2020年全国高考理科数学试题分类汇编3:三角函数 Word版含答案
2020年高考理科数学及答案解析(全国Ⅲ卷)
2020年普通高等学校招生全国统一考试理科数学(含答案解析)注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【难度】容易 【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合相关知识的总结讲解. 2.若(1i)2i z +=,则z = A .1i -- B .1+i -C .1i -D .1+i【答案】D 【难度】容易【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A .0.5B .0.6C .0.7D .0.8【答案】C 【难度】容易【点评】本题在高考数学(理)提高班讲座 第十四章《概率》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
2020年普通高等学校招生全国统一考试 理科数学 (全国卷III) word版试题及答案解析
2020年普通高等学校招生全国统一考试(III 卷) 理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A=(){}*,,,x y x y N y x ∈≥,B=(){},8x y x y +=,则A B 中元素个数为 A. 2 B. 3 C. 4 D. 6 2.复数113i-的虚部是 A. 310-B. 110-C. 110D. 3103.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A. 14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ==== D .14230.3,0.2p p p p ====4. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t K I t e--=+,其中K 为的最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln19≈3) A.60 B.63 C.66 D.695. 设O 为坐标原点,直线2x =与抛物线2:2(0)C y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为A. (14,0)B. (12,0)C. (1,0)D. (2,0)6. 已知向量a,b 满足5a =,6b =,·6a b =-,则cos(,)a a b +=A. 3135- B. 1935-C. 1735D. 19357. 在△ABC 中,2cos =3C ,4AC =,3BC =,则cos B =A. 19B. 13C. 12D. 238. 右图为某几何体的三视图,则该几何体的表面积是 A. 6+42 B. 442+ C. 623+ D. 423+9.已知2tan tan()74πθθ-+=,则tan θ=A. -2B. -1C. 1D. 210.若直线l 与曲线y x =和圆2215x y +=都相切,则l 的方程为 A. 21y x =+ B. 122y x =+ C. 112y x =+ D. 1122y x =+11. 设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F , 2F ,离心率为5. P 是C 上一点,且12F P F P ⊥.若△12PF F 的面积为4,则a=A .1B .2C .4D .812. 已知5458<,45138<,设5a log 3=,8b=log 5,13c log 8=,则 A. a b c << B. b a c << C. b c a << D. c a b <<二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试(全国卷Ⅲ)数学(理)试题(解析版)
绝密★启用前 考试时间:2020年7月7日15:00-17:002020年普通高等学校招生全国统一考试(全国卷Ⅲ)数学(理科)试题 (解析版)试卷总分150分, 考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i-的虚部是( ) A. 310-B. 110-C.110D.310【答案】D 【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( ) A. 14230.1,0.4p p p p ==== B. 14230.4,0.1p p p p ==== C. 14230.2,0.3p p p p ==== D. 14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,。
2020高考—三角函数(解答+答案)
2020年高考——三角函数1.(20全国Ⅰ文18)ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ABC △的面积;(2)若sin A C ,求C .2. (20全国Ⅱ文17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形.3.(20全国Ⅱ理 17)ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.4.(20新高考Ⅰ17)在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B ,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分.5.(20天津16)(本小题满分14分)在ABC △中,角,,A B C 所对的边分别为,,a b c .已知5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值; (Ⅲ)求πsin(2)4A +的值.6.(20浙江18)(本题满分14分)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知2sin 0b A =. (Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.7.(20江苏16)(本小题满分14分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒. (1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.8.(20全国Ⅱ理21)(12分)已知函数f (x )= sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性; (2)证明: 33()f x ≤; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .9.(20北京17)(本小题13分)在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.参考答案:1.解:(1)由题设及余弦定理得2222832cos150c c =+-⨯︒,解得2c =-(舍去),2c =,从而a =ABC △的面积为12sin1502⨯⨯︒=(2)在ABC △中,18030A B C C =︒--=︒-,所以sin sin(30)sin(30)A C C C C =︒-=︒+,故sin(30)C ︒+=而030C ︒<<︒,所以3045C ︒+=︒,故15C =︒.2.解:(1)由已知得25sin cos 4A A +=,即21cos cos 04A A -+=. 所以21(cos )02A -=,1cos 2A =.由于0A <<π,故3A π=.(2)由正弦定理及已知条件可得sin sin B C A -.由(1)知23B C π+=,所以2sin sin()33B B ππ--.即11sin 22B B =,1sin()32B π-=.由于03B 2π<<,故2B π=.从而ABC △是直角三角形.3.解:(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,② 由①,②得1cos 2A =. 因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin AC AB BCB C A===从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+4.解:方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c =方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a =.222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.5.(Ⅰ)解:在ABC △中,由余弦定理及5,a b c ===222cos 22a b c C ab +-==.又因为(0,π)C ∈,所以π4C =.(Ⅱ)解:在ABC △中,由正弦定理及π,4C a c ===,可得sin sin 13a C A c ==.(Ⅲ)解:由a c <及sin A =cos A == 进而2125sin 22sin cos ,cos 22cos 113A A A A A ===-=.所以,πππ125sin(2)sin 2cos cos 2sin 44413213226A A A +=+=⨯+⨯=.6.(Ⅰ)由正弦定理得2sin sin B A A ,故sin B =, 由题意得π3B =. (Ⅱ)由πA B C ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈.故cos cos cos A B C ++的取值范围是3]2.7.解:(1)在ABC △中,因为3,45a c B ===︒,由余弦定理2222cos b a c ac B =+-,得292235b =+-⨯︒=,所以b =在ABC △中,由正弦定理sin sin b cB C=,,所以sin C =(2)在ADC △中,因为4cos 5ADC ∠=-,所以ADC ∠为钝角,而180ADC C CAD ∠+∠+∠=︒,所以C ∠为锐角.故cos C =则sin 1tan cos 2C C C ==. 因为4cos 5ADC ∠=-,所以3sin 5ADC ∠==,sin 3tan cos 4ADC ADC ADC ∠∠==-∠.从而31tan()242tan tan(180)tan()===311tan tan 111()42ADC C ADC ADC C ADC C ADC C -+∠+∠∠=︒-∠-∠=-∠+∠---∠⨯∠--⨯8.解:(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+22sin cos sin 22sin cos2x x x x x =+ 2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x 在区间[0,]π的最大值为()3fπ=,最小值为()3f 2π=.而()f x 是周期为π的周期函数,故|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx xx333|sin sin 2sin 2|n x xx =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n n x x x x x x -= 12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以22223333sin sin 2sin 2()4n nnn x xx ≤=.9.。
2020年全国统一考试高考数学试卷及其详细解析(理科)(新课标ⅲ)
2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{(,)|A x y x=,*y N∈,}y x,{(,)|8}B x y x y=+=,则A B中元素的个数为()A.2 B.3 C.4 D.62.复数113i-的虚部是()A.310-B.110-C.110D.3103.在一组样本数据中,1,2,3,4出现的频率分别为1p,2p,3p,4p,且411iip==∑,则下面四种情形中,对应样本的标准差最大的一组是()A.140.1p p==,230.4p p==B.140.4p p==,230.1p p==C.140.2p p==,230.3p p==D.140.3p p==,230.2p p==4.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()(I t t的单位:天)的Logistic模型:0.23(53)()1tKI te--=+,其中K为最大确诊病例数.当*()0.95I t K=时,标志着已初步遏制疫情,则*t约为( )(193)ln≈A.60 B.63 C.66 D.695.设O为坐标原点,直线2x=与抛物线2:2(0)C y px p=>交于D,E两点,若OD OE⊥,则C的焦点坐标为()A.1(4,0)B.1(2,0)C.(1,0)D.(2,0)6.已知向量a,b满足||5a=,||6b=,6a b=-,则cos a<,(a b+>=) A.3135-B.1935-C.1735D.19357.在ABC∆中,2cos3C=,4AC=,3BC=,则cos(B=)A.19B.13C.12D.238.如图为某几何体的三视图,则该几何体的表面积是()A.642+B.442+C.63+D.43+初高中数学学习资料的店初高中数学学习资料的店11.设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,.P 是C上一点,且12F P F P ⊥.若△12PF F 的面积为4,则(a = )A .1B .2C .4D .8 12.已知5458<,45138<.设5log 3a =,8log 5b =,13log 8c =,则( ) A .a b c <<B .b a c <<C .b c a <<D .c a b <<9.已知2tan tan()74πθθ-+=,则tan (θ= )A .2-B .1-C .1D .210.若直线l与曲线y =和圆2215x y +=都相切,则l 的方程为( )A .21y x =+B .122y x =+C .112y x =+D .1122y x =+二、填空题:本题共4小题,每小题5分,共20分。
2020届高考三角函数及解三角形汇编专题数学(理)Word版含解析
专题06 三角函数及解三角形1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A .B .C .D .2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B5C3D55.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点2sin cos ++x xx x③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③D .①③④6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2- B. CD .27.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.9.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.13.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值.14.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+ ⎪⎝⎭的值.15.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.17.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域.18.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αA .3B .13C .13-D .3-19.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知4cos 5=-α,()π,0∈-α,则πtan 4⎛⎫-= ⎪⎝⎭αA .17 B .7 C .17-D .7-20.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数π()sin()6f x x =+ω(0)>ω的相邻对称轴之间的距离为π2,将函数图象向左平移π6个单位得到函数()g x 的图象,则()g x = A .πsin()3x +B .πsin(2)3x +C .cos2xD .πcos(2)3x +21.【河南省郑州市2019届高三第三次质量检测数学试题】已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ的部分图象如图所示,则使()()0f a x f a x +--=成立的a 的最小正值为A .π12 B .π6 C .π4D .π322.【山东省实验中学等四校2019届高三联合考试数学试题】在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC △的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭A .1B .2C D 23.