲+热考题型+专题训练)(解析版)

专题3两角和与差的三角函数(一)两角和与差的余弦C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;C(α+β):cos(α+β)=cosαcosβ-sinαsinβ;【点拨】①简记为:“同名相乘,符号反”.②公式本身的变用,如cos(α-β)-cosαcosβ=sinαsinβ.③公式中的α,β不仅可以是任意具体的角.角的变用,也称为角的变换,如cosα=cos[(α+β)-β],cos2β=cos[(α+β)-(α-β)].(二)两角和与差的正弦S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;S(α-β):sin(α-β)=sinαcosβ-cosαsinβ;【点拨】①简记为:“异名相乘,符号同”.②公式中的α,β不仅可以是任意具体的角,还可以是任意形式的“整体”.(三)两角和与差的正切T(α+β):tan(α+β)=tanα+tanβ1-tanαtanβ;.T(α-β):tan(α-β)=tanα-tanβ1+tanαtanβ【点拨】1公式T α±β只有在α≠2π+k π,β≠2π+k π,α±β≠2π+k π(k ∈Z )时才成立,否则就不成立.②当tan α或tan β或tan(α±β)的值不存在时,不能使用T α±β处理有关问题,但可改用诱导公式或其他方法.③变形公式:tan α+tan β=tan(α+β)(1-tan αtan β),tan α-tan β=tan(α-β)(1+tan αtan β),如tan α+tan β+tan αtan βtan(α+β)=tan(α+β),tan(α+β)-tan α-tan β=tan αtan βtan(α+β),1-tan αtan β=tan tan tan()αβαβ++.1+tan αtan β=tan tan tan()αβαβ--.(四)辅助角公式函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=sin(α+φ)或f(α)=-φ),其中φ可由a ,b 的值唯一确定.4sin(2cos sin πααα±=±.题型一公式的正用【典例1】【多选题】(2022春·江苏徐州·高一统考阶段练习)如图,在平面直角坐标系xOy 中,角α、β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A 、B 两点,若点A 、B 的坐标分别为34,55⎛⎫ ⎪⎝⎭和43,55⎛⎫- ⎪⎝⎭,则以下结论正确的是()A .3cos 5α=B .3cos 5β=C .()cos 0αβ+=D .()cos 0αβ-=【答案】AD(0,π)β∈,则tan()αβ+的值为______.【典例3】(2023·江苏·高一专题练习)已知tan ,4αα=-是第四象限角.(1)求cos sin αα-的值;(2)求ππcos ,tan 44αα⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭的值.正用公式问题,一般属于“给角求值”、“给值求值”问题,应该通过应用公式,转化成“特殊角”的三角函数值计算问题.给角求值问题的策略:一般先要用诱导公式把角化整化小,化“切”为“弦”,统一函数名称,然后观察角的关系以及式子的结构特点,选择合适的公式进行求值.题型二公式的变用、逆用【典例4】(2022春·江苏泰州·高一江苏省姜堰第二中学校联考阶段练习)已知sin100cos100M =︒-︒,44cos 78cos 46cos12)N =︒︒+︒︒,1tan101tan10P -︒=+︒,那么M ,N ,P 之间的大小顺序是()A .M N P <<B .N M P<<C .P M N<<D .P N M<<A cos15︒︒B .2cos 15sin15cos75︒︒︒-C .2tan 301tan 30︒︒-D .1tan151tan15︒︒+-【答案】AD【分析】运用辅助角公式、诱导公式、和差角公式的逆用、特殊角的三角函数值、三角恒等变换中“1”的代换化简即可.(1)1-tan75°1+tan75°;(2)(1+tan1°)(1+tan2°)…(1+tan44°);(3)tan25°+tan35°+3tan25°tan35°.【答案】(1)3-;(2)222;(3【解析】尝试使用两角和与差的正切公式及其变形式对原式进行变形求值.详解:(1)原式=tan45°-tan75°1+tan45°tan75°tan(45°-75°)=33-.(2)因为(1+tan1°)(1+tan44°)=1+tan1°+tan44°+tan1°×tan44°=2,同理(1+tan2°)(1+tan43°)=2,…,所以原式=222.(3)∵tan60°=tan(25°+35°)=tan25°+tan35°1-tan25°tan35°=,∴tan25°+tan35°=3(1-tan25°tan35°)∴tan25°+tan35°.【规律方法】1.