可修改用待定系数法求二次函数的解析式PPT课件.ppt

合集下载

二次函数的应用(经典) PPT

二次函数的应用(经典) PPT
(1)若商场平均每天要盈利1200元,每件 衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场平均每天 盈利最多?
最值应用题——销售问题
某商场以每件42元的价钱购进一种服装,根据 试销得知这种服装每天的销售量t(件)与每 件的销售价x(元/件)可看成是一次函数关系: t=-3x+204。 写出商场卖这种服装每天销售利润y(元) 与每件的销售价x(元)间的函数关系式; 通过对所得函数关系式进行配方,指出商场 要想每天获得最大的销售利润,每件的销售 价定为多少最为合适?最大利润为多少?
显而易见:顶点式
已知函数y=ax2+bx+c的图象是以点(2,3) 为顶点的抛物线,并且这个图象通过点(3, 1),求这个函数的解析式。(要求分别用一 般式和顶点式去完成,对比两种方法)
已知某二次函数当x=1时,有最大值-6, 且图象经过点(2,-8),求此二次函数的 解析式。
思维小憩:
用待定系数法求二次函数的解析式,什么 时候使用顶点式y=a(x-m)2+n比较方便?
求函数最值点和最值的若干方法: 直接代入顶点坐标公式 配方成顶点式 借助图象的顶点在对称轴上这一特性,结合 和x轴两个交点坐标求。
二次函数的三种式
一般式:y=ax2+bx+c 顶点式:y=a(x-m)2+n 交点式:y=a(x-x1) (x-x2)
已知二次函数y=ax2+bx+c的图象与x 轴的一个交点坐标是(8,0),顶点是 (6,-12),求这个二次函数的解析式。 (分别用三种办法来求)
窗的形状是矩形上面加一个半圆。窗的 周长等于6cm,要使窗能透过最多的光 线,它的尺寸应该如何设计?
A
O
D
B

最新人教版九年级数学上册《第2课时 用待定系数法求二次函数的解析式》精品教学课件

最新人教版九年级数学上册《第2课时 用待定系数法求二次函数的解析式》精品教学课件

状元成才路
4.已知函数图象过已知三点,求出函数的解析式: (1) (1, 1),(0, 2),(1,1); (2) (1,0),(3,0),(1, 5).
解:(1)选用一般式求解析式: y 2x2 x 2
(2)选用交点式求解析式:
y 5 x 12 5
4
状元成才路
根据已知条件选设函数解析式: 用待定系数法求二次函数的解析式必须根据题目的特点,选择 适当的形式,才能使解题简便.一般来说,有如下几种情况: ①已知抛物线上三点的坐标,一般选用一般式; ②已知抛物线顶点坐标或对称轴或最大(小)值,一般选用顶 点式; ③已知抛物线与x轴的两个交点的横坐标,一般选用交点式; ④已知抛物线上纵坐标相同的两点,常选用顶点式(可求出对 称轴).
a-b+c=10 由已知得: a+b+c=4
4a+2b+c=7
第一步:设出解析式的形式; 第二步:代入已知点的坐标; 第三步:解方程组。
∴解方程组得:a=2, b= -3, c=5 因此,所求二次函数是:y=2x2-3x+5.
状元成才路
任意两点的连 线不与y轴平行
归纳
求二次函数y=ax2+bx+c的解析式,关键是求出待定 系数a,b,c的值。
状元成才路
已知抛物线顶点为(1,-4),且又过点(2,-3),求其解析式. 解:∵抛物线顶点为(1,-4)
∴设其解析式为y=a(x-1)2-4, 又抛物线过点(2,-3), 则-3=a(2-1)2-4,则a=1. ∴其解析式为y=(x-1)2-4=x2-2x-3.
状元成才路
归纳
已知顶点坐标和一点,求二次函数解析式的一般 步骤: 第一步:设解析式为y=a(x-h)2+k. 第二步:将已知点坐标代入求a值得出解析式.