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =cos )cos 0A C C b A ++=,则角A =A .2π3 B .π3 C .π6D .5π624.【广东省韶关市2019届高考模拟测试(4月)数学试题】在ABC △中,a 、b 、c 分别是内角A 、B 、C cos sin (cos cos )A A a C c A =+.(1)求角A 的大小;(2)若a =ABC △的面积为4,求ABC △的周长.25.【北京市昌平区2019届高三5月综合练习(二模)数学试题】已知函数1(=cos cos )+2f x x x x -). (1)求π()3f 的值;(2)当π[0,]2x ∈时,不等式()2c f x c <<+恒成立,求实数c 的取值范围.专题06 三角函数及解三角形详细解析1.【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A . B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称,排除A .又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,排除B ,C ,故选D . 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案.2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.2sin cos ++x xx x当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.3.【2019年高考全国Ⅱ卷理数】下列函数中,以2π为周期且在区间(4π,2π)单调递增的是A .f (x )=|cos2x |B .f (x )=|sin2x |C .f (x )=cos|x |D .f (x )=sin|x |【答案】A【解析】作出因为sin ||y x =的图象如下图1,知其不是周期函数,排除D ; 因为cos cos y x x ==,周期为2π,排除C ;作出cos2y x =图象如图2,由图象知,其周期为π2,在区间(4π,2π)单调递增,A 正确; 作出sin 2y x =的图象如图3,由图象知,其周期为π2,在区间(4π,2π)单调递减,排除B ,故选A .图1图2图3【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数.4.【2019年高考全国Ⅱ卷理数】已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15B .5C 3D 5【答案】B【解析】2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,sin 5α∴=,故选B .【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】Dπ【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2-B . CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=; 又12π()sin,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =2A =,∴()2sin 2f x x =,3π()8f =故选C. 【名师点睛】本题主要考查函数的性质和函数的求值问题,解题关键是求出函数()g x ,再根据函数性质逐步得出,,A ωϕ的值即可.7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 【答案】π2【解析】函数()2sin 2f x x ==1cos 42x -,周期为π2. 【名师点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可.8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为_________.【答案】【解析】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =,解得c c ==-,所以2a c ==11sin 22ABC S ac B ==⨯=△ 【名师点睛】本题易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 9.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 ▲ .【答案】10【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-. πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式=22112()1()33[]=1210()13⨯-+--⨯-+综上,πsin 2410α⎛⎫+= ⎪⎝⎭ 【名师点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.由题意首先求得tan α的值,然后利用两角和的正弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.10.【2019年高考浙江卷】在ABC △中,90ABC ∠=︒,4AB =,3BC =,点D 在线段AC 上,若45BDC ∠=︒,则BD =___________,cos ABD ∠=___________.【解析】如图,在ABD △中,由正弦定理有:sin sin AB BD ADB BAC =∠∠,而3π4,4AB ADB =∠=,5AC ,34sin ,cos 55BC AB BAC BAC AC AC ∠==∠==,所以BD =. ππcos cos()cos cos sin sin 44ABD BDC BAC BAC BAC ∠=∠-∠=∠+∠=.【名师点睛】本题主要考查解三角形问题,即正弦定理、三角恒等变换、数形结合思想及函数方程思想.在ABD △中应用正弦定理,建立方程,进而得解.解答解三角形问题,要注意充分利用图形特征. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)60A ︒=;(2)sin C =【解析】(1)由已知得222sin sin sin sin sin B C A B C +-=,故由正弦定理得222b c a bc +-=.由余弦定理得2221cos 22b c a A bc +-==.因为0180A ︒︒<<,所以60A ︒=.(2)由(1)知120B C ︒=-()sin 1202sin A C C ︒+-=,1sin 2sin 2C C C ++=,可得()cos 602C ︒+=-.由于0120C ︒︒<<,所以()sin 60C ︒+=,故 ()sin sin 6060C C ︒︒=+-()()sin 60cos60cos 60sin 60C C ︒︒︒︒=+-+=. 【名师点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2). 【解析】(1)由题设及正弦定理得sin sinsin sin 2A CA B A +=. 因为sin A ≠0,所以sinsin 2A CB +=. 由180A BC ︒++=,可得sincos 22A C B +=,故cos 2sin cos 222B B B=. 因为cos02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+.由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<ABC S <<△.因此,△ABC面积的取值范围是⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查V ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题. 13.【2019年高考北京卷理数】在△ABC 中,a =3,b −c =2,cos B =12-. (1)求b ,c 的值; (2)求sin (B –C )的值. 【答案】(1)7b =,5c =;(2【解析】(1)由余弦定理2222cos b a c ac B =+-,得22213232b c c ⎛⎫=+-⨯⨯⨯- ⎪⎝⎭.因为2b c =+,所以2221(2)3232c c c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭. 解得5c =. 所以7b =. (2)由1cos 2B =-得sin 2B =.由正弦定理得sin sin c C B b ==. 在ABC △中,∠B 是钝角, 所以∠C 为锐角.所以11cos 14C ==.所以sin()sin cos cos sin B C B C B C -=-=. 【名师点睛】本题主要考查余弦定理、正弦定理的应用,两角差的正弦公式的应用等知识,意在考查学生的转化能力和计算求解能力.14.【2019年高考天津卷理数】在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(1)求cos B 的值; (2)求sin 26B π⎛⎫+⎪⎝⎭的值. 【答案】(1)14-;(2)-【解析】(1)在ABC △中,由正弦定理sin sin b cB C=,得sin sin b C c B =,又由3sin 4sin c B a C =,得3sin 4sin b C a C =,即34b a =.又因为2b c a +=,得到43b a =,23c a =.由余弦定理可得222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅.(2)由(1)可得sin B ==,从而sin 22sin cos B B B ==,227cos 2cos sin 8B B B =-=-,故71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭. 【名师点睛】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识.考查运算求解能力. 15.【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b ,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)c =(2.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c +-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.【2019年高考江苏卷】如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.【答案】(1)15(百米);(2)见解析;(3)17+. 【解析】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.' 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ ===此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM =<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,1P B =15,此时1P (−13,9); 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q两点间的距离为17+.【名师点睛】本小题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.17.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值;(2)求函数22[()][()]124y f x f x ππ=+++的值域. 【答案】(1)π2θ=或3π2;(2)[122-+. 【解析】(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=.又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y f x f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 213621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭π1223x ⎛⎫=-+ ⎪⎝⎭.因此,函数的值域是[122-+. 【名师点睛】本题主要考查三角函数及其恒等变换等基础知识,同时考查运算求解能力.18.【重庆西南大学附属中学校2019届高三第十次月考数学试题】已知角α的顶点在坐标原点,始边与x 轴正半轴重合,终边经过点(1)P ,则cos2=αAB.13C.13-D.3-【答案】B【解析】因为角α的顶点在坐标原点,始边与x轴正半轴重合,终边经过点(1)P,所以cos3==-α,因此21cos22cos13=-=αα.故选B.【名师点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.解答本题时,先由角α的终边过点(1)P,求出cosα,再由二倍角公式,即可得出结果.19.【四川省宜宾市2019届高三第三次诊断性考试数学试题】已知4cos5=-α,()π,0∈-α,则πtan4⎛⎫-=⎪⎝⎭αA.17B.7C.17-D.7-【答案】C【解析】()4cos,π,05a=-∈-Qα,∴ππ,2⎛⎫∈--⎪⎝⎭α,33sin,tan54∴=-=αα,则πtan1tan41tan-⎛⎫-=⎪+⎝⎭ααα31143714-==-+.故选C.【名师点睛】本题主要考查了同角三角函数关系式及两角差的正切公式的简单应用,属于基础题.解答本题时,根据已知cosα的值,结合同角三角函数关系式可求tanα,然后根据两角差的正切公式即可求解.20.【广东省韶关市2019届高考模拟测试(4月)数学文试题】已知函数π()sin()6f x x =+ω(0)>ω的相邻对称轴之间的距离为π2,将函数图象向左平移π6个单位得到函数()g x 的图象,则()g x = A .πsin()3x + B .πsin(2)3x + C .cos2xD .πcos(2)3x + 【答案】C 【解析】由函数π()sin()(0)6f x x =+>ωω的相邻对称轴之间的距离为π2,得π22T =,即πT =,所以2ππ=ω,解得2=ω, 将函数π()sin(2)6f x x =+的图象向左平移π6个单位, 得到ππππ()sin[2()]sin 2cos 26636g x x x x ⎛⎫=++=++= ⎪⎝⎭的图象,故选C . 【名师点睛】本题考查的知识要点:三角函数关系式的平移变换和伸缩变换的应用,正弦型函数性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.解答本题时,首先利用函数的图象求出函数的关系式,进一步利用图象的平移变换的应用求出结果.21.【河南省郑州市2019届高三第三次质量检测数学试题】已知函数()()sin f x A x =+ωϕ,π0,0,2A >><ωϕ的部分图象如图所示,则使()()0f a x f a x +--=成立的a 的最小正值为A .π12B .π6 C .π4 D .π3 【答案】B 【解析】由图象易知,2A =,(0)1f =,即2sin 1=ϕ,且π2<ϕ,即6π=ϕ, 由图可知,11π()0,12f =所以11ππ11ππsin()0,π,126126k k ⋅+=∴⋅+=∈Z ωω,即122,11k k -=∈Z ω,又由图可知,周期11π2π11π24,121211T >⇒>∴<ωω,且0>ω, 所以由五点作图法可知2,2k ==ω, 所以函数π()2sin(2)6f x x =+,因为()()0f a x f a x +--=,所以函数()f x 关于x a =对称, 即有ππ2π,62a k k +=+∈Z ,所以可得ππ,26k a k =+∈Z , 所以a 的最小正值为π6. 故选B.【名师点睛】本题考查了三角函数的图象和性质,熟练运用三角函数的图象和周期对称性是解题的关键,属于中档题.解答本题时,先由图象,求出,,A ϕω,可得函数()f x 的解析式,再由()()0f a x f a x +--=易知()f x 的图象关于x a =对称,即可求得a 的值.22.【山东省实验中学等四校2019届高三联合考试数学试题】在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,若ABC △的面积为S ,且()22a b c =+-,则πsin 4C ⎛⎫+= ⎪⎝⎭A .1 BC D 【答案】D【解析】由()22a b c =+-,得2221sin 22ab C a b c ab =+-+,∵2222cos a b c ab C +-=,∴sin 2cos 2C ab C ab =+,cos 1C C -=,即π2sin 16C ⎛⎫-= ⎪⎝⎭,则π1sin 62C ⎛⎫-= ⎪⎝⎭, ∵0πC <<,∴ππ5π666C -<-<,∴ππ66C -=,即π3C =,则πππππππsin sin sin cos cos sin 4343434C ⎛⎫⎛⎫+=+=+= ⎪ ⎪⎝⎭⎝⎭12=, 故选D .【名师点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出C 的值以及利用两角和差的正弦公式进行计算是解决本题的关键.