热分析-DSC-应用

热分析考试考试)20121210)

热分析习题 一、填空(10分,共10题,每题1分)。 1、差热分析是在程序控温条件下,测量样品坩埚与坩埚间的温度差与温 度的关系的方法。(参比) 2、同步热分析技术可以通过一次测试分别同时提供-TG或 -TG两组信号。(DTA-TG ,DSD-TG) 3、差示扫描量热分析是在程序控温条件下,测量输入到物质与参比物的功率差与温度的关 系的方法,其纵坐标单位为。(mw或mw/mg) 4、硅酸盐类样品在进行热分析时,不能选用材质的样品坩埚。(刚玉) 5、差示扫描量热分析根据所用测量方法的不同,可以分类为热流型DSC 与 型DSC。(功率补偿) 6、与差热分析(DTA)的不同,差示扫描量热分析(DSC)既可以用于定性分析,又可以 用于分析。(定量) 7、差热分析(DTA)需要校正,但不需要灵敏度校正。(温度) 8、TG热失重曲线的标注常常需要参照DTG曲线,DTG曲线上一个谷代表一个失重阶段, 而拐点温度显示的是最快的温度。(失重) 9、物质的膨胀系数可以分为线膨胀系数与膨胀系数。(体) 10、热膨胀系数是材料的主要物理性质之一,它是衡量材料的好坏的一个重要指 标。(热稳定性) 二、名词解释 1.热重分析答案:在程序控温条件下,测量物质的质量与温度的关系的方法。 2.差热分析答案:在程序控温条件下,测量物质与参比物的温度差与温度的关系的方法。 3.差示扫描量热分析答案:在程序控温条件下,测量输入到物质与参比物的功率差与温度的关系的方法。 4.热膨胀分析答案:在程序控温条件下,测定试样尺寸变化与温度或时间的关系的方法。 三、简答题 1.DSC与DTA测定原理的不同 答案:DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。DTA是测量T-T 的关系,而DSC是保持T = 0,测定H-T 的关系。两者最大的差别是DTA只能定性或半定量,而DSC的结果可用于定量分析。DTA在试样发生热效应时,试样的实际温度已不是程序升温时所控制的温度(如

差热分析

差热分析 Ⅰ、目的要求 1、掌握差热分析的基本原理及方法,了解差热分析仪的构造,学会操作技术。 2、用差热分析仪对CuSO4·5H2O进行差热分析,并定性解释所得的差热图谱。 3、学会热电偶的制作及标定,掌握绘制步冷曲线的实验方法。 Ⅱ、实验原理 1、差热分析 许多物质在加热或冷却过程中往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化。这些变化并伴随有体系焓的改变,因而产生热效应。其表现为该物质与外界环境之间产生温度差。而有一些物质,如Al2O3、MgO、SiO2等,在一定温度范围内比较稳定,不会发生物理或化学变化,也就没有热效应的产生,这类物质称为热中性体标准物或参比物。 如果将某一待测物与参比物同置于温度均匀的电炉中以一定的速率升温,参比物在整个实验温度范围内没有物理或化学变化发生,因而不产生任何热效应。所以,当样品没有热效应产生时,它和参比物具有相同的温度,两者的温差ΔT=0,当样品发生物理或化学变化并伴有热效应时,由于传热速率的限制,两者的温度就不一致,即有温差ΔT≠0。显然,温差出现的温度以及温差的大小与待测物的结构和性质有关。 图为理想情况下的差热曲线 差热分析(简称DTA)是一种热分析法,就是在程序控制温度下,测量试样与参比物之间的温度差与温度关系的一种技术,可用于鉴别物质并考察物质组成结构以及物质在一定得温度条件下的转化温度、热效应等物理化学性质,它广泛地应用于许多科研领域及生产部门。测定时,将样品与参比物同时放入一个可按规定速度升温或降温的电炉中,然后分别记录参比物的温度,也可记录样品本身或

样品附近环境的温度,以及样品与参比物的温度差,随着测定时间的延续,就可以得到一张差热图。 2、影响差热分析的若干因素 从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度;峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小:相同条件下,峰面积大的表示热效应也大。在相同的测定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 3、样品保持器和加热电炉 样品保持器是仪器的关键部位,可用陶瓷和金属块制成。保持器的上端有两个相互平衡的粗空,可以容纳坩埚,也可直接装上样品和参比物。底部的细孔与上端两个粗空的中心位置相通,用于插入热电偶。如果在整个测量过程中,样品不与热电偶作用,也不会在热电偶上烧结熔融,可不必使用坩埚而直接将其装入粗空中。热电偶直接与样品接触,测定的灵敏度可以的待提高。加热电炉要有较大的恒温区,通常采取立式装置。 4、差热分析仪 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起。两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 Ⅲ、仪器试剂 加热电炉1套双孔绝缘小瓷冠(孔径约为1mm) 程序控温仪1台α- Al2O3(分析纯) 沸点测定仪1台CuSO4?5H2O(分析纯)