专题(五) 用待定系数法求二次函数解析式课件(人教版)

专题(五) 用待定系数法求二次函数解析式课件(人教版)
(1)求抛物线C1的解析式; (2)将抛物线C1向左平移几个单位长度,可使所得的抛物线C2经过坐 标原点,并写出C2的解析式.
解:(1)y=x2-2x-3 (2)抛物线C1向左平 移3个单位长度,可使得到的抛物线C2经过坐 标原点,所求抛物线C2的解析式为y=x(x+4), 即y=x2+4x
5.如图,直线 l 过点 A(4,0)和 B(0,4)两点,它与二次函数 y=ax2 的图象在第一象限内交于点 P,若 S△AOP=92,求二次函数的解析式.
解:易求直线 AB 的解析式为 y=-x+4,∵S△ AOP=29,∴12×4×yp=29,∴yp=94,∴94=-x+4,解得 x=74,把点 P 的坐标(74,94)代入 y=ax2,解得 a=3469, ∴y=3469x2
五、已知图形变换求解析式
6.如图,已知抛物线C1:y=ax2+bx+c经过点A(-1,0),B(3,0) ,C(0,-3).
(1)求抛物线C1的解析式; (2)将抛物线C1向左平移几个单位长度,可使所得的抛物线C2经过坐 标原点,并写出C2的解析式.
五、已知图形变换求解析式
6.如图,已知抛物线C1:y=ax2+bx+c经过点A(-1,0),B(3,0) ,C(0,-3).
三、已知抛物线与x轴的交点求解析式 已知抛物线与x轴两交点坐标:设y=a(x-x1)(x-x2)求解 3.如图,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3, 0),求这条抛物线的解析式.
解:∵抛物线与x轴交于A(1,0),B(3,0)两点,∴抛物线的解析式可 表示为y=-(x-3)(x-1),即y=-x2+4x-3
九年级上册人教版数学
专题(五) 用待定系数法求二次函数解析式
一、已知三点求解析式

用待定系数法求二次函数解析式PPT课件

用待定系数法求二次函数解析式PPT课件
人教版 九年级上
第22章 二次函数
22.1 二次函数的图象和性质 *第7课时 用待定系数法求二次函数
解析式
提示:点击 进入习题
1 一般式 2 见习题 3 见习题 4 顶点式 5 见习题
6 见习题 7 交点式 8 见习题 9 见习题
答案显示
1.已知函数图象上的三个点的坐标求函数解析式时,设出 二次函数的__一__般__式__,即y=ax2+bx+c(a≠0),然后将三 个点的坐标分别代入解析式,求出待定的系数a,b,c即 可.
2.(2020·陕西)如图,抛物线y=x2+bx+c经过点(3,12)和 (-2,-3),与两坐标轴的交点分别为A,B,C,它的对 称轴为直线l.
(1)求该抛物线的解析式. 解:将点(3,12)和(-2,-3)的坐标代入抛物线的解析式, 得1-2=3=9+4-3b2+b+c,c,解得bc==-2,3. 故抛物线的解析式为 y=x2+2x-3.
解:如图所示.该曲线 是一条抛物线.
(4)设直线y=m(m>-2)与抛物线及(3)中的点P′所在曲线都有
两个交点,交点从左到右依次为A1,A2,A3,A4,请根 据图象直接写出线段A1A2,A3A4之间的数量关系: __A_3_A_4_-__A_1_A_2_=__1____.
4.若已知顶点坐标或对称轴或函数的最值,用待定系数法 求解析式时,一般设___顶__点__式_____,即y=a(x-h)2+k.
课堂导练
11.(2020·吉林)如图是人们常用的插线板。可以用_试__电__笔___ 来判断插孔接的是火线还是零线;当把三线插头插入三 孔插座中时,用电器的金属外壳就会与___大__地___相连, 以防止触电事故的发生。
8.(2020·攀枝花)如图,开口向下的抛物线与x轴交于点A(-1, 0),B(2,0),与y轴交于点C(0,4),点P是第一象限内抛物 线上的一点.

二次函数的应用(经典) PPT

二次函数的应用(经典) PPT

二次函数的应用
专题二: 数形结合法
简单的应用(学会画图)
已知二次函数的图象与x轴交于A(-2,0),B(3, 0)两点,且函数有最大值2。 求二次函数的解析式; 设此二次函数图象顶点为P,求△ABP的面积
在直角坐标系中,点A在y轴的正半轴上,点B在x轴的 负半轴上,点C在x轴的正半轴上,AC=5,BC=4, cos∠ACB=3/5。 求A、B、C三点坐标; 若二次函数图象经过A、B、C三点,求其解析式; 求二次函数的对称轴和顶点坐标
窗的形状是矩形上面加一个半圆。窗的 周长等于6cm,要使窗能透过最多的光 线,它的尺寸应该如何设计?
A
O
D
B
C
最值应用题——面积最大
• 用一块宽为1.2m的长方形铁板弯起两边
做一个水槽,水槽的横断面为底角120º的
等腰梯形。要使水槽的横断面积最大,它
的侧面AB应该是多长?
D
A
B
C
最值应用题——路程问题
已知二次函数的图象与x轴交于A(-2,0), B(3,0)两点,且函数有最大值2。 求二次函数的解析式; 设此二次函数图象顶点为P,求△ABP的面积
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
思维小憩:
用待定系数法求二次函数的解析式,什么时 候使用顶点式y=a(x-x1) (x-x2)比较方便?
求函数最值点和最值的若干方法: 直接代入顶点坐标公式 配方成顶点式 借助图象的顶点在对称轴上这一特性,结合 和x轴两个交点坐标求。
二次函数的三种式
一般式:y=ax2+bx+c 顶点式:y=a(x-m)2+n 交点式:y=a(x-x1) (x-x2)
已知二次函数y=ax2+bx+c的图象与x 轴的一个交点坐标是(8,0),顶点是 (6,-12),求这个二次函数的解析式。 (分别用三种办法来求)