解答本题时,根据三角形的面积公式以及余弦定理进行化简求出C 的值,然后利用两角和的正弦公式进行求解即可.23.【山东省烟台市2019届高三3月诊断性测试(一模)数学试题】在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若1a =cos )cos 0A C C b A ++=,则角A =A .2π3B .π3 C .π6 D .5π6 【答案】D【解析】∵1a =cos )cos 0A C C b A ++=,cos cos cos A C C A b A =-,)cos A C B b A +==-,sin cos B b A =-,sin sin cos A B B A =-,∵sin 0B >cos A A =-,即tan A =, ∵(0,π)A ∈,∴5π6A =.故选D . 【名师点睛】本题主要考查解三角形,熟记正弦定理,两角和的正弦公式即可,属于基础题.解答本cos )cos 0A C C b A ++=sin cos B b A =-,再由正弦定理得到tan A =,结合(0,π)A ∈,即可求得A 的值. 24.【广东省韶关市2019届高考模拟测试(4月)数学试题】在ABC △中,a 、b 、c 分别是内角A 、B 、C cos sin (cos cos )A A a C c A =+.(1)求角A 的大小;(2)若a =ABC △,求ABC △的周长.【答案】(1)π3A =;(2).【解析】(1cos sin (cos cos )A A a C c A =+,∴由正弦定理可得:cos sin (sin cos sin cos )B A A A C C A =+sin sin()sin sin A A C A B =+=,cos B A sin sin A B =,∵sin 0B ≠,∴tan A =∵(0,π)A ∈, ∴π3A =.(2)∵π3A =,a =ABC △,1sin 2bc A ∴==, ∴5bc =,∴由余弦定理可得:2222cos a b c bc A =+-,即222212()3()15b c bc b c bc b c =+-=+-=+-,解得:b c +=∴ABC △的周长为a b c ++==.【名师点睛】本题主要考查了正弦定理,两角和的正弦函数公式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.(1)由正弦定理,cos sin sin B A A B =,由sin 0B ≠,可求tan A =(0,π)A ∈,可求π3A =.(2)利用三角形的面积公式可求5bc =,进而根据余弦定理可得b c +=ABC △的周长的值.25.【北京市昌平区2019届高三5月综合练习(二模)数学试题】已知函数1(=cos cos )+2f x x x x -).(1)求π()3f 的值;(2)当π[0,]2x ∈时,不等式()2c f x c <<+恒成立,求实数c 的取值范围.【答案】(1)1;(2)1(1,)2--. 【解析】(1)21(cos cos +2f x x x x -1=2cos 222x x - π=sin(2)6x -, 所以π()13f =. (2)因为π02x ≤≤, 所以ππ5π2666x -≤-≤, 所以1sin 226x π-≤-≤()1. 由不等式()2c f x c <<+恒成立,得1221c c ⎧<-⎪⎨⎪+>⎩,解得112c -<<-. 所以实数c 的取值范围为1(1,)2--.【名师点睛】本题主要考查三角函数的性质及其应用,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.(1)首先整理函数的解析式,然后结合函数的解析式求解函数值即可;(2)首先求得函数()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域,然后结合恒成立的结论得到关于c 的不等式组,求解不等式组可得c 的取值范围.。
2020年高考数学(全国卷3·理),题目和答案都在这里了
2020年高考数学(全国卷3·理),题目和答案都在这里了2020年高考数学(全国卷3·理)题目,你觉得是简单还是困难?先来看看实体结构:试题结构(模块与题号的对应):集合:1复数:2线性规划:13二项式定理:14三视图:8向量:6数列:17函数:4、12、21三角函数:7、9、16立体几何:15、19解析几何:5、10、11、20概率与统计:3、18坐标系与参数方程:22不等式:23难度分析:小题:仍然以基础考察为主:第1-9题,13/14题为简单型。
稍微有些基础的同学都能得分。
(其中第4题属于数学应用,考察对数的运算)第10题,第15、16题为中等难度题目。
而相对较难的是第11-12题。
大题:17-18题简单题,19中等难度,20-21压轴、但第一问相对简单。
22-23题常规题目总体来说,试题难度适中,整体仍以基础考察为主,最后的着力点是数学核心素养及数学能力的考察.高清版试题私信作者领取,选择、填空答案如下:以上试卷根据网络资料整理,试题/答案不敢确保无误,请以官方公布答案为准。
【仅作为学习交流参考使用.】高三的孩子们,不管今年的题目难还是简单,发挥得好还是差,一切都已过去。
考完试后,应该考虑的是自己如何走好以后的每一步。
人生贵在无悔、精彩无处不在。
加油!高二的孩子们,明年的这个时候,就要轮到你们上场了,每一年的题目、题型很难猜透,题型与刷题固然重要,但也要注重自我“能力”的提高。
只有这样,才能在高考中立于不败之地。
加油!。
2020年高考试题三角函数汇编【题目+答案版】
2020年高考各地三角函数真题(1)【2020全国高考III卷(文)第5题】已知sin θ+sin (θ+π3)=1,则sin (θ+π6)=()A. 12B. √33C. 23D. √22(2)【2020全国高考(浙江卷)第4题】函数y=xcosx+sinx在区间[−π,π]的图象大致为()A. B.C. D.(3)【2020全国高考III卷(理)第9题】已知2tanθ−tan(θ+π4)=7,则tanθ=()A. −2B. −1C. 1D. 2(4)【2020全国高考(天津)卷第7题】已知函数f(x)=sin(x+π3).给出下列结论:①f(x)的最小正周期为2π;②f(π2)是f(x)的最大值;③把函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象.其中所有正确结论的序号是()A. ①B. ①③C. ②③D. ①②③(5)【2020全国高考(浙江卷)第13题】已知tttt=2,则ttt2t=______;tan(t−t4)=______.(6)【2020全国高考(江苏卷)第10题】将函数y=3sin(2x+π4)的图象向右平移π6个单位长度,则平移后的图象中与y轴最近的对称轴的方程是______.(7)【2020全国高考(江苏卷)第18题】在△ttt中,角A、B、C的对边分别为a、b、t.已知t=3,t=√2,t=45°.(1)求sin C的值;(2)在边BC上取一点D,使得cos∠ttt=−45,求tan∠ttt的值.(8)【2020全国高考I卷(理)第16题】如图,在三棱锥t−ttt的平面展开图中,tt=1,tt=tt=,AB AC,AB AD,ttt=,则ttt=__________.(9) 【2020全国高考天津卷第15题】如图,在四边形ABCD 中,∠t =60°,tt =3,tt =6,且tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =t tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =−32,则实数t 的值为______,若M ,N 是线段BC 上的动点,且|tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=1,则tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为______.(10) 【2020全国高考(浙江卷)第18题】在锐角△ttt 中,角t ,t ,t 的对边分别为t ,t ,t .已知2t sin t −√3t =0. (1)求角B ;(2)求cos t +cos t +cos t 的取值范围.(11) 【2020全国高考(上海卷)第18题】已知函数t (t )=sin tt ,t >0.(1)f(x)的周期是4π,求ω,并求f(x)=12的解集;(2)已知ω=1,g(x)=f 2(x)+√3f(−x)f(π2−x),x ∈[0,π4],求g(x)的值域.(12) 【2020全国高考(天津卷)第16题】在△ttt 中,角A ,B ,C 所对的边分别为a ,b ,t .已知t =2√2,t =5,t =√13. (1)求角C 的大小; (2)求sin A 的值;(3)求sin (2t +t4)的值.(13) 【2020全国高考I 卷(文)第18题】∆ttt 的内角t ,t ,t 的对边分别为t ,t ,t ,已知t =150∘.(1)若a =√3c ,b =2√7,求∆ABC 的面积;(2)若sinA +√3sinC =√22,求C .(14) 【2020全国高考II 卷(理)第16题】∆ttt 中,sin 2t −sin 2t −sin 2t =sin t sin t .(1) 求A ;(2) 若BC =3,求∆ABC 周长的最大值.(15) 【2020全国高考II 卷(文)第17题】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2(π2+A)+cosA =54.(1)求A ;(2)若b −c =√33a ,证明:△ABC 是直角三角形.(16)【2020全国高考II卷理科21题】已知函数t(t)=sin2t sin2t.(1)讨论t(t)在区间(0,t)的单调性;(2)证明:|t(t)|≤3√3;8(3)设t∈N∗,证明:sin2t sin22t sin24t⋯sin22t t≤3t.4t【答案】2020年高考各地三角函数真题(1)【2020全国高考III卷(文)第5题】已知sin θ+sin (θ+π3)=1,则sin (θ+π6)=()A. 12B. √33C. 23D. √22解:∵sin (t+t3)=12sin t+√32cos t,∴sin t+sin (t+t3)=32sin t+√32cos t=√3sin (t+t6)=1得sin (t+t6)=√33故选:B.(2)【2020全国高考(浙江卷)第4题】函数y=xcosx+sinx在区间[−π,π]的图象大致为()A. B.C. D.【答案】A【解析】解:t=t(t)=ttttt+tttt,则t(−t)=−ttttt−tttt=−t(t),∴t(t)为奇函数,函数图象关于原点对称,故排除B,D,当t=t时,t=t(t)=ttttt+tttt=−t<0,故排除B,故选:A.先判断函数的奇偶性,再判断函数值的特点.本题考查了函数图象的识别,掌握函数的奇偶性额函数值得特点是关键,属于基础题.(3)【2020全国高考III卷(理)第9题】已知2tanθ−tan(θ+π4)=7,则tanθ=()A. −2B. −1C. 1D. 2解:∵2tan t−tan (t+t4)=2tan t−tan t+11−tan t=7,∴2tan t(1−tan t)−(tan t+1)=7−7tan t,整理得(tan t−2)2=0,∴tan t=2,故选D.(4)【2020全国高考(天津)卷第7题】已知函数f(x)=sin(x+π3).给出下列结论:①f(x)的最小正周期为2π;②f(π2)是f(x)的最大值;③把函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象.其中所有正确结论的序号是()A. ①B. ①③C. ②③D. ①②③【答案】B【解析】【分析】本题以命题的真假判断为载体,主要考查了正弦函数的性质的简单应用,属于中档题.由已知结合正弦函数的周期公式可判断①,结合函数最值取得条件可判断②,结合函数图象的平移可判断③.【解答】解:因为f(x)=sin(x+π3),①由周期公式可得,f(x)的最小正周期T=2π,故①正确;、②f(π2)=sin(π2+π3)=sin5π6=12,不是f(x)的最大值,故②错误;③根据函数图象的平移法则可得,函数y=sinx的图象上的所有点向左平移π3个单位长度,可得到函数y=f(x)的图象,故③正确.故选:B.(5) 【2020全国高考(浙江卷)第13题】已知tttt =2,则ttt2t =______;tan (t −t4)=______. 【答案】−35 13【解析】解:tttt =2,则ttt2t =cos 2t −sin 2t cos 2t +sin 2t=1−tan 2t 1+tan 2t =1−41+4=−35.tan (t −t4)=tttt −tan t41+ttttttt t4=2−11+2×1=13. 故答案为:−35;13.利用二倍角公式以及同角三角函数基本关系式求解第一问,利用两角和与差的三角函数转化求解第二问.本题考查二倍角公式的应用,两角和与差的三角函数以及同角三角函数基本关系式的应用,是基本知识的考查.(6) 【2020全国高考(江苏卷)第10题】将函数y =3sin(2x +π4)的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是______.解:因为函数t =3ttt (2t +t4)的图象向右平移t6个单位长度可得t (t )=t (t −t6)=3ttt (2t −t 3+t 4)=3ttt (2t −t12),则t =t (t )的对称轴为2t −t12=t2+tt ,t ∈t ,即t =7t 24+tt2,t ∈t ,当t =0时,t =7t24, 当t =−1时,t =−5t24, 所以平移后的图象中与y 轴最近的对称轴的方程是t =−5t24, 故答案为:t =−5t 24.(7) 【2020全国高考(江苏卷)第18题】在△ttt 中,角A 、B 、C 的对边分别为a 、b 、t .已知t =3,t =√2,t =45°. (1)求sin C 的值;(2)在边BC 上取一点D ,使得cos ∠ttt =−45,求tan ∠ttt 的值.【答案】解:(1)因为t =3,t =√2,t =45°.,由余弦定理可得:t =√t 2+t 2−2tttttt =√9+2−2×3×√2×√22=√5,由正弦定理可得t tttt =ttttt ,所以tttt =t t⋅ttt45°=√2√5⋅√22=√55,所以tttt =√55;(2)因为cos ∠ttt =−45,所以sin ∠ttt =√1−cos 2∠ttt =35, 在三角形ADC 中,易知C 为锐角,由(1)可得tttt =√1−sin 2t =2√55,所以在三角形ADC 中,sin ∠ttt =sin (∠ttt +∠t )=sin ∠tttttt ∠t +cos ∠tttttt ∠t =2√525,因为∠ttt ∈(0,t2),所以cos ∠ttt =√1−sin 2∠ttt =11√525,所以tan ∠ttt =sin ∠ttt cos ∠ttt=211.(8) 【2020全国高考I 卷(理)第16题】如图,在三棱锥t −ttt 的平面展开图中,tt =1,tt =tt =,AB AC ,ABAD ,ttt =,则ttt =__________.解:由已知得tt =√2tt =√6, ∵t 、E 、F 重合于一点,∴tt =tt =√3,tt =tt =√6, ∴ △ttt 中,由余弦定理得,∴tt =tt =1, ∴在△ttt 中,由余弦定理得.故答案为.(9) 【2020全国高考天津卷第15题】如图,在四边形ABCD 中,∠t =60°,tt =3,tt =6,且tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =t tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,tt⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =−32,则实数t 的值为______,若M ,N 是线段BC 上的动点,且|tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=1,则tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⋅tt ⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为______. (10) 【答案】16 132(11) 【解析】解:以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,∵∠B =60°,AB =3,∴A(32,3√32), ∵BC =6, ∴C(6,0), ∵AD ⃗⃗⃗⃗⃗⃗ =λBC ⃗⃗⃗⃗⃗ , ∴AD//BC , 设D(x 0,3√32), ∴AD⃗⃗⃗⃗⃗⃗ =(x 0−32,0),AB ⃗⃗⃗⃗⃗ =(−32,−3√32), ∴AD ⃗⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =−32(x 0−32)+0=−32,解得x 0=52,∴D(52,3√32), ∴AD ⃗⃗⃗⃗⃗⃗ =(1,0),BC ⃗⃗⃗⃗⃗ =(6,0), ∴AD ⃗⃗⃗⃗⃗⃗ =16BC ⃗⃗⃗⃗⃗ ,∴λ=16,∵|MN⃗⃗⃗⃗⃗⃗⃗ |=1, 设M(x,0),则N(x +1,0),其中0≤x ≤5,∴DM ⃗⃗⃗⃗⃗⃗⃗ =(x −52,−3√32),DN ⃗⃗⃗⃗⃗⃗ =(x −32,−3√32), ∴DM ⃗⃗⃗⃗⃗⃗⃗ ⋅DN ⃗⃗⃗⃗⃗⃗ =(x −52)(x −32)+274=x 2−4x +212=(x −2)2+132,当x =2时取得最小值,最小值为132, 故答案为:16,132.