差热分析

第 二 节 差热分析(DTA ) Differential Thermal Analysis 差热分析的基本概念 差热分析:是指在程序控制温度下测量物质和参比物的温度差与温度关系的技术。 差热曲线:描述样品与参比物之间的温度差(ΔT )随温度(T )或时间(t )变化的曲线。 程序控制温度:指按一定的速率升温(或降温)。 参比物:指在分析温度范围内不产生热效应(既不吸热,也不放热)的物质。 差热分析仪的结构及工作原理 差热分析仪的工作原理 把试样(S )和参比物(R )分别装入两个坩埚,放在电炉中按一定的速率加热。在此过程中,如果试样发生物理变化或化学变化,并伴随有热效应,即发生吸热或放热现象,试样的温度(TS )将低于或高于参比物的温度(TR ),从而产生一定的温度差(ΔT= TS - TR )。 用同极串联的一对相同的热电偶构成的差热电偶可将试样与参比物的温度差转变为温差电动势U △T 。将这个温差电动势放大,并用来调节记录仪的记录笔或显象管亮点的纵坐标,就可以将试样与参比物的温度差随温度(T )或时间(t )的变化曲线( ΔT - T 曲线)记录下来。 差热曲线提供的信息 峰的个数:吸热和放热过程的个数。 峰的位置:吸热和放热过程发生的温度。 峰的性质:向上,放热;向下,吸热。 峰的形状:热反应的速率。 峰的面积:吸收或释放的热量的多少。 基线的位置:样品与参比物的比热关系。 基线的长度:物质稳定存在的温度区间。 峰的面积与吸收或释放的热量的关系 峰的面积与吸收或释放的热量成正比。 式中, A 是吸热峰或放热峰的面积;ma 是试样中反应物的质量;ΔH 是单位反应物吸收或释放的热量,即单位反应物的焓变;g 是与仪器有关的系数; λs 是试样热导率。 利用Speil 公式,可以根据峰的面积求得反应过程中的焓变和反应物质的量。 ΔH= g λs A/ ma ma= A g λs / ΔH S a t t a g H m dt T T A λ?=?-?=? 2 1])([V k C C T S R a -= ?)(

三种热分析方法综合介绍

三种热分析方法综合介绍 热分析是在程序控制温度的条件下,测量物质的物理性质随温度变化关系的一类技术。该技术包括三个方面的内容:其一,物质要承受程序控温的作用,通常指以一定的速率升(降)温。其二,要选定用来测定的一种物理量,它可以是热学的、力学的、声学的、光学的以及电学的和磁学的等。其三,测量物理量随温度的变化关系。 物质在受热过程中要发生各种物理、化学变化,可用各种热分析方法跟踪这种变化。表1中列出根据所测物理性质对热分析方法的分类。其中以差热分析(DTA)和热重分析(TG)的历史最长,使用也最广泛;微分热重分析(DTG)和差示扫描置热法(DSC)近年来也得到较迅速地发展。下面简单介绍DTA、TG和DSC的基本原理和技术。 表1热分析方法的分类 (一)差热分析(DTA) 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相变或反应的吸热或放热效应引起的。一般说来,相变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 图1为差热分析装置示意图,典型的DTA装置由温度程序控制单元、差热放大单元和记录单元组成。将试样S和参比物R一同放在加热电炉中进行程序升温,试样在受热过程中所发生的物理化学变化往往会伴随着焓的改变,从而使它与热惰性的参比物之间形成一定的温度差。差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号经差热放大后在记录单元绘出差热分析曲线。从曲线的位置、形状、大小可得到有关热力学和热动力学方面的信息。

差热分析仪工作原理

差热分析仪原理及其应用 差热分析仪是通过加热过程中的吸热和放热的行为以及材料的重量变化来研究材料加热时所发生的物理化学变化过程。通常差热分析仪是材料科学方面的最基本的设备之一。 差热分析仪的组成 一般的差热分析仪由加热系统、温度控制系统、信号放大系统、差热系统和记录系统等组成。有些型号的产品也包括气氛控制系统和压力控制系统。现将各部分简介如下: 差热分析仪构造 差热分析的测定原理 差热分析是利用差热电偶来测定热中性体与被测试样在加热过程中的温差将差热电偶的两个热端分别插在热中性体和被测试样中,在均匀加热过程中,若试样不发生物理化学变化,没有热效应产生,则试样与热中性体之间无温差,差热电偶两端的热电势互相抵消,若试样发生了物理化学变化,有热效应产生,试样与热中性体之问就有温差产生,差热电偶就会产生温差电势。将测得的试样与热中性体问的温差对时间(或温度)作图,就得到差热曲线(DTA曲线)。在试样没有热效应时,由于温差是零,差热曲线为水平线;在有热效应时,曲线上便会出现峰或谷。曲线开始转折的地方代表试样物理化学变化的开始,峰或谷的顶点表示试样变化最剧烈的温度,热效应越大,则峰或谷越高,面积越大。 差热分析仪主要由温度控制系统和差热信号测量系统组成,辅之以气氛和冷却水通道,测量结果由记录仪或计算机数据处理系统处理。 1.差热分析仪温度控制系统 该系统由程序温度控制单元、控温热电耦及加热炉组成。程序温度控制单元可编程序模拟复杂的温度曲线,给出毫伏信号。当控温热电