“1”的代换:在T α±β中如果分子中出现“1”常利用1=tan45°来代换,以达到化简求值的目的.2.若α+β=4π+k π,k ∈Z ,则有(1+tan α)(1+tan β)=2.3.若化简的式子里出现了“tan α±tan β”及“tan αtan β”两个整体,常考虑tan(α±β)的变形公式.题型三给值求值【典例7】(2023·江苏·高一专题练习)已知34sin sin ,cos cos 55+=+=αβαβ,则cos()αβ-=()A .12-B .13-C .12D .34取得最大值,则πcos 24θ⎛⎫+= ⎪⎝⎭()A .B .12-C D【典例9】(2021春·江苏南京·高一校考阶段练习)已知cos 27βα⎛⎫-=- ⎪⎝⎭,1sin 22αβ⎛⎫-= ⎪⎝⎭,2απ<<π,02βπ<<,求:(1)cos2αβ+的值;tanαβ+的值.(2)()给值求值问题的解题策略.(1)从角的关系中找解题思路:已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,根据需要灵活地进行拆角或凑角的变换.(2)常见角的变换.①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).题型四给值求角【典例10】(2022春·江苏南通·高一金沙中学校考期末)已知()0παβ∈,,,1tan()2αβ-=,1tan 7β=-,则2αβ-=()A .5π4B .π4C .π4-D .3π4-1,0,,cos 222π2a a βαββ⎛⎫⎛⎫⎛⎫∈-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求αβ+的值.解题的一般步骤是:(1)先确定角α的范围,且使这个范围尽量小(极易由于角的范围过大致误);(2)根据(1)所得范围来确定求tan α、sin α、cos α中哪一个的值,尽量使所选函数在(1)得到的范围内是单调函数;(3)求α的一个三角函数值;(4)写出α的大小.题型五三角函数式化简问题【典例12】(2022春·江苏镇江·高一统考期末)计算:70cos10︒︒=︒()A .1B .2C .3D .4【答案】C【分析】根据两角差的正弦公式化简求解即可.【详解】【典例13】(2022春·江苏泰州·高一校考阶段练习)已知,且()(),22k k k k ππαβπα+≠+∈≠∈Z Z ,则()tan tan αβα+=___________.1.三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用.(3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用.2.注意三角函数公式逆用、变形用及“变角、变名、变号”的“三变”问题(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,33,23入特殊角,把“值变角”构造适合公式的形式.题型六三角恒等式证明问题【典例14】(2023春·上海浦东新·高一校考阶段练习)求证:(1)22sin cos 1sin cos 1cot 1tan αααααα+=-++;(2)在非直角三角形ABC 中,tan tan tan tan tan tan A B C A B C ++=【典例15】(2023·高一课时练习)求证:(1)当18045()k k αβ+=⋅︒+︒∈Z 时,(1tan )(1tan )2αβ++=;(2)当180()k k αβγ++=⋅︒∈Z 时,tan tan tan tan tan tan αβγαβγ++=⋅⋅.【答案】(1)证明见解析(2)证明见解析【分析】(1)根据正切两角和公式求解即可.(2)根据正切两角和公式求解即可.【详解】(1)因为18045()k k αβ+=⋅︒+︒∈Z 所以(1tan )(1tan )αβ++1tan tan tan tan αβαβ=+++()()1tan 1tan tan tan tan αβαβαβ=++-+()()1tan 451801tan tan tan tan k αβαβ=++⋅-+ ()1tan 451tan tan tan tan αβαβ=+-+ 11tan tan tan tan αβαβ=+-+2=.即证:(1tan )(1tan )2αβ++=.(2)因为180()k k αβγ++=⋅︒∈Z 所以tan tan tan αβγ++()()tan 1tan tan tan αβαβγ=+-+()()tan 1801tan tan tan k γαβγ=⋅--+ ()tan 1tan tan tan γαβγ=--+tan tan tan αβγ=⋅⋅.即证:tan tan tan tan tan tan αβγαβγ++=⋅⋅.【总结提升】三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目.(2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.