以B 为原点,以BC 为x 轴建立如图所示的直角坐标系,根据向量的平行和向量的数量积即可求出点D 的坐标,即可求出λ的值,再设出点M ,N 的坐标,根据向量的数量积可得关于x 的二次函数,根据二次函数的性质即可求出最小值.本题考查了向量在几何中的应用,考查了向量的共线和向量的数量积,以及二次函数的性质,属于中档题.(12) 【2020全国高考(浙江卷)第18题】在锐角△ttt 中,角t ,t ,t 的对边分别为t ,t ,t .已知2t sin t −√3t =0. (1)求角B ;(2)求cos t +cos t +cos t 的取值范围.【答案】解:(1)∵2t sin t =√3t , ∴2sin t sin t =√3sin t , ∵sin t ≠0, ∴sin t =√32, ,∴t =t3,(2)∵△ttt 为锐角三角形,t =t3, ∴t =2t3−t ,,△ttt 为锐角三角形,,,解得, ,,∴cos t+cos t+cos t的取值范围为(√3+12,32 ].【解析】本题考查了正弦定理,三角函数的化简,三角函数的性质,考查了运算求解能力和转化与化归能力,属于中档题.(1)根据正弦定理可得sin t=√32,结合角的范围,即可求出,(2)根据两角和差的余弦公式,以及利用正弦函数的性质即可求出.(13)【2020全国高考(上海卷)第18题】已知函数t(t)=sin tt,t>0.(1)f(x)的周期是4π,求ω,并求f(x)=12的解集;(2)已知ω=1,g(x)=f2(x)+√3f(−x)f(π2−x),x∈[0,π4],求g(x)的值域.【答案】解:(1)由于t(t)的周期是4t,所以t=2t4t =12,所以t(t)=sin12t.令sin12t=12,故12t=2tt+t6或2tt+5t6,整理得t=4tt+t3或t=4tt+5t3.故解集为{t|t=4tt+t3或t=4tt+5t3,t∈t}.(2)由于t=1,所以t(t)=sin t.所以t(t)=sin2t+√3sin(−t)sin(t2−t)=1−cos2t2−√32sin2t=−√32sin2t−12cos2t+12=12−sin(2t+t6).由于t∈[0,t4],所以t6≤2t+t6≤2t3.故−1≤−sin(2t+t6)≤−12,故−12≤t(t)≤0.所以函数t(t)的值域为[−12,0].【解析】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.(1)直接利用正弦型函数的性质的应用求出结果.(2)利用三角函数关系式的变换和正弦型函数的性质的应用求出函数的值域.【2020全国高考(天津卷)第16题】在△ttt中,角A,B,C所对的边分别为a,b,t.已知t=2√2,t=5,t=√13.(1)求角C的大小;(2)求sin A的值;(3)求sin(2t+t4)的值.【答案】解:(1)由余弦定理以及a=2√2,b=5,c=√13,则cosC=a2+b2−c22ab =2×22×5=√22,∵C∈(0,π),∴C=π4;(2)由正弦定理,以及C=π4,a=2√2,c=√13,可得sinA= asinCc=2√2×√22√13=2√1313;(3)由a<c,及sinA=2√1313,可得cosA=√1−sin2A=3√1313,则sin2A=2sinAcosA=2×2√1313×3√1313=1213,∴cos2A=2cos2A−1=513,∴sin(2A+π4)=√22(sin2A+cos2A)=√22(1213+513)=17√226.【解析】本题考了正余弦定理,同角的三角形函数的关系,二倍角公式,两角和的正弦公式,属于中档题.(1)根据余弦定理即可求出C的大小;(2)根据正弦定理即可求出sin A的值;(3)根据同角的三角形函数的关系,二倍角公式,两角和的正弦公式即可求出.(14)【2020全国高考I卷(文)第18题】∆ttt的内角t,t,t的对边分别为t,t,t,已知t=150∘.(1)若a=√3c,b=2√7,求∆ABC的面积;(2)若sinA+√3sinC=√22,求C.【答案】解:(1)由余弦定理得t2=t2+t2−2tt cos t,即28=3t2+t2−2√3t2cos150∘,解得t=4,所以t=4√3,所以t△ttt=12tt sin t=12×4√3×4×12=4√3.(2)因为t=180∘−t−t=30∘−t,所以sin t+√3sin t=sin(30∘−t)+√3sin t=12cos t+√32sin t=sin(30∘+t)=√22,因为t>0°,t>0°,所以0°<t<30°,所以30°<30°+t<60°,所以30°+t=45°,所以t=15°.【解析】【解析】本题考查余弦定理,三角形面积公式的应用,三角恒等变换的应用,属于中档题.(1)由已知条件结合余弦定理可求得c,从而可根据三角形面积公式求解;(2)由两角差的正弦公式对已知式进行化简,再由辅助角公式根据C的范围求解即可.(15) 【2020全国高考II 卷(理)第17题】∆ttt 中,sin 2t −sin 2t −sin 2t =sin t sin t .(2) 求A ;(2) 若BC =3,求∆ABC 周长的最大值.【答案】解:(1)在▵ttt 中,设内角A ,B ,C 的对边分别为a ,b ,c , 因为sin 2t −sin 2t −sin 2t =sin t sin t ,由正弦定理得,t 2−t 2−t 2=tt ,即t 2+t 2−t 2=−tt , 由余弦定理得,cos t =t2+t 2−t 22tt =−12,因为0<t <t ,所以t =2t 3. (2)由(1)知,t =2t3,因为tt =3,即t =3,由余弦定理得,t 2=t 2+t 2−2tt cos t ,所以9=t 2+t 2+tt =(t +t )2−tt , 由基本不等式可得tt ≤(t +t )24,所以9=(t +t )2−tt ≥34(t +t )2,所以t +t ≤2√3(当且仅当t =t =√3时取得等号), 所以▵ttt 周长的最大值为3+2√3.【解析】本题主要考查利用正余弦定理解三角形的问题,属于中档题. (1)直接利用正余弦定理即可求解;(2)利用余弦定理与基本不等式即可求解.(16) 【2020全国高考II 卷(文)第17题】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2(π2+A)+cosA =54.(1)求A ;(2)若b −c =√33a ,证明:△ABC 是直角三角形.【答案】【解答】解:(1)∵cos2(t2+t)+cos t=54,化简得cos2t−cos t+14=0,解得cos t=12,∵t是tttt的内角,故t=t3.(2)证明:∵t−t=√33t,t=t3,由正弦定理可得sin t−sin t=√33sin t=12,又t=t−t−t=2t3−t,∴sin(2t3−t)−sin t=12,化简可得√32cos t−12sin t=12,即可得cos(t+t6)=12,又t∈(0,2t3),得t+t6∈(t6,5t6),故可得t+t6=t3,即t=t6,故t+t=t3+t6=t2,∴tttt是直角三角形.【解析】本题考查了正弦定理的应用以及两角和差的正余弦公式的应用,考查了诱导公式和辅助角公式,属于中档题.(1)利用诱导公式和同角的三角函数关系对已知式进行化简,得到cos t=12,再结合A为三角形的一内角,即可求出角A;(2)利用正弦定理把t−t=√33t中的边化成角,得到sin t−sin t=√33sin t=12,再结合t+t=2t3,对式子进行化简,最后结合辅助角公式以及角C的范围,求出角C,即可证得三角形为直角三角形.(17)【2020全国高考II卷理科21题】已知函数t(t)=sin2t sin2t.(1)讨论t(t)在区间(0,t)的单调性;(2)证明:|t(t)|≤3√38;(3)设t∈N∗,证明:sin2t sin22t sin24t⋯sin22t t≤3t4t.【答案】解:(1)t(t)=sin2t⋅sin2t=2sin2t⋅sin t⋅cos t =2sin3t⋅cos tt′(t)=2[sin2t(3cos2t−sin2t)]=2sin2t⋅(√3cos t+sin t)⋅(√3cos t−sin t)=−8sin2t⋅sin(t+t3)⋅sin(t−t3)所以对于f’(t)有:当t∈(0,t3)时,t′(t)>0;当t∈[t3,23t]时,t′(t)≤0;当t∈(2t3,t)时t′(t)>0。
2020年高考理科数学(3卷):答案详细解析(word版)
2020年普通高等学校招生全国统一考试理科数学(III 卷)答案详解一、选择题:本题共12小题,每小题5分,共60分。
1.(集合)已知集合{(,)|,,}=∈≥*N A x y x y y x ,{(,)|8}=+=B x y x y ,则AB中元素的个数为 A .2B .3C .4D .6【解析】∵{(1,7),(2,6),(3,5),(4,4)}=A B ,∴A ∩B 中元素的个数为4. 【答案】C 2.(复数)复数113-i的虚部是 A .310-B .110-C .110D .310【解析】()1131313(13)1310++==--+i ii i i ,故选选项D . 【答案】D3.(概率统计)在一组样本数据中,1、2、3、4出现的频率分别为1p ,2p ,3p ,4p ,且411==∑i i p ,则下面四种情形中,对应样本的标准差最大的一组是A .14230.1,0.4====p p p pB .14230.4,0.1====p p p pC .14230.2,0.3====p p p pD .14230.3,0.2====p p p p【解析】针对四个选项,均有14=p p ,23=p p ,因此41212()1==+=∑i i p p p ,得120.5+=p p ,所以1234122345() 2.5=+++=+=x p p p p p p ,即四个选项的平均值均为 2.5. 根据标准差的数学意义可知,与平均值距离大的数据的频率越高,则标准差越大. 比较四个选项,B 选项中1和4的频率最高,因此可以推断B 选项的标准差最大.【答案】B4.(函数,同文4)Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()1--=+t I K t e ,其中K 为最大确诊病例数.当*()0.95=I t K 时,标志着已初步遏制疫情,则*t 约为(ln19≈3) A .60B .63C .66D .69【解析】**0.23(53)()0.951--==+t K I t K e,化简得*0.23(53)19-=te ,两边取对数得,*0.23(53)In19-=t ,解得*In1935353660.230.23=+=+≈t . 【答案】C5.(解析几何,同文7)设O 为坐标原点,直线x =2与抛物线C :()220=>y px p 交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为 A .1(,0)4B .1(,0)2C .(1,0)D .(2,0)【解析】解法一:如图A7所示,由题意可知,(2,2)D p ,(2,2)-E p ,(2,2)=OD p ,(2,2)=-OE p ,⊥OD ⊥OE ,⊥⊥OD OE , 即22220⨯-=p p ,解得1=p ,⊥C 的焦点坐标为1(,0)2.图A5解法二:4=DE p 44==+OD OE p⊥OD ⊥OE ,⊥222+=OD OE DE ,即2(44)16+=p p ,解得1=p ,⊥C的焦点坐标为1(,0)2. 【答案】B6.(平面向量)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b + A .3135-B .1935-C .1735D .1935【解析】2()19⋅+=+⋅=a a b a a b ,2227+=+⋅+=a b a a b b ,所以()1919cos ,=5735⋅++==⨯⋅+a a b a a b a a b. 【答案】D7.(三角函数,类文11)在⊥ABC 中,2cos =3C ,4AC =,3BC =,则cos B =A .19B .13C .12D .23【解析】由余弦定理得,2222cos 9=+-⋅⋅=AB AC BC AC BC C ,即3=AB ,∴22299161cos 22339+-+-===⋅⨯⨯AB BC AC B AB BC . 【答案】A8.(立体几何,同文9)如图为某几何体的三视图,则该几何体的表面积是A .642+B .442+C .623+D .423+【解析】由三视图可知,该几何体为一个四面体,如图A8所示. 其表面积(2332226234=⨯+⨯=+S图A8【答案】C9.(三角函数)已知2tan tan()74πθθ-+=,则tan θ=A .–2B .–1C .1D .2【解析】1tan 2tan tan()2tan 741tan πθθθθθ+-+=-=-,化简得2tan 4tan 40θθ-+=, 解得tan 2θ=.【答案】D10.(解析几何)若直线l 与曲线=y x 和2215+=x y 都相切,则l 的方程为 A .y =2x +1 B .y =2x +12C .y =12x +1D .y =12x +12【解析】解法一(待定系数法):设l 的方程为=+y kx b ,直线l 与圆2215+=x y 相切,故圆心(0,0)到直线l 的距离等于圆的半径,251+b k 化简为225=1+b k ①.直线l 与曲线=y x 相切,故==+y x kx b 有唯一解,化简为222(21)0+-+=k x kx x b ,则有222=(21)40∆--=kx kb ,化简为41=kb ②.联立①②,解得12==k b . 解法二(排除法):根据直线与圆相切,故圆心到直线l 的距离等于圆的半径,可排除选项B 、C ;将选项A 的方程与曲线=y x 联立,方程无解,即选项A 的直线与曲线相离,排除A ;同理将选项D 的方程与曲线方程联立,方程有唯一解x =1,故选项D 正确.解法三(画图法):如图A10所示,从图中不难看出,只有选项D 符合题意.图A10【答案】D11.(解析几何)设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2,5.P 是C 上一点,且F 1P ⊥F 2P .若⊥PF 1F 2的面积为4,则a = A .1B .2C .4D .8【解析】设1=PF m ,2=PF n ,根据题意可得,()222142225⎧==⎪⎪+=⎪⎨-=⎪⎪⎪=⎩S mn m n c m n a ca,解得1=a . PS :双曲线焦点三角形的面积公式2tan2θ=b S ,根据题意有2o 4tan 45=b ,解得24=b ,又因为5=ca222224115=+=+=c b a a a ,解得1=a .(双曲线焦点三角形的面积公式的推导过程,可在百度上搜索)【答案】A12.(函数)已知5458<,45138<,设5log 3=a ,8log 5=b ,13log 8=c ,则A .a <b <cB .b <a <cC .b <c <a8D .c <a <b【解析】∵5458<,∴5488log 5log 8<,85log 54<,84log 55<,即45<b ; ∵54813>,∴541313log 8log 13>,135log 84>,134log 85>,即45>c ;由上述过程,构造不等式:5435<,同理可得54log 35=<a . ∴b <c ,a <c . 接下来比较a 和b :解法一:构造不等式:4335<,4358>,同理可得53log 34=<a ,83log 54=>b .∴a <b .解法二:易知,,(0,1)∈a b c ,()()()222255555558log 3log 8log 24log 25log 32log 3log 81log 54444+==⋅<=<==a b , ∴a <b . 故a <b <c .【答案】A二、填空题:本题共4小题,每小题5分,共20分。
2020年高考真题——数学(理)(全国卷Ⅲ)+Word版含解析