耦的热电势与该毫伏值有偏差时,说明炉温偏离给定值,由偏差信号调整加热炉功率,使炉温很好地跟踪设定值,产生理想的温度曲线。 2.差热分析仪差热信号测量系统 该系统由差热传感器、差热放大单元等组成。 差热传感器即样品支架,由一对差接的点状热电耦和四孔氧化铝杆等装配而成,测定时将试样与参比物(常用α-Al2O3)分别放在两只坩埚中,置于样品杆的托盘上,然后使加热炉按一定速度升温(如1 0℃·min-1)。如果试样在升温过程中没有热反应(吸热或放热),则其与参比物之间的温差ΔT=0;如果试样产生相变或气化则吸热,产生氧化分解则放热,从而产生温差ΔT,将ΔT所对应的电势差(电位)放大并记录,便得到差热曲线。各种物质因物理特性不同,因此表现出其特有的差热曲线。 在程序控制温度下,测量物质与参比物之间的温度差与温度的函数关系的仪器。由程序控制部件、炉体和记录仪组成,可电脑控制,打印试验报告。 1差热分析在确定水泥水化产物中的应用 不同品种的水泥在水化过程中得到的水化产物是不同的,即使是同种水泥,由于生产或水化过程的环境、条件不同,得到的水化产物的品种及数量也不尽相同。不同的水化产物在加热过程中脱水、分解的温度各不相同,体现在DTA曲线上就会在不同温度下出现不同的峰和谷。对某普通硅酸盐水泥水化28d的DTA曲线研究可以看出,D TA曲线上的103℃、123℃、140℃、464℃、710℃和25℃处都出现了吸热峰。在103℃出现吸热峰的同时伴随有1.31%的失重,这是水化试样脱去游离水的过程。继续加热,在123℃、140℃、464℃、71 0℃出现的吸热峰则分别是C—S—H凝胶脱水、水化硫铝酸钙(Art)脱

差热分析法(DTA)简介 (Differential Thermal Analysis)

差热分析法(DTA)简介(Differential Thermal Analysis) 1.DTA的基本原理 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 差热分析的原理如图Ⅱ-3-1所示。将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。则它们的升温曲线如图Ⅱ-3-2所示。若以对t作图,所得DTA曲线如图Ⅱ-3-3所示, 在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。 图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原 理图图 II-3-2试样和参 比物的升温曲线 1.参比物; 2.试样; 3.炉体; 4.热电偶(包括吸热转变) 图Ⅱ-3-3 DTA吸热转变曲线 TA曲线所包围的面积S可用下式表示 式中m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。 2.DTA曲线起止点温度和面积的测量

物理化学实验差热分析全解

差热分析 一、实验目的及要求 1.掌握差热分析的基本原理和方法,用差热分析仪测定硫酸铜的差热图,并掌握定性 解释图谱的基本方法。 2.掌握差热分析仪的使用方法。 二、实验原理 物质在受热或冷却的过程中,如有物理或化学的变化会伴有热效应发生。差热分析是测定在同一受热条件下,试样与参比物(在所测定的温度范围内不会发生任何物 )对温度(T)或时间(t)关系的一种方法。 差热分析仪结构原理如图一所示。它包括HTH1-I型加热器、 NTC-I型温度控制仪、放置样品和参比物的坩埚、盛放坩埚并使其温度均匀的保持器、测温热电偶、NDTA-II 型差热分析仪和计算机。 ΔT T 图一差热分析仪结构原理图 温度信号

温度控制仪控制加热炉的温度和升温速率,差热分析仪采集样品和参比物之间的温差随温度及时间变化的数据,通过计算机实时绘制温度-温差曲线,并对实验结果进行计算和处理。两对相同材料热电偶并联而成的热电偶组,它们分别置于样品和参比物的中心。测量它们的温差(ΔT)和它们的温度。 H T 试样与参比物放入坩埚后,按一定的速率升温,如果参比物和试样热容大致相同,就能得到理想的差热分析图,图中T是由插在参比物的热电偶所反映的温度曲线。AH线 反映试样与参比物间的温差曲线。如试样无热效应发生,那样与参比物间,在曲线上AB、DE、GH是平滑的基线。当有热效发生而使试样的温度高于参比物,则出现如BCD峰顶向下的放热峰。反之,峰顶向上的EFG吸热峰。 差热图中峰的数目多少,位置、峰面积、方向、高度、宽度、对称性反映了试样在所测量温度范围内所发生的物理变化和化学变化次数、发生转化的温度范围、热效应大小及正负。峰的高度、宽度、对称性除与测试条件有关外还与样品变化过程的动学因素有关。所测得的差热图比理想的差热图复杂得多。 三、仪器与药品 NDTA-II型差热分析仪 C U SO4·5H20(分析纯);α-AL203(分析纯)

实验一综合热分析实验

实验一综合热分析实验 一、目的要求 1.了解综合热分析仪的基本构造、原理及方法。 2.了解实验条件的选择。 3.掌握热分析样品的制样方法。 4.掌握对样品的热分析图谱进行相关分析和计算。 二、综合热分析仪的结构、原理及性能 综合热分析仪是在程序控制温度下同步测定物质的重量变化、温度变化和热效应的装置。一般地,综合热分析仪主要由程序控制系统、测量系统、显示系统、气氛控制系统、操作控制和数据处理系统等部分组成。 1.TG的结构、原理及性能 热重法(TG)是在程序控制温度下,测量物质的质量与温度关系的一种热分析技术。热重法记录的是热重曲线(TG曲线),它以质量作为纵坐标,以温度或时间为横坐标,即m—T曲线。 热重法通常有下列两种类型:等温热重法:在恒温下测定物质质量变化与时间的关系;非等温热重法:在程序升温下测定物质质量变化与温度的关系。 热重法所用仪器称为热重分析仪或热天平,其基本构造是由精密天平和程序控温的加热炉组成,热天平是根据天平梁的倾斜与重量变化的关系进行测定的,通常测定重量变化的方法有变位法和零位法两种。①变位法是利用物质的质量变化与天平梁的倾斜成正比的关系,用差动变压器直接控制检测。②零位法是靠电磁作用力使因质量变化而倾斜的的天平梁恢复到原来的平衡位置,施加的电磁力与质量变化成正比,而电磁力的大小与方向是通过调节转换结构中线圈中的电流实现的,因此检测此电流即可知质量变化。天平梁倾斜由光电元件检出,经电子放大后反馈到安装在天平衡量上的感应线圈,使天平梁又回到原点。 SDTQ600综合热分析仪采用水平双杆双天平的结构设计。一臂作为水平天平零位平衡测量,另一臂作为高灵敏度DTA的热电偶。同时,一臂用来装填试样,

