机器人技术基础全

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B T 1
{A}
xB
A B
o xA
yA
yB
A B
R 1.
刚体位姿描述 (Location Representing)
机器人的操作,就其本义来说,意味着由某种机构在 空间移动零件和工具。这自然由必要表示零件、工具 以及机构本身的位置和方位。为了规定和运算表示位 置和方位的数学量,我们必需规定坐标系并提出它们 的表达式的习惯形式。 我们采取这样的思想,即某处存在一通用的坐标系统, 我们讨论的每一个物体均可参考此参考坐标系。
绕X轴旋转
1 R ( x, ) 0 0 0 cosθ si nθ si nθ cosθ 0
xB n

Rotation Matrices in 3D
cosθ R( z, ) si nθ 0 cosθ R( y, ) 0 θ si n 1 R ( x, ) 0 0 0 cosθ si nθ si nθ cosθ 0 0 1 0 0 绕Z轴旋转 0 1
0
{B} {
A B
R
A
pB0
}
{A}
{B}
p Bo
四、手爪坐标系
z-轴: 接近矢量(approaching object direction) y-轴: 方位矢量(along the orientation of the line connecting two fingers) x-轴: 法向矢量 n=oa
{B}与物体固结, {A} 为 参考系。 用坐标系{B}的三个单位主 矢量相对于坐标系{A}的方 向余弦组成的3×3矩阵
A B
z z {A} y {B}
y x
R

A
xB
A
yB
A
zB


x {B}
x x {A}
r11 r12 r13 r A R r r B 21 22 23 r31 r32 r33 表示刚体 {B} 相对于 {A}的方位
机器人的操作,就其本义来说,意味着由某种机构在 空间移动零件和工具。这自然有必要表示零件、工具 以及机构本身的位置和方位。为了规定和运算表示位 置和方位的数学量,我们必需规定坐标系,并掌握它 们的表达式的常用形式。 我们采取这样的思想,即某处存在一通用的坐标系统 ,我们讨论的每一个物体均可参考此参考坐标系。 描述是用来规定操作器系统所涉及的各物体的特性, 这些物体指零件,工具或操作器本身。在本节我们讨 论位置、方位的描述。
si n θ 0 cosθ si nθ cosθ 0
绕Y轴旋转
绕X轴旋转
旋转矩阵的性质
R 称为旋转矩阵,上标A代表参考坐标系{A},下 标B代表被描述的坐标系{B}。
A B
A B
R

A
xB
A
A
yB
A
A
zB

A xB , 注意:
yB,
z B 为单位矢量
A A
R

A
xB
yB
A
zB

如图,绕X轴旋转-900
xB n x o A R B B xB a
A B
yB n yB o yB a
A
zB n zB o zB a
-900
A B
R

A
xB
yB
A
zB

R
1 0 0 0 0 1 0 1 0
1. 坐标平移
A
zB zA
{A}
{B}
B
A
p
p
p p pB0
B A
A
p Bo xB
oB
yB
oA
yA
xA
2. 坐标旋转 同一点p在两个坐标系{A}和{B}中的描述具有以下变换关系:
A A p B RB p
zB
zA
{B}
B 1 B B T B A R p A R p
B
p

A B
R R R ;
机器人技术基础
第二章 位姿描述和齐次变换
要求:熟练掌握描述刚体位姿描述的齐次变换方法
第二章 位姿描述和齐次变换
目录
刚体位姿描述和齐次变换
预备知识 旋转矩阵 坐标变换 齐次坐标,欧拉角与 RPY 角 齐次变换和齐次变换矩阵的运算 例子 要求:熟练掌握描述刚体位姿描述的齐次变换方法
2.1 刚体位姿描述 (Location Representing)
R 1.
旋转矩阵的逆等于其转置矩阵
三、位姿的描述(位置+姿态)
为了完全描述刚体B在空间的位姿(位置和姿态)、通常将 物体B与某一坐标系{B}相固接。{B}的坐标原点一般选在 物体B的特征点上,如质心、或对称中心等。相对参考系 {A},由位置矢量 A pB 和旋转矩阵 BA R 分别描述坐标系{B} 的原点位置和坐标轴的方位。因此,刚体B的位姿可由坐 标系{B}来描述,即
{B}
{A}
A
pB0
xB n x o A R B B xB a
yB n yB o yB a
zB n zB o zB a
xB n
r11 r A R B 21 r31
A BΒιβλιοθήκη Baidu
r12 r22 r32
A
r13 r23 r33
手爪的方位: R n, o, a
手爪的位姿: {T} {n, o, a , p}
{B}
n x B o yB a z B
p
{A}
求 A BT
A
B
2.2 坐标变换
在机器人学的许多问题中,涉及到以不同坐标系表示 同一量。下面讨论从一个坐标系的描述到另个坐标系 的描述之间的变换关系。
一、位置的描述 (Representing Position) 采用位置矢量表示空间中一点
px A p p y pz
p
其中Ap为3×1的列矢量,上标
{A}
A代表参考坐标系{A}。

p
{A}
二、方位的描述(Representing Rotation) 刚体的位置、姿势可由其上的任一点(称作基 准点,通常可选作物体的质心)和过该点的坐标 系相对于参考坐标系的相对关系来确定。 我们在物体上附一坐标系,然后再给出这一坐 标系相对于参考系的描述。
xB A xB A y B A y B A z B A z B 1 xB A y B A y B A z B A z B A xB 0
3×3旋转矩阵有9个元素,6个约束条件,3个独立变量 A B R 是正交矩阵,且满足
A B A T R 1 B R ; A B
相关文档
最新文档