提醒:开平方时正负号的选取易出现错误,所以要根据已知和未知的角之间的关系,恰当地把角拆分,根据角的范围确定三角函数的符号.一、单选题1.(2023秋·江苏连云港·高一江苏省海头高级中学校考期末)5cos 12π=()A B C D2.(2023·江苏·高一专题练习)化简tan tan 44A A ⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭()A .2tan AB .2tan A-C .2tan 2AD .2tan 2A-,,1,2b =,且a b ⊥,则()tan 45θ-︒的值是()A .1B .3-C.3D .134.(2023·江苏·高一专题练习)若1tan θ-=+,则cot 4θ⎛⎫+ ⎪⎝⎭的值为().A .12B C D .1【答案】C5.(2023·江苏·高一专题练习)在ABC 中,若cos 5A =,cos 13B =-,则cos()A B +等于()A .1665-B .3365C .5665D .6365-6.(2023·江苏·高一专题练习)若cos 5θ=-且(,π)2θ∈,则πsin 3θ⎛⎫+ ⎪⎝⎭的值为()A B.410+-C D 7.(2022春·江苏苏州·高一统考期中)已知02α<<,02β<<,且()sin 5αβ-=-,12sin 13β=,则sin α=()A .6365B .5665C .3365D .1665-合,将角α的终边绕O 点顺时针旋转π3后,经过点()3,4-,则sin α=()A B C D .9.(2022春·江苏泰州·高一校考阶段练习)对任意的锐角αβ、,下列不等关系恒成立的是()A .()sin cos cos αβαβ+<+B .()cos sin sin αβαβ+<+C .()sin cos cos αβαβ-<+D .()cos sin sin αβαβ-<+【答案】ACA .1sin15222-=-B .sin20cos10cos160sin102-C .sin1212ππ=D .sin105=11.(2023·江苏·高一专题练习)化简:πtan 3π13αα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭______.12.(2023秋·陕西西安·高一西安市第六中学校考期末)已知α,β满足04α<<,44β<<,3cos 45πα⎛⎫+= ⎪⎝⎭,π12sin 413β⎛⎫+= ⎪⎝⎭,则()sin αβ-=______.13.(2023春·湖北黄冈·高一校考阶段练习)求sin 36sin15sin 39cos36cos15sin 39︒︒︒-︒︒+︒的值.()cos ,sin b ααβ=- ,且a b ⊥ .(1)求()cos αβ+的值;(2)若0,2πα⎛⎫∈ ⎪⎝⎭,,2πβπ⎛⎫∈ ⎪⎝⎭且tan 3α=-,求2αβ+的值.︒︒+︒︒+︒︒=,tan10tan20tan20tan60tan60tan101tan20tan30tan30tan40tan40tan201︒︒+︒︒+︒︒=,tan33tan44tan44tan13tan33tan131︒︒+︒︒+︒︒=.(1)尝试再写出一个相同规律的式子;(2)写出能反映以上式子一般规律的恒等式,并对你写出的恒等式进行证明.。
高三数学两角和与差的三角函数试题

高三数学两角和与差的三角函数试题1.已知0<α<π,sin 2α=sin α,则tan=________.【答案】-2-【解析】由sin 2α=sinα,可得2sin αcos α=sin α,又0<α<π,所以cos α=.故sin α=,tan α=.所以tan===-2-.2. sin2012°=()A.sin32°B.﹣sin32°C.sin58°D.﹣sin58°【答案】B【解析】sin2012°=sin(5×360°+212°)=sin212°=sin(180°+32°)=﹣sin32°.故选B3.设函数满足.(1)求的单调递减区间;(2)设锐角的内角所对的边分别为,且,求的取值范围.【答案】(1) ;(2)【解析】(1)由函数,运用二倍角公式的逆运算,即可将化成一个角的和差的正余弦形式.再结合基本函数的单调性,通过解不等式即可得到的单调递减区间.(2)因为,结合余弦定理化简后再根据正弦定理,即可得到角B的值,又由(1)所得的函数关系,即可求出角A的范围.试题解析:(1)由得:,∴∴由得:,∴的单调递减区间为:(2)∵,由余弦定理得:,即,由正弦定理得:,,,∴∵△锐角三角形,∴,∴的取值范围为.【考点】1.三角函数的二倍角公式.2.三角函数的化一公式.3.运用正弦定理、余弦定理解三角形.4.三角不等式的解法.4.求sin210°+cos240°+sin10°cos40°的值.【答案】【解析】(解法1)因为40°=30°+10°,于是原式=sin210°+cos2(30°+10°)+sin10°cos(30°+10°)=sin210°++sin10°·(cos10°-sin10°)=(sin210°+cos210°)=.