热分析常用方法及谱图

常用的热分析方法 l热重法(Thermogravimetry TG) l 差示扫描量热仪(Differential Scanning Calorimetry DSC)l 差热分析(Differential Thermal Analysis DTA) l 热机械分析(Thermomechanical Analysis TMA) l 动态热机械法(Dynamic Mechanical Analysis DMA) 谱图分析的一般方法 《热分析导论》刘振海主编 《分析化学手册》热分析分册 TGA DSC 分析图谱的一般方法——TGA 1. 典型图谱 分析图谱的一般方法——TGA的实测图谱

I、PVC 35.26% II、Nylon 6 25.47% III、碳黑14.69% IV、玻纤24.58% 已知样品的图谱分析 与已知样品各方面特性结合起来分析 如:无机物(黏土、矿物、配合物)、生物大分子、高分子材料、金属材料等热分析谱图都有各自的特征峰。 与测试的仪器、条件和样品结合起来分析 仪器条件样品 应用与举例 TGA DSC/DTA TMA 影响测试图谱结果的因素——测试条件 TGA 升温速率 样品气氛

扫描速率 样品气氛 升温速率对TGA 曲线的影响 气氛对TGA 曲线的影响 PE TGA-7 测试条件: 扫描速率:10C/min 气氛:a. 真空 b. 空气 流量:20ml/min 样品:CaCO3(AR) 过200目筛,3-5mg 扫描速率对DSC/DTA曲线的影响气氛对DSC/DTA曲线的影响 气氛的性质

两个氧化分解峰 曲线b: 一个氧化分解峰, 和一个热裂解峰 影响测试图谱结果的因素——样品方面 TGA/DSC/DTA 样品的用量 样品的粒度与形状 样品的性质 样品用量对TGA/DSC/DTA曲线的影响 样品的粒度与形状对曲线的影响——TGA/DSC/DTA 样品的性质对曲线的影响——TGA/DSC/DTA TGA/ DSC/DTA 热分析曲线的形状随样品的比热、导热性和反应性的不同而不同。即使是同种物质,由于加工条件的不同,其热谱图也可能不同。如PET树脂,经过拉伸过的PET树脂升温结晶峰就会消失。 PET 树脂的DSC 曲线 TGA应用 成分分析 无机物、有机物、药物和高聚物的鉴别与多组分混合物的定量分析。游离水、结合水、结晶水的测定,残余溶剂或单体的测定、添加剂的测定等。 热稳定性的测定 物质的热稳定性、抗氧化性的测定,热分解反应的动力学研究等 居里点的测定 磁性材料居里点的测定 可用TGA测量的变化过程

差热分析

学号:201014400116 成绩: 基础物理化学实验 实验名称:差热分析 10级冶金班8组 实验人姓名:何婉芳 同组人姓名:黄波邵雪村樊星亚 指导老师:周崇松 实验日期:2012-12-13

湘南学院化学与生命科学系 一、实验目的: 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理: 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析(Differentiai Thermal Analysis.简称DTA)就是通过温差测量来确定物质的物理化学性质的一种热分析方法。差热分析仪的结构如图5-1所示。 它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,

见图5-1)。A、B两端引入记录笔1,记录炉温信号。 若炉子等速升温,则笔1记录下一条倾斜直线,如图5-2中T;A、C 端引入记录笔2,记录差热信号。若样品不发生任何变化,样品和参比物的温度相同,两支热电偶产生的热电势大小相等,方向相反,所以ΔVAC=0,笔2划出一条直线,如图5-2中AB、DE、GH段,是平直的基线。反之,样品发生物理化学变化时,ΔVAC≠0,笔2发生左右偏移(视热效应正、负而异),记录下差热峰如图5-2中BCD、EFG所示。两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-2典型的差热分析 从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中TB);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小:相同条件下,峰面积大的表示热效应也大。