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题目时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题目时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x *N ,{(,)|8}B x y x y ,则A B ∩中元素的个数为()A.2B.3C.4D.6【答案】C 【解析】【分析】采用列举法列举出A B ∩中元素的即可.【详解】由题意,A B ∩中的元素满足8y xx y ,且*,x y N ,由82x y x ,得4x ,所以满足8x y 的有(1,7),(2,6),(3,5),(4,4),故A B ∩中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2.复数113i的虚部是()A.310B.110C.110D.310【答案】D 【解析】【分析】利用复数的除法运算求出z 即可.【详解】因为1131313(13)(13)1010i z i i i i ,所以复数113z i 的虚部为310.故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ,则下面四种情形中,对应样本的标准差最大的一组是()A.14230.1,0.4p p p pB.14230.4,0.1p p p pC.14230.2,0.3p p p pD.14230.3,0.2p p p p 【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为 140.1230.4 2.5A x ,方差为 222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s ;对于B 选项,该组数据的平均数为 140.4230.1 2.5B x ,方差为 222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s ;对于C 选项,该组数据的平均数为 140.2230.3 2.5C x ,方差为 222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s ;对于D 选项,该组数据的平均数为 140.3230.2 2.5D x ,方差为 222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s .因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t ,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60 B.63C.66D.69【答案】C 【解析】【分析】将t t 代入函数0.23531t KI t e结合 0.95I tK求得t即可得解.【详解】0.23531t KI t e∵,所以0.23530.951t KI t K e,则 0.235319t e ,所以,0.2353ln193t,解得353660.23t .故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B 【解析】【分析】根据题中所给的条件OD OE ,结合抛物线的对称性,可知4COx COx,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x 与抛物线22(0)y px p 交于,C D 两点,且OD OE ,根据抛物线的对称性可以确定4DOx COx,所以(2,2)C ,代入抛物线方程44p ,求得1p ,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a ,||6b ,6a b ,则cos ,= a a b ()A.3135B.1935C.1735 D.1935【答案】D 【解析】【分析】计算出a ab 、a b 的值,利用平面向量数量积可计算出cos ,a a b的值.【详解】5a ∵,6b ,6a b,225619a a b a a b .7a b,因此,1919cos ,5735a a b a a b a a b.故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =()A.19B.13C.12 D.23【答案】A 【解析】【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC,即可求得答案.【详解】∵在ABC 中,2cos 3C,4AC ,3BC 根据余弦定理:2222cos AB AC BC AC BC C2224322433AB可得29AB ,即3AB 由∵22299161cos 22339AB BC AC B AB BC故1cos 9B .故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.8.下图为某几何体的三视图,则该几何体的表面积是()A.B. C.6+2 D.【答案】C 【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S△△△根据勾股定理可得:AB AD DB ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD△该几何体的表面积是:632 .故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.9.已知2tan θ–tan(θ+π4)=7,则tan θ=()A.–2 B.–1C.1D.2【答案】D 【解析】【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.【详解】2tan tan 74∵,tan 12tan 71tan,令tan ,1t t ,则1271tt t,整理得2440t t ,解得2t ,即tan 2 .故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.10.若直线l 与曲线y =和x 2+y 2=15都相切,则l 的方程为()A.y =2x +1B.y =2x +12C.y =12x +1 D.y =12x +12【答案】D 【解析】【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y上的切点为 0x ,则00x ,函数y的导数为y,则直线l的斜率k,设直线l的方程为 0y x x,即00x x ,由于直线l 与圆2215x y,两边平方并整理得2005410x x ,解得01x ,015x(舍),则直线l 的方程为210x y ,即1122y x .故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b(a >0,b >0)的左、右焦点分别为F 1,F 2.P是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =()A.1B.2C.4D.8【答案】A 【解析】【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】ca∵,c ,根据双曲线的定义可得122PF PF a ,12121||42PF F PF F S P△,即12||8PF PF ,12F P F P ∵, 22212||2PF PF c ,22121224PF PF PF PF c ,即22540a a ,解得1a ,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】A 【解析】【分析】由题意可得a 、b 、 0,1c ,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b ,得85b ,结合5458 可得出45b,由13log 8c ,得138c ,结合45138 ,可得出45c,综合可得出a 、b 、c 的大小关系.【详解】由题意可知a、b、0,1c ,222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b,a b ;由8log 5b ,得85b ,由5458 ,得5488b ,54b ,可得45b;由13log 8c ,得138c ,由45138 ,得451313c ,54c ,可得45c .综上所述,a b c .故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题目:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x,,则z =3x +2y 的最大值为_________.【答案】7【解析】【分析】作出可行域,利用截距的几何意义解决.【详解】不等式组所表示的可行域如图因为32z x y ,所以322x zy ,易知截距2z 越大,则z 越大,平移直线32x y ,当322x zy 经过A 点时截距最大,此时z 最大,由21y x x,得12x y ,(1,2)A ,所以max 31227z 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x的展开式中常数项是__________(用数字作答).【答案】240【解析】【分析】写出622x x二项式展开通项,即可求得常数项.【详解】∵622x x其二项式展开通项:62612rrrr C xx T1226(2)r r r r x C x 1236(2)r r rC x 当1230r ,解得4r 622x x的展开式中常数项是:664422161516240C C .故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握na b 的展开通项公式1C r n r r r n T ab ,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM,故122S△A BC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S △△△△111222AB r BC r AC r13322r解得:2r =,其体积:3433V r .故答案为:3.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16.关于函数f (x )=1sin sin x x有如下四个命题:①f (x )的图像关于y 轴对称.②f (x )的图像关于原点对称.③f (x )的图像关于直线x =2对称.④f (x )的最小值为2.其中所有真命题的序号是__________.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x 可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f,152622f,则66f f,所以,函数 f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数 f x 的定义域为,x x k k Z ,定义域关于原点对称, 111sin sin sin sin sin sin f x x x x f x x x x,所以,函数 f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x∵,11sin cos 22cos sin 2f x x x x x,则22f x f x,所以,函数 f x 的图象关于直线2x对称,命题③正确;对于命题④,当0x 时,sin 0x ,则 1sin 02sin f x x x,命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【答案】(1)25a ,37a ,21n a n ,证明见解析;(2)1(21)22n n S n .【解析】【分析】(1)利用递推公式得出23,a a ,猜想得出 n a 的通项公式,利用数学归纳法证明即可;(2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a ,32381587a a ,由数列 n a 的前三项可猜想数列 n a 是以3为首项,2为公差的等差数列,即21n a n ,证明如下:当1n 时,13a 成立;假设n k 时,21k a k 成立.那么1n k 时,1343(21)4232(1)1k k a a k k k k k 也成立.则对任意的*n N ,都有21n a n 成立;(2)由(1)可知,2(21)2nnn a n 231325272(21)2(21)2n n n S n n ,①23412325272(21)2(21)2n n n S n n ,②由① ②得:23162222(21)2nn n S n 21121262(21)212n n n1(12)22n n ,即1(21)22n n S n .【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bcKa b c d a c b d,P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22列联表,计算出2K的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43 100,等级为2的概率为510120.27100,等级为3的概率为6780.21100,等级为4的概率为7200.09100;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100(3)22 列联表如下:人次400人次400空气质量不好3337空气质量好228221003383722 5.820 3.84155457030K ,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D 中,点,E F 分别在棱11,DD BB 上,且12DE ED ,12BF FB .(1)证明:点1C 在平面AEF 内;(2)若2AB ,1AD ,13AA ,求二面角1A EF A 的正弦值.【答案】(1)证明见解析;(2)427.【解析】【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz ,利用空间向量法可计算出二面角1A EF A 的余弦值,进而可求得二面角1A EF A 的正弦值.【详解】(1)在棱1CC 上取点G ,使得112C G CG,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D 中,//AD BC 且AD BC ,11//BB CC 且11BB CC ,112C G CG ∵,12BF FB ,112233CG CC BB BF 且CG BF ,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG 且1C E DG ,1//C E AF 且1C E AF ,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz ,则 2,1,3A 、 12,1,0A 、 2,0,2E 、 0,1,1F ,0,1,1AE , 2,0,2AF , 10,1,2A E , 12,0,1A F,设平面AEF 的法向量为 111,,m x y z,由0m AE m AF,得11110220y z x z 取11z ,得111x y ,则 1,1,1m ,设平面1A EF 的法向量为 222,,n x y z,由110n A E n A F,得22222020y z x z ,取22z ,得21x ,24y ,则 1,4,2n,cos ,7m n m n m n,设二面角1A EF A 的平面角为,则cos 7,sin 7.因此,二面角1A EF A的正弦值为7.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m 的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,求APQ 的面积.【答案】(1)221612525x y ;(2)52.【解析】【分析】(1)因为222:1(05)25x y C m m ,可得5a ,b m ,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N ,可得PMB BNQ △△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积.【详解】(1)∵222:1(05)25x y C m m 5a ,b m ,根据离心率154c e a ,解得54m或54m (舍), C 的方程为:22214255x y ,即221612525x y ;(2)∵点P 在C 上,点Q 在直线6x 上,且||||BP BQ ,BP BQ ,过点P 作x 轴垂线,交点为M ,设6x 与x 轴交点为N 根据题意画出图形,如图∵||||BP BQ ,BP BQ ,90PMB QNB ,又∵90PBM QBN ,90BQN QBN ,PBM BQN ,根据三角形全等条件“AAS ”,可得:PMB BNQ △△,∵221612525x y , (5,0)B ,651PM BN ,设P 点为(,)P P x y ,可得P 点纵坐标为1P y ,将其代入221612525x y,可得:21612525P x ,解得:3P x 或3P x ,P 点为(3,1)或(3,1) ,①当P 点为(3,1)时,故532MB ,∵PMB BNQ △△,||||2MB NQ ,可得:Q 点为(6,2),画出图象,如图∵(5,0)A ,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y ,根据点到直线距离公式可得P 到直线AQ的距离为:5d,根据两点间距离公式可得:AQ,APQ面积为:15252;②当P 点(3,1) 时,故5+38MB ,∵PMB BNQ △△,||||8MB NQ ,可得:Q 点为(6,8),画出图象,如图∵(5,0)A ,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y ,根据点到直线距离公式可得P 到直线AQ 的距离为:d ,根据两点间距离公式可得:AQAPQ面积为:1522 ,综上所述,APQ 面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c ,曲线()y f x 在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【答案】(1)34b ;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1(02f ,解方程即可;(2)由(1)可得'2311()32()(422f x x x x ,易知()f x 在11(,22 上单调递减,在1(,)2 ,1(,)2 上单调递增,且111111(1),(),(,(1)424244f c f c f c f c ,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b ,由题意,'1()02f ,即21302b 则34b;(2)由(1)可得33()4f x x x c ,'2311()33()422f x x x x ,令'()0f x ,得12x 或21x ;令'()0f x ,得1122x ,所以()f x 在11(,22 上单调递减,在1(,2 ,1(,)2 上单调递增,且111111(1),(,(),(1)424244f c f c f c f c ,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f 或(1)0f ,即14c 或14c .