(解法2)设x=sin210°+cos240°+sin10°cos40°,y=cos210°+sin240°+cos10°sin40°.则x+y=1+1+sin10°cos40°+cos10°sin40°=2+sin50°=2+cos40°,x-y=cos80°-cos20°-=-sin50°-=-cos40°-.因此2x=,故x=5.设α、β∈(0,π),且sin(α+β)=,tan=,则cosβ=________.【答案】【解析】∵tan=,∴tanα==,而α∈(0,π),∴α∈.由tanα==及sin2α+cos2α=1得sinα=,cosα=;又sin(α+β)=<,∴α+β∈(,π),cos(α+β)=-.∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-6.已知α、β均为锐角,且tanβ=,则tan(α+β)=________.【答案】1【解析】∵tanβ=,∴tanβ==tan .又∵α、β均为锐角,∴β=-α,即α+β=,∴tan(α+β)=tan=1.7.已知向量,, .(1)求的最小正周期;(2)若A为等腰三角形ABC的一个底角,求的取值范围.【答案】(1) ;(2).【解析】(1)求出=利用两角和与差的正余弦函数公式化简得==∴最小正周期T=;(2)利用A为等腰三角形ABC的一个底角,求出A的范围为,所以,进而,再求出,即可得.试题解析:(1)= 2分===== 5分∴最小正周期T= 6分(2)∵A为等腰三角形ABC的一个底角,∴∴,∴, 8分∴,即. 12分【考点】1.两角和与差的正余弦函数;2.平面向量数量积的运算;3.解三角形..8.已知向量,向量,函数.(1)求的最小正周期;(2)已知分别为内角的对边,为锐角,,且恰是在上的最大值,求和的值.【答案】(1);(2),.【解析】本题是对平面向量和三角函数的综合考查,考查向量的数量积、三角函数中的倍角公式、两角和与差的正弦公式、余弦定理、周期、最值等基础知识,考查运算能力、分析问题解决问题的能力.第一问,先利用向量的数量积的运算公式,将向量的坐标代入,得到的解析式,再利用倍角公式、两角差的正弦公式化简表达式,最后利用周期公式计算即可;第二问,先数形结合求函数的最大值,得到角,再利用余弦定理得到边.试题解析:(1),,……6分(2)由(1)知:,时,当时取得最大值,此时.由得由余弦定理,得∴,即则 12分【考点】1.向量的数量积;2.倍角公式;3.两角差的正弦公式;4.三角函数的周期、最值;5.余弦定理.9.已知a,b,c分别是的三个内角A,B,C的对边,(1)求A的大小;(2)当时,求的取值范围.【答案】(1);(2).【解析】本题主要考查解三角形中正弦定理的应用,以及利用两角和与差的正弦公式、倍角公式等公式进行三角变换,考查基本运算能力,考查分析问题解决问题的能力.第一问,先利用正弦定理将边换成角,去分母,再利用两角和的正弦公式化简,得到,再在中,考虑角的范围求角;第二问,利用正弦定理将边用角来表示,利用降幂公式化简,再将用角表示,用两角差的正弦公式化简,最后化简成,利用角的取值范围求函数的值域.试题解析:(I)△ABC中,∵,由正弦定理,得:,即,故,…(4分)∴(2)由正弦定理得∴,∴∵∴∴∴.【考点】1.正弦定理;2.两角和与差的正弦公式;3.倍角公式;4.三角函数的值域.10.若且则的可能取值是()A. B C. D.【答案】A【解析】由得,由得:,故,故,故选A.【考点】1.两角和的正切公式;2.基本不等式;3.正切函数的单调性11.在△ABC中,角A,B,C的对边分别为a,b,c,.(1)求角C的大小;(2)若△ABC的外接圆直径为1,求的取值范围.【答案】(1);(2);【解析】(1)中有正切和正弦、余弦,这样的问题一般是“切化弦”,统一为同名三角函数后再利用三角函数的相关公式进行变形解答;(2)利用正弦定理,可化为角的三角函数,再利用,可消去一元,问题于是就转化为三角函数的值域问题.试题解析:(1)因为,即,所以,即,得. 4分所以,或(不成立).即, 得. 7分(2)由,设,.因, 8分故=. 12分,故. 15分【考点】两角和与差的三角函数、正弦定理.12.若是锐角,且,则的值是.【答案】【解析】根据题意,由于是锐角,且,故可知,那么利用=,故答案为【考点】两角和差的公式点评:主要是考查了差角的三角函数公式的运用,属于基础题。
高一数学两角和与差的三角函数试题答案及解析