差热分析问题

差热分析 小组成员(邓静詹孝军杨盼)一.预习提问 1.简述差热分析的基本原理. 答:差热分析,是在温度程序控制下,测量物质与基准物(参比物)之间的温度差随时间变化的技术。试样在加热(冷却)过程中,凡有物理变化或化学变化发生时,就有吸热(或放热)效应发生,若以在实验温度范围内不发生物理变化和化学变化的惰性物质作参比物,试样和参比物之间就出现温度差,温度差随温度变化的曲线称差热曲线或 DTA曲线。差热分析是研究物质在加热(或冷却)过程中发生各种物理变化和化学变化的重要手段。 2.差热分析中如何判断物质发生了变化 答:当差热曲线出现峰或者谷时,表示物质发生了热焓的变化,即说明了物质发生了变化 3.差热分析中如何选择参比物? 答:作为参比物的材料必须具备的条件是在测定的温度范围内保持热稳定,一般用阿尔法氧化铝、煅烧过的氧化镁、二氧化硅及金属镍等。选择时应尽量采用与待测物比热容、热导率及颗粒度相一致的物质,以提高准确性。 4.实验中,作温度工作曲线的目的是什么? 答:目的是为了间接测定物质在加热过程中的温度变化以及差热曲线出现峰或者谷时的温度,以准确快速的测出物质在相应温度下产生的

热效应。 5.差热曲线主要受哪些实验条件的影响 答:(1)仪器方面的因素:包括加热炉的形状和尺寸、坩埚材料及大小形状、热电偶性能及其位置、显示、记录系统精度、走纸速率等。(2)试样因素:包括试样的热容量、热导率和试样的纯度、结晶度或离子取代以及试样的颗粒度、用量及装填密度、参比物的选择等。(3)实验条件:包括加热速度、气氛和压力等。 二.思考题 1. 简述差热分析的基本原理. 答:差热分析,是在温度程序控制下,测量物质与基准物(参比物)之间的温度差随时间变化的技术。试样在加热(冷却)过程中,凡有物理变化或化学变化发生时,就有吸热(或放热)效应发生,若以在实验温度范围内不发生物理变化和化学变化的惰性物质作参比物,试样和参比物之间就出现温度差,温度差随温度变化的曲线称差热曲线或 DTA曲线。差热分析是研究物质在加热(或冷却)过程中发生各种物理变化和化学变化的重要手段。 2.差热分析中如何判断物质发生了变化 答:当差热曲线出现峰或者谷时,表示物质发生了热焓的变化,即说明了物质发生了变化 3.差热分析中如何选择参比物? 答:作为参比物的材料必须具备的条件是在测定的温度范围内保持热稳定,一般用阿尔法氧化铝、煅烧过的氧化镁、二氧化硅及金属镍等。

热分析实验指导

实验六 热分析实验 一、目的与要求 1.了解热重分析的仪器装置及实验技术。 2.了解差热分析的仪器装置及实验技术。 3熟悉综合热分析的特点,掌握综合热曲线的分析方法。 4.测绘矿物的热重曲线和差热分析曲线,解释曲线变化的原因。 二、原理 1 热重分析的仪器结构与分析方法 热重分析法是在程序控制温度下,测量物质的质量随温度变化的一种实验技术。 热重分析通常有静态法和动态法两种类型。 静态法又称等温热重法,是在恒温下测定物质质量变化与温度的关系,通常把试样在各给定温度加热至恒重。该法比较准确,常用来研究固相物质热分解的反应速度和测定反应速度常数。 动态法又称非等温热重法,是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。该法简便,易于与其他热分析法组合在一起,实际中采用较多。 热重分析仪的基本结构由精密天平、加热炉及温控单元组成。如图1所示:加热炉由温控加热单元按给定速度升温,并由温度读数表记录温度,炉中试样质量变化可由天平记录。 由热重分析记录的质量变化对温度的关系曲线称热重曲线(TG 曲线)。曲线的纵坐标为质量,横坐标为温度。例如固体热分解反应A (固)→B (固)+C (气)的典型热重曲线如图2所示。 图2 固体热分解反应的热重曲线 图中T i 为起始温度,即累计质量变化达到热天平可以检测时的温度。T f 为终止温度,即累计质量变化达到最大值时的温度。 图1 热重分析仪原理

热重曲线上质量基本不变的部分称为基线或平台,如图2中ab 、cd 部分。 若试样初始质量为W 0,失重后试样质量为W 1,则失重百分数为(W 0-W 1)/W 0×100%。 许多物质在加热过程中会在某温度发生分解、脱水、氧化、还原和升华等物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随着物质的结构及组成而异,因而可以利用物质的热重曲线来研究物质的热变化过程,如试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等。例如含有一个结晶水的草酸钙(CaC 2O 4·H 2O )的热重曲线如图3,CaC 2O 4·H 2O 在100℃以前没有失重现象,其热重曲线呈水平状,为TG 曲线的第一个平台。在100℃和200℃之间失重并开始出现第二个平台。这一步的失重量占试样总质量的12.3%,正好相当于每molCaC 2O 4·H 2O 失掉1molH 2O ,因此这一步的热分解应按 O H O CaC O H ·O CaC 242℃ 200℃100242 ~ +????→? 进行。在400℃和500℃之间失重并开始呈现第三个平台,其失重量占试样总质量的18.5%,相当于每molCaC 2O 4分解出1molCO ,因此这一步的热分解应按 CO CaCO O CaC 3℃500 ℃40042~ +????→? 进行。在600℃和800℃之间失重并出现第四个平台,其失重量占试样总质量的30%,正好相当于每molCaC 2O 4分解出1molCO 2,因此这一步的热分解应按 2℃800 ℃60042CO CaO O CaC ~ +????→? 进行。 可见借助热重曲线可推断反应机理及产物。 图3 CaC 2O 4·H 2O 的热重曲线 2、综合热分析 DTA 、DSC 、TG 等各种单功能的热分析仪若相互组装在一起,就可以变成多功能的综合热分析仪,如DTA -TG 、DSC -TG 、DTA -TMA (热机械分析)、DTA -TG -DTG (微商热重分析)组合在一起。综合热分析仪的优点是在完全相同的实验条件下,即在同一次实验中可以获得多种信息,比如进行DTA -TG -DTG 综合热分析可以一次同时获得差热曲线、热重曲线和微商热重曲线。根据在相同的实验条件下得到的关于试样热变化的多种信息,就可以比较顺利地得出符合实际的判断。 综合热分析的实验方法与DTA 、DSC 、TG 的实验方法基本类同,在样品测试前选择好测量方式和相应量程,调整好记录零点,就可在给定的升温速度下测定样品,得出综合热曲线。 综合热曲线实际上是各单功能热曲线测绘在同一张记录纸上,因此,各单功能标准热曲线可以作为综合热曲线中各个曲线的标准。利用综合热曲线进行矿物鉴定或解释峰谷产生的