《用待定系数法求二次函数的解析式》课件03上课

《用待定系数法求二次函数的解析式》课件03上课

例2、已知抛物线与X轴交于A(-1,0),B(1,0) 并经过点M(0,1),求抛物线的解析式?
解:设所求的二次函数为y=a(x+1)(x-1) 由条件得:点M( 0,1 )在抛物线上 所以:a(0+1)(0-1)=1 得 : a=-1 故所求的抛物线为 y=- (x+1)(x-1)
y x
o
即:y=-x2+1
当抛物线上的点 的坐标未知时, 应根据题目中的 隐含条件求出点 的坐标
D
(-3,0) C
O
A(1,0) x
反思总结
求二次函数关系式常见方法:
1.已知图象上三点或三点的对应值,通常选
择一般式
2.已知图像的顶点坐标或对称轴和最值,通
常选择顶点式
3.已知图像与x轴两个交点坐标,通常选择
交点式
根据条件求出下列二次函数解析式:
1、已知抛物线y=ax2+bx+c 0 当x=1时,y=0,则a+b+c=_____ a-b+c=0 经过点(-1,0),则___________ c=-3 经过点(0,-3),则___________ 16a+4b+c=5 经过点(4,5),则___________
- b 对称轴为直线x=1,则___________ 2 a =1
2、已知抛物线y=a(x-h)2+k
-3 4 顶点坐标是(-3,4), 则h=_____,k=______ , 2+4 a ( x+3 ) 代入得y=______________ h=1 对称轴为直线x=1,则___________
2+k a ( x -1 ) 代入得y=______________
(1)过点(2,4),且当x=1时,y有最值为6;

人教版九年级数学课件《用待定系数法求二次函数的解析式(三)交点式》

人教版九年级数学课件《用待定系数法求二次函数的解析式(三)交点式》

这种知道抛物线的顶点坐标,求表达式的方法叫做顶点法. 其步骤是: ①设函数表达式是y=a(x-h)2+k; ②先代入顶点坐标; ③将另一点的坐标代入解析式求出a值; ④a用数值换掉,写出函数表达式(化为一般式).
复习回顾
人教版数学九年级上册
一个二次函数的图象经点 (0, 1),它的顶点坐标为(8,9),求 这个二次函数的表达式.
-2 -3
解得a=-1,
-4
∴所求的二次函数的表达式是y=-(x+3)(x+1),即y=-x2-4x-3.
-5
知识精讲
交点法求二次函数表达式的方法
人教版数学九年级上册
这种知道抛物线与x轴的交点,求表达式的方法叫做交点法. 其步骤是: ①设函数表达式是y=a(x-x1)(x-x2); ②先把两交点的横坐标x1, x2代入到表达式中; ③将另一点坐标代入函数解析式求出a值; ④a用数值换掉,写出函数表达式(化为一般式).
解:∵二次函数的图象与x轴的交点坐标是(-1,0),(4,0), ∴设抛物线的解析式为y=a(x+1)(x-4) 又因为抛物线过点P(1,-12), 所以-12=a(1+1)(1-4),解得a=2, 所以所求抛物线的表达式为y=4(x+1)(x-4), 即y=4x2-12x-16.
达标检测
人教版数学九年级上册
达标检测
人教版数学九年级上册
1.抛物线与x轴交点的横坐标为-2和1,且过点(2,8),
它的关系式为( D )
A.y=2x2-2x-4 B.y=-2x2+2x-4 C.y=x2+x-2 D.y=2x2+2x-4
达标检测
人教版数学九年级上册
2.已知二次函数y=ax2 + c的图象经过点(2,3)和(-1,-3),

用待定系数法求二次函数的解析式(共33张PPT)