当14c 时,111111(1)0,()0,()0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(4,1)c 上存在唯一一个零点0x ,即()f x 在(,1) 上存在唯一一个零点,在(1,) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c 时,111111(1)0,(0,(0,(1)0424244f c f c f c f c ,又32(4)6434(116)0f c c c c c c ,由零点存在性定理知()f x 在(1,4)c 上存在唯一一个零点0x ,即()f x (1,) 上存在唯一一个零点,在(,1) 上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【答案】(1)(2)3cos sin 120【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值;(2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x ,则220t t ,解得2t 或1t (舍),则26412y ,即(0,12)A .令0y ,则2320t t ,解得2t 或1t (舍),则2244x ,即(4,0)BAB;(2)由(1)可知12030(4)AB k ,则直线AB 的方程为3(4)y x ,即3120x y .由cos ,sin x y 可得,直线AB 的极坐标方程为3cos sin 120 .【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .【答案】(1)证明见解析(2)证明见解析.【解析】【分析】(1)由2222()2220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a ,由题意得出0,,0a b c ,由222322b c b c bc a a a bc bc,结合基本不等式,即可得出证明.【详解】(1)2222()2220a b c a b c ab ac bc ∵,22212ab bc ca a b c .,,a b c ∵均不为0,则2220a b c , 222120ab bc ca a b c;(2)不妨设max{,,}a b c a ,由0,1a b c abc 可知,0,0,0a b c ,1,a b c a bc ∵, 222322224b c b c bc bc bc a a a bc bc bc.当且仅当b c 时,取等号,a ,即max{,,}abc .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.祝福语祝你马到成功,万事顺意!。
2020高考人教数学(理)检测:第三章 第一节 任意角的三角函数、同角三角函数关系与诱导公式 Word版含解析
限时规范训练(限时练·夯基练·提能练)A 级 基础夯实练1.(2018·四川石室中学质检)已知角α的终边经过点(3,-4),则sin α+1cos α=( ) A .-15B .3715C.3720D .1315解析:选D.∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315.故选D. 2.已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan x 的值为( )A.34 B .-34C.43D .-43解析:选B.因为x ∈⎝ ⎛⎭⎪⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34.故选B. 3.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B.∵sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0,所以θ是第二象限角,故选B.4.(2018·石家庄市二模)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C.因为sin 150°=12>0,cos 150°=-32<0,所以角α终边上一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以该点在第四象限,由三角函数的定义得sin α=-32,又0°≤α<360°,所以角α的值是300°,故选C.5.(2018·河北省衡水金卷)已知曲线f (x )=23x 3在点(1,f (1))处的切线的倾斜角为α,则sin 2α-cos 2α2sin αcos α+cos 2α=( )A.12 B .2 C.35D .-38解析:选 C.由f ′(x )=2x 2,得tan α=f ′(1)=2,所以sin 2α-cos 2α2sin αcos α+cos 2α=tan 2α-12tan α+1=35.故选C.6.(2018·安徽淮南十校联考)已知sin ⎝ ⎛⎭⎪⎫α-π3=13,则cos ⎝⎛⎭⎪⎫α+π6的值是( )A .-13B .13C.223D .-223解析:选A.∵sin ⎝ ⎛⎭⎪⎫α-π3=13,∴cos ⎝⎛⎭⎪⎫α+π6=cos ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫α-π3=-sin ⎝ ⎛⎭⎪⎫α-π3=-13,故选A.7.(2018·辽宁沈阳模拟)若1+cos αsin α=2,则cos α-3sin α=( )A .-3B .3C .-95D .95解析:选C.∵1+cos αsin α=2,∴cos α=2sin α-1,又sin 2α+cos 2α=1,∴sin 2α+(2sin α-1)2=1,5sin 2α-4sin α=0,解得sin α=45或sin α=0(舍去),∴cos α-3sin α=-sin α-1=-95.故选C. 8.(2018·武汉模拟)已知角α的顶点在原点,始边为x 轴正半轴,终边与圆心在原点的单位圆交于点A (m ,3m ),则sin 2α=________.解析:由题意得|OA |2=m 2+3m 2=1,故m 2=14.由任意角三角函数定义知cos α=m ,sin α=3m ,由此sin 2α=2sin αcos α=23m 2=32.答案:329.已知sin x +3cos x3cos x -sin x =5,则sin x cos x +cos 2x =________.解析:由已知,得tan x +33-tan x=5,解得tan x =2,所以sin x cos x +cos 2x =sin x cos x +cos 2x sin x +cos x =tan x +1tan x +1=2+12+1=35.答案:3510.(2018·上饶模拟)若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________.解析:由题意知:sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得:m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5. 答案:1- 5B 级 能力提升练11.(2018·河北衡水中学质检)已知cos α1+sin α=3,则cos αsin α-1的值为( )A.33 B .-33C. 3D .- 3解析:选B.因为cos α1+sin α=3,所以cos αsin α+1=1-sin αcos α,所以cos αsin α-1=-33.故选B.12.(2018·青岛二中质检)已知sin α>sin β,那么下列命题成立的是( )A .若α,β是第一象限的角,则cos α>cos βB .若α,β是第二象限的角,则tan α>tan βC .若α,β是第三象限的角,则cos α>cos βD .若α,β是第四象限的角,则tan α>tan β解析:选D.作出α,β的图象如图,由三角函数线可知选D.13.(2018·昆明二模)已知cos ⎝ ⎛⎭⎪⎫5π12+α=13且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=( ) A.223B .13C .-13D .-223解析:选 D.因为-π<α<-π2,所以-7π12<5π12+α<-π12,故cos ⎝ ⎛⎭⎪⎫π12-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫5π12+α=sin ⎝ ⎛⎭⎪⎫5π12+α=-1-⎝ ⎛⎭⎪⎫132=-223. 14.(2018·皖江联考)已知在锐角△ABC 中,角α+π6的终边过点P (sin B -cos A ,cos B -sin A ),且cos ⎝⎛⎭⎪⎫α+π6=33,则cos 2α的值为( )A.3-26B .-23-16C.12-36D .-63-16解析:选D.∵△ABC 是锐角三角形,∴A +B >π2⇒π2>B >π2-A >0⇒sinB >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,即sin B -cos A >0,同理,cos B-sin A <0,∴角α+π6为第四象限角,∴sin ⎝ ⎛⎭⎪⎫α+π6=-63,∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6=cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝⎛⎭⎪⎫α+π6sin π6=12-66,∴cos 2α=2cos 2α-1=-63-16,故选D.15.(2018·辽宁大连质检)现有如下命题:①若点P (a ,2a )(a ≠0)为角α终边上一点,则sin α=255; ②同时满足sin α=12,cos α=32的角有且仅有一个;③设tan α=12且π<α<3π2,则sin α=-55;④设cos(sin θ)·tan(cos θ)>0(θ为象限角),则θ在第一象限. 则其中正确的命题是________.(将正确命题的序号填在横线上) 解析:①中,当α在第三象限时,sin α=-255,故①错误;②中,同时满足sin α=12,cos α=32的角为α=2k π+π6(k ∈Z),有无数个,故②错误;③正确;④θ可能在第一象限或第四象限,故④错误.综上选③.答案:③C 级 素养加强练16.(2018·河北衡水调研)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于C (2,1)时,OP →的坐标为________.解析:如图所示,过圆心C 作x 轴的垂线,垂足为A ,过P 作x 轴的垂线与过C 作y 轴的垂线交于点B .因为圆心移动的距离为2,所以劣弧PA ︵=2,即圆心角∠PCA =2,则∠PCB =2-π2,所以|PB |=sin ⎝ ⎛⎭⎪⎫2-π2=-cos 2,|CB |=cos ⎝⎛⎭⎪⎫2-π2=sin 2,所以x P =2-|CB |=2-sin 2,y P =1+|PB |=1-cos 2, 所以OP→=(2-sin 2,1-cos 2). 答案:(2-sin 2,1-cos 2)。
2020年全国统一高考数学试卷(理科)(新课标Ⅲ)及答案解析
试题第1页,总21页绝密★启用前2020年全国统一高考数学试题(理科)(新课标Ⅲ)试题副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【解析】 【分析】先求出集合B 再求出交集. 【详解】21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,则{}1,0,1A B ⋂=-, 故选A . 【点睛】本题考查了集合交集的求法,是基础题. 2.若(1i)2i z +=,则z =( ) A .1i -- B .1+i - C .1i - D .1+i【答案】D 【解析】 【分析】根据复数运算法则求解即可.试题第2页,总21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【详解】()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-.故选D . 【点睛】本题考查复数的商的运算,渗透了数学运算素养.采取运算法则法,利用方程思想解题. 3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A.B.C.D.【答案】C 【解析】 【分析】根据题先求出阅读过西游记的人数,进而得解. 【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C . 【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.4.(1+2x 2 )(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A 【解析】 【分析】本题利用二项展开式通项公式求展开式指定项的系数. 【详解】由题意得x 3的系数为314424812C C +=+=,故选A .【点睛】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.试题第3页,总21页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………5.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8C .4D .2【答案】C 【解析】 【分析】利用方程思想列出关于1,a q 的方程组,求出1,a q ,再利用通项公式即可求得3a 的值. 【详解】设正数的等比数列{a n }的公比为q ,则2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键。
2020年高考理科数学全国3卷(word版,含答案)
1.【ID:4002701】已知集合,,则中元素的个数为()A.B.C.D.【答案】C【解析】解:集合,,.中元素的个数为.故选:C.2.【ID:4002702】复数的虚部是()A.B.C.D.【答案】D【解析】解:,复数的虚部是.故选:D.3.【ID:4002703】在一组样本数据中,,,,出现的频率分别为,,,,且,则下面四种情形中,对应样本的标准差最大的一组是()A. ,B. ,C. ,D. ,【答案】B【解析】解:选项A:,所以;同理选项B:,;选项C:,;选项D:,;故选:B.4.【ID:4002704】模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的模型:,其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.B.C.D.【答案】C【解析】解:由已知可得,解得,两边取对数有,解得,故选:C.5.【ID:4002705】设为坐标原点,直线与抛物线:交于,两点,若,则的焦点坐标为()A.B.C.D.【答案】B【解析】解:将代入抛物线,可得,,可得,即,解得,所以抛物线方程为:,它的焦点坐标.故选:B.6.【ID:4002706】已知向量,满足,,,则()A.B.C.D.【答案】D【解析】解:向量,满足,,,可得,.故选:D.7.【ID:4002707】在中,,,,则()A.B.C.D.【答案】A【解析】解:在中,,,,由余弦定理可得;故;,故选:A.8.【ID:4002708】右图为某几何体的三视图,则该几何体的表面积是()A.B.C.D.【答案】C【解析】解:由三视图可知几何体的直观图如图:几何体是正方体的一个角,,、、两两垂直,故,几何体的表面积为:,故选:C.9.【ID:4002709】已知,则()A.B.C.D.【答案】D【解析】解:由,得,即,得,即,即,则,故选:D.10.【ID:4002710】若直线与曲线和圆都相切,则的方程为()A.B.C.D.【答案】D【解析】解:直线与圆相切,那么直线到圆心的距离等于半径,四个选项中,只有A,D满足题意;对于A选项:与联立可得:,此时:无解;对于D选项:与联立可得:,此时解得;直线与曲线和圆都相切,方程为,故选:D.11.【ID:4002711】设双曲线:的左、右焦点分别为,,离心率为,是上一点,且,若的面积为,则()A.B.C.D.【答案】A【解析】解:由题意,设,,可得,,,,可得,可得,解得.故选:A.12.【ID:4002712】已知,.设,,,则()A.B.C.D.【答案】A【解析】解:,;,,,;,,,,综上,.故选:A.13.【ID:4002713】若,满足约束条件,则的最大值为________.【答案】7【解析】解:先根据约束条件画出可行域,由解得,如图,当直线过点时,目标函数在轴上的截距取得最大值时,此时取得最大值,即当,时,.故答案为:.14.【ID:4002714】的展开式中常数项是________(用数字作答).【答案】24015.【ID:4002715】已知圆锥的底面半径为,母线长为,则该圆锥内半径最大的球的体积为________.【答案】【解析】解:因为圆锥内半径最大的球应该为该圆锥的内切球,如图,圆锥母线,底面半径,则其高,不妨设该内切球与母线切于点,令,由,则,即,解得,,故答案为:.16.【ID:4002716】关于函数有如下四个命题:①的图象关于轴对称.②的图象关于原点对称.③的图象关于直线对称.④的最小值为.其中所有真命题的序号是________.