差热分析实验报告概论

差热分析实验报告 赵启峰 131120132 摘要:本实验报告阐述了差热分析的基本原理、实验及数据处理方法,以三氧化二铝作为参照物,分别测量了锡样品和五水硫酸铜样品的差热曲线并对其进行了分析,最后对实验结果进行了讨论。 关键词:差热曲线锡五水硫酸铜 引言 差热分析(DTA)是在程序控制下测量物质和参比物之间的温度差与温度(或时间)关系的一种技术。描述这种关系的曲线称为差热曲线或DTA曲线。由于试样和参比物之间的温度差主要取决于试样的温度变化,因此就其本质来说,差热分析是一种主要与焓变测定有关并借此了解物质有关性质的技术。 实验目的 (1)了解差热分析的基本原理和实验基本步骤。 (2)测量五水硫酸铜和锡的差热曲线,并简单计算曲线峰的面积。 实验原理 物质在加热或冷却过程中会发生物理变化或化学变化,与此同时,往往还伴随吸热或放热现象。伴随热效应的变化,有晶型转变、沸腾、升华、蒸发、熔融等物理变化,以及氧化还原、分解、脱水和离解等化学变化。另有一些物理变化,虽无热效应发生但比热容等某些物理性质也会发生改变,这类变化如玻璃化转变等。物质发生焓变时质量不一定改变,但温度是必定会变化的。差热分析正是在物质这类性质基础上建立的一种技术。 若将在实验温区内呈热稳定的已知物质(参比物)和试样一起放入加热系统中(图1),并以线性程序温度对它们加热。在试样没有发生吸热或放热变化且与程序温度间不存在温度滞后时,试样和参比物的温度与线性程序温度是一致的。若试样发生放热变化,由于热量不可能从试样瞬间导出,于是试样温度偏离线性升温线,且向高温方向移动。反之,在试样发生吸热变化时,由于试样不可能从环境瞬间吸取足够的热量,从而使试样温度低于程序温度。只有经历一个传热过程试样才能回复到与程序温度相同的温度。 图1 加热和测定试样与参比物温度的装置示意图 在试样和参比物的比热容、导热系数和质量等相同的理想情况,用图1装置测得的试样和参比物的温度及它们之间的温度差随时间的变化如图2所示。图中参比物的温度始终与程序温度一致,试样温度则随吸热和放热过程的发生而偏离程序温度线。当T S-T R=ΔT为零时,

差热分析

摘要:本实验报告阐述了差热分析实验的基本原理、实验及数据处理方法,以三氧化二铝 (Al2O3)作为参照物,分别测量了五水合硫酸铜(CuSO4·5H2O)和锡(Sn)样品的差热曲线并对其进行了分析,最后对实验结果进行了讨论。 关键词:差热曲线三氧化二铝锡五水合硫酸铜 正文 一、引言 差热分析(DTA)是在程序控制下测量物质和参比物之间的温度差与温度(或时间)关系的一种技术。描述这种关系的曲线称为差热曲线或DTA曲线。由于试样和参比物之间的温度差主要取决于试样的温度变化,因此就其本质来说,差热分析是一种主要与焓变测定有关并借此了解物质有关性质的技术。 二、实验目的 1、了解差热分析的基本原理和实验基本步骤。 2、测量五水硫酸铜和锡的差热曲线,并简单计算曲线峰的面积。 三、实验原理 1、差热曲线的形成及差热分析的一般特点 物质在加热或冷却过程中会发生物理变化或化学变化,与此同时,往往还伴随吸热或放热现象。伴随热效应的变化,有晶型转变、沸腾、升华、蒸发、熔融等物理变化,以及氧化还原、分解、脱水和离解等化学变化。另有一些物理变化,虽无热效应发生但比热容等某些物理性质也会发生改变,这类变化如玻璃化转变等。物质发生焓变时质量不一定改变,但温度是必定会变化的。差热分析正是在物质这类性质基础上建立的一种技术。 若将在实验温区内呈热稳定的已知物质(参比物)和试样一起放入加热系统中(图1),并 图1 加热和测定试样与参比物温度的装置示意图 以线性程序温度对它们加热。在试样没有发生吸热或放热变化且与程序温度间不存在温度滞后时,试样和参比物的温度与线性程序温度是一致的。若试样发生放热变化,由于热量不可能从试样瞬间导出,于是试样温度偏离线性升温线,且向高温方向移动。反之,在试样发生吸热变化时,由于试样不可能从环境瞬间吸取足够的热量,从而使试样温度低于程序温度。只有经历一个传热过程试样才能回复到与程序温度相同的温度。