用待定系数法求二次函数的解析式(共33张PPT)

a 3, 2
b 3. 2
∴所求的二次函数的表达式是 y 3 x2 3 x 1.
22
二 顶点法求二次函数的表达式
3.选取顶点(-2,1)和点(1,-8),试求出这个 二次函数的表达式. 解:设这个二次函数的表达式是y=a(x-h)2+k,把顶点 (-2,1)代入y=a(x-h)2+k得
y=a(x-8)2+9.
又由于它的图象经过点(0 ,1),可得 0=a(0-8)2+9. 解得 a 9 .
64
∴所求的二次函数的解析式是 y 9 (x 8)2 9.
64
三 交点法求二次函数的表达式
5.选取(-3,0),(-1,0),(0,-3),试出这个二次函数
的表达式.
解:∵(-3,0)(-1,0)是抛物线y=ax2+bx+c与x
二,例题讲解:
1,若抛物线y=x2-4x+c (1)过点A(1,3)求c (2)顶点在X轴上求c (1)点在抛物线上,将A(1,3)代入解析式
求得 c=6 (2)X轴上的点的特点 (x,0)
根据顶点的纵坐标为0求得:c=4
2,若抛物线 y=ax2+2x+c 的对称轴是直线 x=2 且函数的最大值是 -3,求 a,c
解: 设这个二次函数的表达式是 y=ax2+bx+c,把(-3,0),(-1,0),
2.代:
(0,-3)代入y=ax2+bx+c得
(坐标代入)
3.解: 方程(组) 4.还原: (写解析式)
9a-3b+c=0, a-b+c=0, 解得 c=-3,
a=-1, b=-4, c=-3.

用待定系数法求二次函数的解析式公开课PPT通用课件

用待定系数法求二次函数的解析式公开课PPT通用课件
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2
又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1。 故顶点坐标为( 1 , 2) 所以可设二次函数的解析式为y=a(x-1)2+2
又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 得a=-2 故所求二次函数的解析式为:y=-2(x-1)2+2 即: y=-2x2+4x
4 图象顶点是M(1,16)且与x轴交于两点,已知 两交点相距8个单位.
解:设抛物线与x轴交于点A、点B y
∵顶点M坐标为(1,16),对称轴为 16
x=1,又交点A、B关于直线x=1对
称,AB=8
∴A(-3,0)、B(5,0) ∴此函数解析式可设为
A -3 o 1
B
5
x
y=a(x-1)2+16
或y=a(+3)(x-5)
解:设抛物线为y=ax(x-40 )
根据题意可知,点(20,16)在抛物线上
∴16=20a(20 – 40), a = - —1
25
评价
选用两根式求解 ,方法灵活巧妙 ,过程也较简捷
3、已知二次函数y=ax2+bx+c的最大值是2, 图象顶点在直线y=x+1上,并且图象经过点 (3,-6),求此二次函数的解析式。
由条件得:点M( 0,1 )在抛物线上 所以:a(0+1)(0-1)=1 得 : a=-1
y
x o
故所求的抛物线为 y=- (x+1)(x-1) 即:y=-x2+1
思考: 用一般式怎么解?
1、已知抛物线上的三点,通常设解析式为
___y_=_a_x__2+__b_x_+_c__(_a≠0)

用待定系数法求二次函数解析式ppt(共32张PPT)

用待定系数法求二次函数解析式ppt(共32张PPT)
(1)试确定此二次函数的解析式.
返回
解:设解析式为y=ax2+bx+c,把(0,3),(-3,0),
(2,-5)代入解析式得 解得
c= 3,
9
a-
3
b+
c=
0,
解得
4 a+ 2 b+ c= - 5,
∴y=-x2-2x+3.
a= - 1,
b