【答案】②③【解析】解:对于①,由可得函数的定义域为,故定义域关于原点对称,由;所以该函数为奇函数,关于原点对称,所以①错②对;对于③,由,所以该函数关于对称,③对;对于④,令,则,由双勾函数的性质,可知,,所以无最小值,④错;故答案为:②③.17. 设数列满足,.(1)【ID:4002717】计算,,猜想的通项公式并加以证明.【答案】见解析【解析】解:,,,,由此可猜测的通项公式为.证明:当时,左边,右边,等式成立.假设当时等式成立,即,则当时,,等式成立.综上所述,对都成立.(2)【ID:4002718】求数列的前项和.【答案】,【解析】解:由得,,,①,②,得:,综上,数列的前项和,.18. 某学生兴趣小组随机调查了某市天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)【ID:4002719】分别估计该市一天的空气质量等级为,,,的概率.【答案】见解析【解析】解:设表示事件“该市一天的空气质量等级”.由表格数据得:;;;.(2)【ID:4002720】求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表).【答案】【解析】由题意得:一天中到该公园锻炼的平均人次的估值一天中到该公园锻炼的平均人次的估值为.(3)【ID:4002721】若某天的空气质量等级为或,则称这天“空气质量好”;若某天的空气质量等级为或.则称这天“空气质量不好”,根据所给数据,完成下面的列联表.并根据列联表,判断是否有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:,【答案】见解析【解析】由题意得:(空气质量好,人数);(空气质量好,人数);(空气质量不好,人数);(空气质量不好,人数);,可以有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19. 如图,在长方体中,点,分别在棱,上,且,.(1)【ID:4002722】证明:点在平面内.【答案】见解析【解析】解:连接,;取的三等分点,,且,四边形为平行四边形,,又长方体性质易得:,,,,,在同一平面内,在平面内.(2)【ID:4002723】若,,,求二面角的正弦值.【答案】【解析】解:以为坐标原点,方向为轴,方向为轴,方向为轴,在长方体内建立空间直角坐标系,易得:,,,,,,,,设平面的法向量,则,,令,则可以为,设平面的法向量,,,令,则可以为,,二面角的正弦值为.20. 已知椭圆:的离心率为,,分别为的左、右顶点.(1)【ID:4002724】求的方程.【答案】【解析】,,,,即,的方程为.(2)【ID:4002725】若点在上,点在直线上,且,,求的面积.【答案】【解析】设,,,则,,①,又,②,由①,,代入②式:,,,不妨设,代入①:,时,;时,;,或,,①,,,:,即,且,,.②,,,:,即,且,,,综上所述,.方法:由,设,点,根据对称性,只需考虑的情况,此时,,,有①,又,②,又③,联立①②③得或,当时,,,,同理可得当时,,综上,的面积是.21. 设函数,曲线在点处的切线与轴垂直.(1)【ID:4002726】求.【答案】【解析】解:,,.(2)【ID:4002727】若有一个绝对值不大于的零点,证明:所有零点的绝对值都不大于.【答案】见解析【解析】,,令,,,,,,,时,,,,,,,若,,则,则,,,,所有零点都在上.解法:设为的一个零点,根据题意,,且,则,由,令,,当时,,当时,可知在,上单调递减,在上单调递增.又,,,,.设为的零点,则必有,即,,得,即.所有零点的绝对值都不大于.22. 在直角坐标系中,曲线的参数方程为(为参数且),与坐标轴交于,两点.(1)【ID:4002728】求.【答案】【解析】解:与坐标轴交于,,则令或,即或,则或(舍)或或(舍),,,,,,,则,坐标为,,.(2)【ID:4002729】以坐标原点为极点,轴正半轴为极轴建立极坐标系,求直线的极坐标方程.【答案】【解析】:,即,由,,则直线极坐标方程为:.23. 设,,,,.(1)【ID:4002730】证明:.【答案】见解析【解析】解:,且,,.(2)【ID:4002731】用表示,,的最大值,证明:.【答案】见解析【解析】不妨设为最大值,,则由,,,,,即.。
专题06 三角函数及解三角形——2020年高考真题和模拟题理科数学分项汇编(解析版).docx
专题06三角函数及解三角形2020年高考真题1. [2020年高考全国I卷理数】设函数f(x) = cos(®x + -)在[-”,兀]的图像大致如下图,则/(%)的最小正6周期为9 64兀3兀C. —D.兰3 2【答案】C【解析】由图可得:函数图象过点( 4 兀1T \将它代入函数/(兀)可得:cosl一- •<« + —1 = 0,又[-普,o]是函数/(兀)图象与x轴负半轴的第一个交点,十.I 4兀兀兀5 e 3所以-亍0+丁丐,解得r •2K _ 2兀_ 4兀所以函数/(%)最小正周期为=T=T=T2故选C.【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.2. [2020 年高考全国I 卷理数】已知cc G (0,7i),且3COS2Q-8COSQ =5 ,贝0 sin^z =A. B.【答案】A又 a e (0, n),.'. sin a = Jl-cos? a =•故选:A. 【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解 能力,属于基础题.3.【2020年高考全国II 卷理数】若a 为第四象限角,则B. cos2a<0D. sin2a<0 【答案】D【解析】方法-:由。
为第四象限角,可得亍2炽“<2卄2炽从Z,所以 3兀 + 4k 兀 < 2a < 4兀 + 4-kn, e Z此时2a 的终边落在第三、四象限及V 轴的非正半轴上,所以sin2a<0,故选:D.兀方法二:当& =——时,cos 2a = cos 由a 在第四象限可得:sin a <0, cos a > 0 ,则由2 a 蕃1 aaz Qz < ,选项C 错误,选项D 正确; 故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转 化能力和计算求解能力.C. sin2a>0>0,选项B 错误;<0,选项A 错误;【解析】3cos2a-8cosa = 5 ,得6cos 2tz-8coscr-8 = 0 -【答案】A2【解析】在ABC中,cosC = —, AC = 4, BC = 3, 3根据余弦定理:AB2 =AC2+BC2-2AC BC COS C,7AB- =42+32-2X4X3X-,3可得AB2 = 9,即AB — 3 ,… AB2+BC2-AC2 9 + 9-16 1由cos B = ------------------------- = ------------ =—,2ABBC2x3x3 9故cos B =—.9故选:A.5. [2020年高考全国III卷理数】已知2tan^-tan(0+ —)=7,则tan^=A. -2B. -1【答案】D【解析】2 tan - tan | ^ + — | = 7 , z. 2tan^~ tan^ + ^ =7 ,I 4 丿 1 - tan令/ = tan&,/Hl,则2/—土 = 7,整理得严_4/ + 4 = 0,解得t = 2,即tan6» = 2.故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.6.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(兀Day).历史上,求圆周率兀的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔•卡西的方法是:当正整数"充分大时,计算单位圆的内接正6“边形的周长和外切正6“边形(各边均与圆相切的正6“边形)的周长,将它们的算术平均数作为2兀的近似值.按照阿尔•卡西的方法,兀的近似值的表达式是2 71 、[/ — 71 -- 当“一 2571 6 _ 时,y = —1 二 2x^ + ^ = —+ 2^(^ e Z),3n < .30° 30°) 6n < .30° 30°) A. sin —— + tan ----- B. sin —— + tan ----- 1 n n 丿 I n n ) 3n (.60° 60°) 6n (.60° < 60°) c. sin ---- + tan ----- D. sin ----- + tan ----- I nn 丿 I nn ) 【答案】A 360° 60° 30° 【解析】单位圆内接正6〃边形的每条边所对应的圆周角为一 =——,每条边长为2sin —, nx6 n n 30° 所以,单位圆的内接正6〃边形的周长为12nsin ——, n30° 30° 单位圆的外切正6n 边形的每条边长为2tan —,其周长为12〃tan —, n n30° 30° 12nsin ----- 12ntan ---------.・.* 二 ----- n --------------- n _ 2( 30° 30°则 7i = 3n\ sin------ + tan --- I n n故选:A.【点睛】本题考查圆周率兀的近似值的计算,根据题意计算出单位圆内接正6〃边形和外切正6〃边形的 周长是解答的关键,考查计算能力,属于中等题.7. [2020年新高考全国I 卷】下图是函数y 二sin (亦+卩)的部分图像,贝!j sin (亦+卩)=【答案】BC=6“ sin 竺+ tan 竺, I n n ) A. sin(x + f)¥亠)【解析】由函数图像可知:- = -7T —— 2 3 71 _71 6~2 27T 则血=—=—=2,所以不选A, T 71 B.解得:cp 二 Ikn + 彳兀(£ e Z ),即函数的解析式为:y = sin| 2x + —TT + 2A ;7Z - | = sin| 2x + —+ —| = cos| 2x + — | = sin| — -2x I 3 丿(6 2丿(6丿(3 (\5/r而 cos I 2x + — I — - cos( — 2x) 故选:BC.【点睛】已知fix) =Asin(a}x +^)(A>0, e>0)的部分图象求其解析式时,A 比较容易看图得出,困难的 是求待定系数e 和0常用如下两种方法:竺即可求出e ;确定y 时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标xo,则令 exo+0 = O(或 a )xo+<p=7t'),即可求出 <p.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出co 和<p, 若对A, e 的符号或对°的范围有要求,则可用诱导公式变换使其符合要求.&【2020年高考全国I 卷理数】如图,在三棱锥P ABC 的平面展开图中,AC=1, AB = AD =也,佔丄AC, AB±AD, ZCAE=30°,贝0 cosZFCB= _______________ .【答案】4【解析】 AB 丄AC, AB = j3, AC = E由勾股定理得BC = V A B 2+AC 2 = 2 ‘71 F(P)同理得 BD =品,:.BF = BD = ^,在△4CE 中,AC = 1, AE = AD =运,ZCAE = 30 ,由余弦定理得 CF = 3+^2—240 AEcos30 =l + 3-2xlxV3x —= 1, 2:.CF = CE = 1,在 BCF 中,BC = 2, BF =愿,CF = 1,CF~ + BC 2 -BF 2由余弦定理得cos ZFCB = 七——2CFBC故答案为:—. 4【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.9.【2020年高考全国III 卷理数】16.关于函数f (x) =sinx ——-—有如下四个命题: sinx®f (%)的图像关于y 轴对称.®f (x)的图像关于原点对称.1T®f (X )的图像关于直线x=3对称.®f (X )的最小值为2.其中所有真命题的序号是 __________ .【答案】②③所以,函数/(x)的图象不关于y 轴对称,命题①错误;对于命题②,函数/(X )的定义域为[x\x^kn,k^Z^ ,定义域关于原点对称, / ( -x) = sin (-%) + —r = - sin x - -— = -fsinx + -^―] = -/(%),sin (—兀) sinx I sinx)所以,函数/(x)的图象关于原点对称,命题②正确;1 + 4-6 2x1x2 【解析】对于命题①,A 7C \ . (7C ] 1(2 丿(2 ) .(7i' 7' 7 sm —+ x12所以,函数/(x)的图象关于直线x = |对称,命题③正确;对于命题④,当一7i<x<0时,sinx<0,贝J f(x} = sinx + — <0< 2 , sinx命题④错误.故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.JT 210.【2020年高考江苏】已知sin2(-+ <?) = -,则sin2a 的值是▲.4 3【解析】Qsin2(—+ cr) = (-^cosa-\——sin a)2 = —(1 + sin 2a)4 2 2 21 2 1— (1 + sin 2a) = —sin 2a =—2 3 3故答案为:-3【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.11.【2020年高考北京】若函数/(x) = sin(x+^) + cosx的最大值为2,则常数0的一个取值为 _______________IT TT【答案辽(2唸+亍心均可)【解析】因为 (兀)=cos ©sin 兀 +(sin 0 + 1)cos 兀=Jcos? 0 +(sin 0 + 1)2 sin (兀+ 0), 所以Jcos?(p + (sin(p +1『=2,解得sin0 = l,故可取^ = ~-7T7T故答案为:-(2^ + -,^eZ 均可). 2 2【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数 学运算能力,属于基础题.1T12. [2020 年高考浙江】已知 tan& = 2,则 cos2& = _______ , tan(6>-一) = ______ .3 1【答案】V 巧cos 2 0-sin 2 0 _ 1-tan 2 _ 1 -22cos 2 ^ + sin 2 0 1 + tan 2 0 1 + 223 1故答案为: 【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.13. [2020年高考江苏】将函数y = 3sin(2x +^)的图象向右平移夕个单位长度,则平移后的图象中与y 轴最 4 6近的对称轴的方程是▲ • 【答案】2-峯 24V/ 'j I r jl【解析】y — 3sin[2(x ---- ) —] = 3 sin(2x ------ ) 6 4 12小 TC TC , , x 7 TT k/C 7 x2x ------ — —F k 兀G Z)x — ----------- 1 ---- (k G Z) 12 2 24 2当k = -1时兀=——• 24故答案为:x =———24 【点睛】本题考查三角函数图象变换、正弦函数对称轴,考查基本分析求解能力,属基础题.14. [2020年新高考全国I 卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔 及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧与直线BC 的切点,四边 形 DEFG 为矩形,BC 丄DG,垂足为 C, tanZODC= - , BH//DG , EF=12 cm, DE=2 cm, A 到直线5DE 和EF 的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为 ___________ cm 2.【解析】cos 20 = cos 2 0 - sin 2 0 = tan <9-1 l + tan& 2-11 + 2【答案】4 + »兀 2【解析】设05 = OA=r,由题意AM = AN = 1, EF = \2,所以NF = 5,因为 AP = 5,所以 ZAGP = 45\因为 BH//DG,所以 ZAH0 = 45°,因为AG 与圆弧4B 相切于A 点,所以Q4丄4G,即AOAH 为等腰直角三角形;在直角△0QD 中,0Q = 5_^r ,DQ = l-—r ,2 2因为 tanZ0DC = -^ = |,所以 21- —r = 25-^r , DQ 5 22 解得 r = 2A /2 ;等腰直角MAH 的面积为恥》2屈2尽4;I 所以阴影部分的面积为S] + S?—㊁兀=4 +三-•故答案为:4 + T.扇形A0B 的面积S 2 = =3乃,【点睛】本题主要考查三角函数在实际中应用,把阴影部分合理分割是求解的关键,以劳动实习为背景,体现了五育并举的育人方针.15.【2020 年高考全国II 卷理数】/XABC 中,sin2A —sin2B—sin2C= sinBsinC.(1)求A;(2)若BC=3,求zMBC周长的最大值.【解析】(1)由正弦定理和已知条件得BC2-AC2-AB2^AC AB,①由余弦定理得BC2 = AC2 +AB2- 2AC AB cos A,②由①,②得cos A =—.22兀因为0<4<兀,所以A =—.3(2)由正弦定理及(1)得上匕=少-=-?£ = 2巧,sin B sin C sin A从而AC = 2A/3 sin B , AB = 2^3 sin(兀一A - B) = 3 cos B一A/3 sin B.故BC + 4C + AB = 3 + 7^sinB + 3cosB = 3 + 2V^sin(B + ¥).X0<B<-,所以当B =-时,AABC周长取得最大值3 + 2^3-3 616.[2020年高考江苏】在A ABC中,角A, B, C的对边分别为°, b, c,已知a = 3,c =迈,B = 45。