差热-热重分析法测定硫酸铜的热分析图谱实验报告

差热-热重分析法测定硫酸铜的热分析图谱 一、实验目的 1.了解差热分析法、热重分析法的基本原理。 2.了解差热热重同步热分析仪的基本构造并掌握使用方法。 3.正确控制实验条件,并学会对热分析谱图进行定性分析和定量处理。 二、实验原理 1.差热分析法(Differential Thermal Analysis,DTA) 差热分析是在程序控制温度下,测量试样与参比物(一种在测量温度范围内不发生任何热效应的物质)之间的温度差与温度关系的一种技 术。许多物质在加热或冷却过程中会发生熔化、凝固、晶型转变、吸附、脱附等物理转变及分解、化合、氧化还原等化学反应。这些变化在微观 上必将伴随体系焓的改变,从而产生热效应,在宏观上表现为该物质与 外界环境之间有温度差。选择一种对热稳定的物质作为参比物,将其与 试样一起置于可按设定速率升温的热分析仪中,分别记录参比物的温度 以及试样与参比物间的温度差。以温差对温度作图就可以得到差热分析 曲线,简称DTA曲线。 2. 热重法(Thermogravimetry,TG) 热重法是在程序控制温度下,测量物质的质量变化与温度关系的一种技术,其基本原理是热天平。热天平分为零位法和变位法两种。变位 法,就是根据天平梁的倾斜度与质量变化呈比例的关系,用差动变压器 等检知倾斜度,并自动记录。零位法,是采用差动变压器法、光学法或 电触点法测定天平梁的倾斜度,并用螺线管线圈对安装在天平系统中的 永久磁铁施加力,使天平梁的倾斜复原。由于对永久磁铁所施加的力与 质量变化呈比例,这个力又与流过螺线管的电流呈比例,因此只要测量 并记录电流,便可得到质量变化的曲线,以质量对温度作图就可以得到 热重曲线,简称TG曲线。 三、实验用品

差热分析

实验二差热分析 一、实验目的 1、了解差热分析的原理和差热分析仪的构造,学会操作技术。 2、了解差热分析的基本原理,测定试样结晶度。 3、掌握差热分析仪的使用方法;了解影响差热分析的因素。 二、实验原理: 许多物质在加热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转化、分解、化合、吸附、脱附等物理或化学变化。在发生这些变化时伴有焓变,因而产生热效应。如果我们事先选定一种在温度变化的整个过程中都不会发生任何物理或化学变化,因而没有任何热效应的物质做为参比物,并将它与样品一起置入一个按规定速度逐步升温或降温的电炉中,则当试样发生物理或化学变化时,试样与参比物之间将出现温度差,记录样品及参比物的温度,就可以得到一张差热图。于是在加热或冷却过程中试样发生的各种物理或化学变化在差热图上都能一一反应出来。 图1是一张理想的差热图。在差热图中有两条曲线,一条是温度线,它表明温度随时间的变化,一条是差热线,它表明样品与参比物间温度差随时间的变化。差热线与时间轴平行的线段ab、degh称为基线。图中bcd和efg为二个差热峰。它们的方向相反,说明一个是吸热峰、一个是放热峰。正确判断吸热峰还是放热峰与使用的仪器有关。 差热峰的数目、位置、方向、高度、宽度、对称性和峰面积是我们进行分析的依据。峰的数目代表在测温范围试样发生物理或化学变化的次数。峰的位置标志着样品发生变化的温度范围。峰的方向表明了热效应的正负性。峰面积则反映热效应的大小。 差热峰有三个转折点:b为峰的起点,c为峰的顶点,d为峰的终点。我们可以在温度线上找到这三个点的相应温度Tb、TC和Td。Tb大体上代表了开始起变化的温度,因此常用Tb表征峰的位置。对于很尖锐的峰也常用TC表示峰的位置。 在实际测定中由于种种原因,差热线的基线往往不与时间轴平行,峰前后的基线也不在一条直线上,差热峰也可能较平坦,因此b、c、d三个转折点不明显,此时,我们可以用作切线的方法来确定转折点温度,如图16-3所示。

差热分析法

差热分析法基本原理 差热分析法——Differential Thermal Analysis (DTA)是在程序控制温度下,测量试样与参比物质之间的温度差ΔT与温度T(或时间t)关系的一种分析技术,所记录的曲线是以ΔT 为纵坐标,以T(或t)为横坐标的曲线,称为差热曲线或DTA曲线,反映了在程序升温过程中,ΔT与T或t的函数关系:ΔT = f ( T ) 或f ( t ) 参比物质为一种在所测量温度范围内不发生任何热效应的物质。通常使用的参比物质是灼烧过的α-Al2O3或MgO。 图17.6为DTA原理示意图。加热时,温度T及温差△T分别由测温热电偶及差热电偶测得。差热电偶是由分别插在试样S和参比物R的二支材料、性能完全相同的热电偶反向 相连而成。当试样S没有热效应发生时,组成差热电偶的二支热电偶分别测出的温度T s、T R相同,即热电势值相同,但符号相反,所以差热电偶的热电势差为零,表现出ΔT=T s-T R=0,记录仪所记录的ΔT曲线保持为零的水平直线,称为基线。若试样S有热效应发生时,T s≠T R,差热电偶的热电势差不等于零,即ΔT=T s-T R≠0,于是记录仪上就出现一个差热峰。热效应是吸热时,ΔT=T s-T R<0,吸热峰向下,热效应是放热时,ΔT>0,放热峰向上。当试样的热效应结束后,T s、T R又趋于一样,ΔT恢复为零位,曲线又重新返回基线。图17.7为试样的真实温度与温差比较图。 差热峰反映试样加热过程中的热效应,峰位置所对应的温度尤其是起始温度是鉴别物质及其变化的定性依据,峰面积是代表反应的热效应总热量,是定量计算反应热的依据,而从

