人教版七年级数学上册期末总复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学上册期末总复习
第一章有理数
1.有理数: (1)凡能写成
)0p q ,p (p
q
≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数; (2)有理数的分类: ① ⎪⎪⎩
⎪
⎪
⎨⎧⎩⎨⎧⎩⎨⎧负分数
负整数负有理数零正分数正整数
正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数
分数负整数零正整数整数有理数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数 0和正整数; a >0 a 是正数; a <0 a 是负数;
《
a ≥0 a 是正数或0 a 是非负数; a ≤ 0 a 是负数或0 a 是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 a+b=0 a 、b 互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等 4.绝对值:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;
/
注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:⎪⎩⎪
⎨⎧<-=>=)
0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;
(3)
0a 1a
a >⇔= ;
0a 1a
a <⇔-=;
(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:
(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;
(3)两个负数比较,绝对值大的反而小;
》
(4)数轴上的两个数,右边的数总比左边的数大;
(5)-1,-2,+1,+4,,以上数据表示与标准质量的差,绝对值越小,越接近标准。 6.倒数:乘积为1的两个数互为倒数;
注意:0没有倒数; 若ab=1 a 、b 互为倒数; 若ab=-1 a 、b 互为负倒数.
等于本身的数汇总:
相反数等于本身的数:0 倒数等于本身的数:1,-1 绝对值等于本身的数:正数和0
—
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
7. 有理数加法法则:X|k |b| 1 . c|o |m
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).
'
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数与零相乘都得零;
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。 11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .(简便运算)
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0
a
.
—
13.有理数乘方的法则:(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数; 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 a=0,b=0;
(4)正数的任何次幂都是正数,0的任何次幂都是0;负数的奇次幂是负数,负数的偶次幂
是正数。
(5)据规律 ⇒⎪⎪⎭
⎪⎪⎬⎫
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.022
2底数的小数点移动一位,平方数的小数点移动二位.
15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1, 整数位数=10的指数+1
~
16.近似数的精确位:一个近似数,四舍五入到哪一位,就说这个近似数精确到那一位. 17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。 18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
第二章 整式的加减
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数(要包括前面的符号);
单项式中所有字母指数的和,叫单项式的次数(只与字母有关)。
<
3.多项式:几个单项式的和叫多项式。 X k b 1 . c o m
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数; 5.⎩⎨
⎧多项式
单项式整式 (整式是代数式,但是代数式不一定是整式)。
6.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项(与系数无关,与
字母的排列顺序无关)。
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号; 若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:一找:(标记);二“+”(务必用+号开始合并)三合:(合并)
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。
`