高一数学两角和与差的三角函数试题答案及解析1.的值为 ( )A.B.C.D.【答案】C【解析】由和差化积公式原式=.【考点】和差化积公式.2.已知函数,若,则的取值范围为()A.B.C.D.【答案】B【解析】由和差化积公式得,,即,可得,解得.【考点】1、和差化积;2、三角函数的取值.3.计算 = .【答案】【解析】.【考点】两角差的正弦公式.4.已知分别为△ABC三个内角A、B、C的对边,.(1)求A;(2)若,△ABC 的面积为,求.【答案】(1);(2).【解析】(1)由条件及正弦定理,进行边角的统一,可得到,注意到,因此,可将等式继续变形为,从而得到,由利用辅助角公式可变形为,因此,;(2)由(1)及面积为,可得,再根据余弦定理,联立方程即可解得.(1)由正弦定理及可得:,即,又∵,∴ 3分即,∴,; 7分由(1)及,∴,又由余弦定理及: 10分,联立方程,即可得 14分【考点】1.正弦定理与余弦定理解三角形;2.三角恒等变形.5.在中,为的对边,且,则()A.成等差数列B.成等差数列C.成等比数列D.成等比数列【答案】D【解析】因为,所以,且由二倍角公式可得,所以可化为即也就是,根据正弦定理可得,所以成等比数列,选D.【考点】1.两角和差公式;2.二倍角公式;3.正弦定理;4.等比数列的定义.6.()A.B.C.D.【答案】A【解析】根据两角和的公式,,故选A.【考点】两角和的正弦公式7.设△ABC的内角所对的边分别为,若,则的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.不确定【答案】A【解析】∴,则由正弦定理可得,即,可得,故,所以三角形为直角三角形,故选A.【考点】1.正弦定理;2.两角和与差的三角函数.8.若,则________.【答案】【解析】∵,∴====.【考点】1、两角和与差的余弦函数;2、二倍角的余弦.9. sin 34°sin 26°-cos 34°cos 26°的值是 ( )A.B.C.-D.-【答案】C【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数两角和差公式及其基本练习题
一公式及技巧:
1、和差公式:
(1)βαβαβαsin sin cos cos )cos( =±;
(2) βαβαβαsin cos cos sin )sin(±=±
⇒ )3sin(cos 23sin 21π+=+x x x )4
sin(2cos sin π+=+x x x )sin(5)sin(43cos 4sin 322ϕϕ+=++=+x x x x
)sin(cos sin 22ϕ++=+x b a x b x a
(3)β
αβαβαtan tan 1tan tan )tan( ±=± ⇒ )tan tan 1()tan(tan tan βαβαβα-⋅+=+ 2、二倍角(半角)公式:
(1) ααα22sin cos 2cos -=
1cos 22-=α ⇒ 2
2cos 1cos 2θθ+= ⇒ 2cos 12cos θθ+±= α2sin 21-= ⇒ 22cos 1sin 2θθ-=
⇒ 2cos 12sin θθ-±= (2)θθθcos sin 22sin = θθθ2sin 21cos sin =⇒
(3)θ
θθ2tan 1tan 22tan -= θθθcos 1cos 12tan +-±=⇒ θθθθsin cos 1cos 1sin -=+= 备注:常用技巧或知识:
(1)角的关系:ββαα-+=)( αβαβα2)()(=-++ 4)4(π
π
αα-+=
(2)代换:1=12cos 12sin 20sin 20sin 4cos 24sin 24tan 2200
πππ
ππ+==== (3)韦达定理:)0(02≠=++a c bx ax 有两根21、x x ,则有a
c x x a b x x =⋅-=+2121, (4)由三角函数线及其三角形三边关系有:x x x x cos sin 1cos sin 与⇒<+一正一负; x x x x cos sin 1cos sin 与⇒>+同号;x x x x cos sin 1cos sin 与⇒=+有一个为零。
二、填空题: 1.2
1____16sin 14cos 16cos 14sin 0000=+; 2.函数x x y cos 24sin 7-=的最大值为____25___;
3.比较大小:0036cos 36sin + < 0038cos 38sin +;
4.___4
26__15sin 0-=; 5.__4
22__8sin 2-=π; 6.___16
1_80cos 60cos 40cos 20cos 0000=⋅⋅⋅; 7.___3_15tan 115tan 10
=-+; 8.求值__3__25tan 35tan 325tan 35tan 0000=⋅++;
9.已知)2
3,(,53cos ),,2(,32sin ππββππαα∈-=∈=,15538)cos(+=+βα; 10.已知锐角βα、满足1312)cos(,43sin =-=
βαα,则527536sin ±=β; 三、解答题:
11. 若,2)3tan(=+π
α 求αtan .11
835- 12..若51cos sin =+αα,求α2sin 25
24- 13.若αtan 、βtan 为方程01532=-+x x 的两根,求)tan(βα+.45-
14.锐角βα、满足,3tan ,2tan ==βα求βα+;
43π 15. 已知),2,23(ππα∈ααsin 1sin 1-++2
cos 2α- 16.求函数22sin cos 2cos x x x x y -+=的最大值.2)4sin(2≤+=
πx。