峰的形状(峰高、峰宽、对称性等)则可求得热反应的动力学参数。表17.2列出了各种吸热和放热体系的类型,供判断差热峰产生机理时参考。 表17.2 差热分析中吸热和放热体系的主要类型 影响DTA的因素 影响DTA的因素很多,下面讨论几种主要的因素: ★升温速度的影响 保持均匀的升温速度(ψ)是DTA的重要条件之一,即应:ψ = dT R / dt = 常数 若升温速度不均匀(即ψ有波动),则DTA曲线的基线会漂移,影响多种参数测量。此外,升温速度的快慢也会影响差热峰的位置、形状及峰的分辨率。Speils等人研究了各种升温速度时高岭土DTA的影响,结果见图17.8,表明升温速度愈快,峰的形状愈陡,峰顶温度也愈高。Johnson.J.F等人在研究胆甾醇丙酸酯的多相转变时还发现,高的升温速度有利于小相变的检测,从而提高检测灵敏度。通常升温速度控制在5~20℃·min-1. ★气氛的影响 气氛对DTA有较大的影响。如在空气中加热镍催化剂时,由于它被氧化而产生较大的放热峰;而在氢气中加热时,它的DTA曲线就比较平坦。又如CaC2O4·H2O在CO2和在空气中加热的DTA曲线也会有很大的差异,如图17.9所示。在CO2气氛中,DTA曲线呈现三个吸热峰,分别为失水、失CO和失CO2的正常情况,而在空气气氛中,中间的峰呈现为很强的放热峰,这是因为CaC2O4释放出的CO在高温下被空气氧化燃烧所放出的热量所致。在DTA测定中,为了避免试样或反应产物被氧化,经常在惰性气氛或在真空中进行。当热

差热分析DTA实验报告

差热分析DTA 一、实验目得 掌握热分析方法─差热分析法基本原理与分析方法。 了解差热分析与热重分析仪器得基本结构与基本操作。 二、差热分析基本原理 差热分析法(Differential ThermalAnalysi s,DTA)就是在程序控温下测量样品与参比物得温度差与温度(或时间)相互关系得一种技术。 物质在加热或冷却过程中会发生物理或化学变化,同时产生放热或吸热得热效应,从而导致样品温度发生变化。因此差热分析就是一种通过热焓变化测量来了解物质相关性质得技术。样品与热惰性得参比物分别放在加热炉中得两个坩埚中,以某一恒定得速率加热时,样品与参比物得温度线性升高;如样品没有产生焓变,则样品与参比物得温度就是一致得(假设没有温度滞后),即样品与参比物得温差DT=0;如样品发生吸热变化,样品将从外部环境吸收热量,该过程不可能瞬间完成,样品温度偏离线性升温线,向低温方向移动,样品与参比物得温差DT<0;反之,如样品发生放热变化,由于热量不可能从样品瞬间逸出,样品温度偏离线性升温线,向高温方向变化,温差DT>0。上述温差DT(称为DTA信号)经检测与放大以峰形曲线记录下来。经过一个传热过程,样品才会回复到与参比物相同得温度。 在差热分析时,样品与参比物得温度分别就是通过热电偶测

量得,将两支相同得热电偶同极串联构成差热电偶测定温度差。当样品与参比物温差DT=0,两支热电偶热电势大小相同,方向相反,差热电偶记录得信号为水平线;当温差DT10,差热电偶得电势信号经放大与A/D换,被记录为峰形曲线,通常峰向上为放热,峰向下为吸热。差热曲线直接提供得信息主要有峰得位置、峰得面积、峰得形状与个数,通过它们可以对物质进行定性与定量分析,并研究变化过程得动力学。峰得位置就是由导致热效应变化得温度与热效应种类(吸热或放热)决定得,前者体现在峰得起始温度上,后者体现在峰得方向上。不同物质得热性质就是不同得,相应得差热曲线上得峰位置、峰个数与形状也不一样,这就是差热分析进行定性分析得依据。分析DTA曲线时通常需要知道样品发生热效应得起始温度,根据国际热分析协会(ICTA)得规定,该起始温度应为峰前缘斜率最大处得切线与外推基线得交线所对应得温度T(如图2),该温度与其它方法测得得热效应起始温度较一致。DTA峰得峰温Tp虽然比较容易测定,但它既不反映变化速率到达最大值时得温度,也与放热或吸热结束时得温度无关,其物理意义并不明确。此外,峰得面积与焓变有关。 三、仪器与试剂 1、DTA仪器为: PE DTA-1600 2、待测样品TiCu基合金,差热参比物Y2O3。 3、氧化铝坩埚 2 只,镊子,小勺。 四、实验方法

相关文档
最新文档