2,
c = 3 .
(2)判断点P(-2,3)是否在这个二次函数的图象上.如果在, 请求出△PAB的面积;如果不在,试说明理由.
返回
5.根据下列条件求解析式:
(1)已知抛物线的顶点在原点,且过点(3,-27),求抛物线
对应的函数解析式;
解:(1)设解析式为y=ax2. 将点(3,-27)的坐标代入,得a=-3, ∴解析式为y=-3x2.
(2)已知抛物线的顶点在y轴上,且经过(2,2)和(1,1)两点, 求它的函数解析式;
个点.
(1)求证:C,E两点不可能同时在抛物线y=a(x-1)2+
k(a>0)上.
证明:由题意可知,抛物线的对称轴为直线x=1. 若C(-1,2)在此抛物线上, 则C点关于直线x=1的对称点(3,2)也在此抛物线上. ∴点E(4,2)不在此抛物线上. ∴C,E两点不可能同时在抛物线y=a(x-1)2+k(a>0)上.
1
(2)点A在抛物线y=a(x-1)2+k(a>0)上吗?为什么?
解得x=-a或x=a+1,
2
大,所以由m<n,得
1 2
<x0<1.综上所述,x0的取返值回
范围为0<x0<1.
11.(中考•菏泽)如图,在平面直角坐标系xOy中,抛物线y=ax2
+bx+2过B(-2,6),C(2,2)两点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
(3)①当四边形OEAF的面积为24时,请判断 OEAF是否为菱形? ②是否存在点E,使四边形OEAF为正方形?若存 在,求出点E的坐标;若不存在,请说明理由.
y
7 x=
2
B(0,4)
O
E
F
A(6,0) x
.精品课件.
10
课堂小结
求二次函数解析式的一般方法:
▪ 已知图象上三点或三对的对应值,
y
7 2
的抛物线经过点A(6,0)和B
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,
四边形OEAF是以OA为对角线的平行四边形,求四边形
OEAF的面积S与x之间的函数关系式,并写出自变量x的取
值范围;
y
7 x= 2
B(0,4)
O
E
F
A(6,0) x
.精品课件.
例 有一个抛物线形的立交桥拱,这个桥拱的最大高度
4 为16m,跨度为40m.现把它的图形放在坐标系里
(如图所示),求抛物线的解析式.
解:设抛物线的解析式为y=ax2+bx+c,
根据题意可知
抛物线经过(0,0),(20,16)和(40,0)三点
可得方程组
评价 通过利用给定的条件
列出a、b、c的三元
一次方程组,求出a、
y=ax2+bx+c
解: 设所求的二次函数为 y=a(x+1)(x-1) y
由条件得:
顶点式: y=a(x-h)2+k
点M( 0,1 )在抛物线上
所以:a(0+1)(0-1)=1 得: a=-1
x o
故所求的抛物线解析式为 y=- (x+1)(x-1)
即:y=-x2+1
.பைடு நூலகம்品课件.
封面 5 例题
例题选讲
解:设所求的二次函数为 y=a(x+1)2-3 y
由条件得: 点( 0,-5 )在抛物线上
x o
a-3=-5, 得a=-2
故所求的抛物线解析式为 y=-2(x+1)2-3 即:y=-2x2-4x-5
.精品课件.
封面 4 例题
例题选讲
例 已知抛物线与X轴交于A(-1,0),B(1,0)
一般式: 3 并经过点M(0,1),求抛物线的解析式?
b、c的值,从而确定
函数的解析式.
过程较繁杂,
.精品课件.
封面 6练习
例题选讲
例 有一个抛物线形的立交桥拱,这个桥拱的最大高度
4 为16m,跨度为40m.现把它的图形放在坐标系里
(如图所示),求抛物线的解析式.
解: 设抛物线为y=a(x-20)2+16
根据题意可知 ∵ 点(0,0)在抛物线上,
评价
通常选择一般式
▪ 已知图象的顶点坐标(对称轴和最值)
通常选择顶点式 x
o
确定二次函数的解析式时,应该根据条件的特点, 恰当地选用一种函数表达式,
.精品课件.
封面 11
解:设所求的二次函数为 y=ax2+bx+c
由条件得:
a-b+c=10 a+b+c=4
4a+2b+c=7 解方程得: a=2, b=-3, c=5
y ox
因此:所求二次函数是:
y=2x2-3x+5
.精品课件.
封面 3 例题
例题选讲

一般式: 2
y=ax2+bx+c
顶点式: y=a(x-h)2+k
已知抛物线的顶点为(-1,-3),与轴交点为 (0,-5)求抛物线的解析式?
∴ 所求抛物线解析式为
通过利用条件中的顶 点和过原点选用顶点 式求解, 方法比较灵活
.精品课件.
封面 7练习
课堂练习
1、 一个二次函数,当自变量x= -3时,函数值y=2 当自变量x= -1时,函数值y= -1,当自变量x=1时 ,函数值y= 3,求这个二次函数的解析式?
.精品课件.
封面 8小结
如图,对称轴为直线x= (0,4).
用待定系数法求二次函数的解析式
课前复习 例题选讲 课堂练习 课堂小结
y
o
x
.精品课件.
1
课前复习
二次函数解析式有哪几种表达式?
• 一般式:y=ax2+bx+c • 顶点式:y=a(x-h)2+k
.精品课件.
封面 2 例题
例题选讲

一般式: 1
y=ax2+bx+c
顶点式: y=a(x-h)2+k
已知一个二次函数的图象过点(-1,10)、 (1,4)、(2,7)三点,求这个函数的解析式?
相关文档
最新文档