2020年普通高等学校招生全国统一考试数学试题理(全国卷3,含答案)
绝密★启用前2020年普通高等学校招生全国统一考试(新课标m)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A= (x,y)| x2y2 1 , B= (x,y)| y x ,则A I B中元素的个数为A. 3B. 2C. 1D. 02.设复数z满足(1+i) z=2i ,则I z I =A. 1B.停C. 2D. 23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2020年1月至2020年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4. (x+y)(2 x-y)5的展开式中x3y3的系数为设函数f (x )=cos( x + —),则下列结论错误的是8 .已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.冗B.红C. -D.」9 .等差数列 a n 的首项为1,公差不为0.若a 2, S 3, a 6成等比数列,则 4 前6项的和为A. -24B. -3C. 3D. 822x y10.已知椭圆C :二上21,(a>b >0)的左、右顶点分别为 A 1, A 且以线段A 1A 2为直径的圆与直线a bbx ay 2ab 0相切,则C 的离心率为5.A. -80B. -40C. 40D. 802 (x)已知双曲线 C: -2a2y_ b 21( a>0,b>0)的一条渐近线方程为2x 12 2—1有公共3焦点,则 C 的方程为2A. — 82L 110B. C.2x D.—42y 36. A. f (x )的一个周期为-2兀B. y =f (x )的图像关于直线 x =3C. f (x+Tt)的一个零点为 x=-6D. f (x )在(_,兀)单调递减27. 执行下面的程序框图,为使输出 A. 58. 4S 的值小于91,则输入的正整数 N 的最小值为则+的最大值为A. 3B. 2、,2C. .5D. 2二、填空题:本题共 4小题,每小题5分,共20分。
(完整word版)三角函数高考题及答案
1.(上海,15)把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ) A 。
(1-y )sin x +2y -3=0 B.(y -1)sin x +2y -3=0 C 。
(y +1)sin x +2y +1=0D.-(y +1)sin x +2y +1=02.(北京,3)下列四个函数中,以π为最小正周期,且在区间(2π,π)上为减函数的是( ) A.y =cos 2xB.y =2|sin x |C.y =(31)cos xD.y =-cot x3。
(全国,5)若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ) A 。
sin x B 。
cos x C.sin2x D.cos2x4.(全国,6)已知点P (sin α-cos α,tan α)在第一象限,则在[0,2π]内α的取值范围是( ) A.(2π,43π)∪(π,45π) B.(4π,2π)∪(π,45π) C.(2π,43π)∪(45π,23π)D 。
(4π,2π)∪(43π,π) 5.(全国)若sin 2x >cos 2x ,则x 的取值范围是( )A.{x |2k π-43π〈x 〈2k π+4π,k ∈Z }B 。
{x |2k π+4π<x 〈2k π+45π,k ∈Z } C.{x |k π-4π<x 〈k π+4π,k ∈Z } D.{x |k π+4π<x 〈k π+43π,k ∈Z } 6.(全国,3)函数y =4sin (3x +4π)+3cos (3x +4π)的最小正周期是( )A 。
6πB 。
2π C.32πD 。
3π7。
(全国,9)已知θ是第三象限角,若sin 4θ+cos 4θ=95,那么sin2θ等于( ) A 。
322 B.-322 C 。
32D.-32 8。
(全国,14)如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称,那么a 等于( ) A.2B.-2C 。
专题6 三角函数-2020届全国卷高考数学真题分类汇编含答案
专题6三角函数研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和延续性,每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定,掌握了全国卷的各种题型,就把握了全国卷命题的灵魂,基于此,潜心研究全国Ⅰ、Ⅱ、Ⅲ卷及高考数学考试说明,精心分类汇总至少最近三年全国卷的所有题型(按年份先理后文排列),对把握全国卷命题的方向,指导我们的高考有效复习,走出题海,快速提升成绩,会起到事半功倍的效果。
三角函数——近3年三角函数考了45道,每年理科1-3道小题,文科2-4道小题,当考3-4道小题时,当年就不在考三角函数大题了,题目多数难度较小,主要考查公式熟练运用、平移、图像性质、化简求值、解三角形等问题(含应用问题),多数属于“中档题”,小心平移(重点,难点,几乎年年考),也会有难题,如2016年全国1卷12题和2018年全国1卷16题的考法是比较难的,所以当了压轴题。
1.(2018年普通高等学校招生统一考试新课标Ⅰ卷数学(理16))已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.【答案】见解析。
【考点】利用导数研究函数的最值;三角函数的最值.【专题】11:计算题;34:方程思想;49:综合法;53:导数的综合应用;56:三角函数的求值.【分析】由题意可得T=2π是f(x)的一个周期,问题转化为f(x)在[0,2π)上的最小值,求导数计算极值和端点值,比较可得.【解答】解:由题意可得T=2π是f(x)=2sinx+sin2x的一个周期,故只需考虑f(x)=2sinx+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cosx+2cos2x=2cosx+2(2cos2x﹣1)=2(2cosx﹣1)(cosx+1),令f′(x)=0可解得cosx=或cosx=﹣1,可得此时x=,π或;∴y=2sinx+sin2x的最小值只能在点x=,π或和边界点x=0中取到,计算可得f()=,f(π)=0,f()=﹣,f(0)=0,∴函数的最小值为﹣,故答案为:.【点评】本题考查三角函数恒等变换,涉及导数法求函数区间的最值,属中档题.2.(2017年普通高等学校招生统一考试新课标Ⅰ卷数学(理9))已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】:函数y=Asin(ωx+φ)的图象变换.【专题】计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.3.(2016年普通高等学校招生统一考试新课标Ⅰ卷数学(理12))已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.4.(2018年普通高等学校招生统一考试新课标Ⅱ卷数学(理6))在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.2【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;49:综合法;58:解三角形.【分析】利用二倍角公式求出C的余弦函数值,利用余弦定理转化求解即可.【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.【点评】本题考查余弦定理的应用,考查三角形的解法以及计算能力.5.(2018年普通高等学校招生统一考试新课标Ⅱ卷数学(理10))若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π【考点】GP:两角和与差的三角函数;H5:正弦函数的单调性.【专题】33:函数思想;4R:转化法;56:三角函数的求值.【分析】利用两角和差的正弦公式化简f(x),由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],结合已知条件即可求出a的最大值.【解答】解:f(x)=cosx﹣sinx=﹣(sinx﹣cosx)=,由,k∈Z,得,k∈Z,取k=0,得f(x)的一个减区间为[,],由f(x)在[﹣a,a]是减函数,得,∴.则a的最大值是.故选:A.【点评】本题考查了两角和与差的正弦函数公式的应用,三角函数的求值,属于基本知识的考查,是基础题.6.(2018年普通高等学校招生统一考试新课标Ⅱ卷数学(理15))已知sinα+cosβ=1,cosα+sinβ=0,则sin(α+β)=.【答案】见解析。
2020高考全国试题分类解析(三角函数部分)
选择题1.(北京卷)对任意的锐角α,β,下列不等关系中正确的是 D (A )sin(α+β)>sin α+sin β (B )sin(α+β)>cos α+cos β (C )cos(α+β)<sinα+sinβ (D )cos(α+β)<cosα+cosβ2.(北京卷)函数f (x )=cos xA (A )在[0,),(,]22πππ上递增,在33[,),(,2]22ππππ上递减(B )在3[0,),[,)22πππ上递增,在3(,],(,2]22ππππ上递减(C )在3(,],(,2]22ππππ上递增,在3[0,),[,)22πππ上递减(D )在33[,),(,2]22ππππ上递增,在[0,),(,]22πππ上递减3.(全国卷Ⅰ)当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为D(A )2 (B )32 (C )4(D )344.(全国卷Ⅰ)在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断:B① 1cot tan =⋅B A② 2sin sin 0≤+<B A ③ 1cos sin 22=+B A④ C B A 222sin cos cos =+其中正确的是 (A )①③(B )②④ (C )①④(D )②③5.(全国卷Ⅱ)函数f (x ) = | sin x +cos x |的最小正周期是 C (A) 4π (B)2π(C )π (D )2π6.(全国卷Ⅱ)已知函数y =tan x ω 在(-2π,2π)内是减函数,则 B(A )0 < ω ≤ 1 (B )-1 ≤ ω < 0 (C )ω≥ 1 (D )ω≤ -17.(全国卷Ⅱ)锐角三角形的内角A 、B 满足tan A - A2sin 1= tan B,则有(A )sin 2A –cos B = 0 (B)sin 2A + cos B = 0 (C)sin 2A – sin B = 0 (D) sin 2A+ sin B = 0 8.(全国卷Ⅲ)已知α为第三象限角,则2α所在的象限是 D (A )第一或第二象限 (B )第二或第三象限(C )第一或第三象限 (D )第二或第四象限9.(全国卷Ⅲ)设02x π≤≤,sin cos x x =-,则 C(A) 0x π≤≤ (B)744x ππ≤≤(C) 544x ππ≤≤ (D) 322x ππ≤≤10.(全国卷Ⅲ)22sin 2cos 1cos 2cos 2⋅=+ααααB (A) tan α (B) tan 2α (C) 1(D)1211.(浙江卷)已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( A )(A) 1 (B) -1 (C) 2k +1 (D) -2k +1 12.(浙江卷)函数y =sin(2x +6π)的最小正周期是( B )(A)2π(B) π (C) 2π (D)4π 13.(江西卷)已知==ααcos ,32tan 则( B ) A .54B .-54C .154 D .-5314.(江西卷)设函数)(|,3sin |3sin )(x f x x x f 则+=为( A )A .周期函数,最小正周期为32π B .周期函数,最小正周期为3πC .周期函数,数小正周期为π2D .非周期函数15.(江西卷)在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则当△OAB 的面积达最大值时,=θ( D ) A .6πB .4πC .3πD .2π16、(江苏卷)若316sin =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫⎝⎛+απ232cos =( A ) A .97- B .31- C .31 D .97 17.(湖北卷)若∈<<=+απαααα则),20(tan cos sin( C )A .)6,0(πB .)4,6(ππC .)3,4(ππD .)2,3(ππ18.(湖南卷)tan600°的值是( D ) A .33-B .33C .3-D .319.(重庆卷)=+-)12sin 12)(cos 12sin12(cos ππππ( D )A .23-B .21- C .21D .23 20.(福建卷)函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( C )A .4,2πϕπω== B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==21.(福建卷)函数x y 2cos =在下列哪个区间上是减函数( C )A .]4,4[ππ-B .]43,4[ππ C .]2,0[πD .],2[ππ22.(山东卷)已知函数)12cos()12sin(π-π-=x x y ,则下列判断正确的是( B )(A )此函数的最小正周期为π2,其图象的一个对称中心是)0,12(π(B )此函数的最小正周期为π,其图象的一个对称中心是)0,12(π(C )此函数的最小正周期为π2,其图象的一个对称中心是)0,6(π(D )此函数的最小正周期为π,其图象的一个对称中心是)0,6(π23(山东卷)函数⎪⎩⎪⎨⎧≥<<-π=-0,01),sin()(12x e x x x f x ,若2)()1(=+a f f ,则a 的所有可能值为( B ) (A )1 (B )22,1-(C )22- (D )22,1 24.(天津卷)要得到函数x y cos 2=的图象,只需将函数)42sin(2π+=x y 的图象上所有的点的(C )(A)横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度(B)横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度(C)横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度(D)横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度25(天津卷)函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为( A )(A ))48sin(4π+π-=x y (B ))48sin(4π-π=x y(C ))48sin(4π-π-=x y (D ))48sin(4π+π=x y填空题:1.(北京卷)已知tan 2α=2,则tanα的值为-34,tan ()4πα+的值为-712.(全国卷Ⅱ)设a 为第四象限的角,若513sin 3sin =a a ,则tan 2a=___43-___________.3.(上海卷)函数[]π2,0|,sin |2sin )(∈+=x x x x f 的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年全国高考理科数学试题分类汇编3:三角函数一、选择题1 .(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B.43C.43-D.34-【答案】C2 .(2020年高考陕西卷(理))设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定【答案】B3 .(2020年普通高等学校招生统一考试天津数学(理)试题(含答案))在△ABC 中, ,2,3,4AB BC ABC π∠===则sin BAC ∠ =(A)1010(B)105(C)31010(D)55【答案】C4 .(2020年普通高等学校招生统一考试山东数学(理)试题(含答案))将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为(A) 34π (B) 4π(C)0 (D) 4π-【答案】B5 .(2020年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=A.6πB.3πC.23π D.56π 【答案】A6 .(2020年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称(C)()f x 的最大值为32(D)()f x 既奇函数,又是周期函数【答案】C7 .(2020年普通高等学校招生统一考试山东数学(理)试题(含答案))函数cos sin y x x x =+的图象大致为【答案】D8 .(2020年高考四川卷(理))函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π- (B)2,6π- (C)4,6π- (D)4,3π【答案】A9 .(2020年上海市春季高考数学试卷(含答案))既是偶函数又在区间(0 )π,上单调递减的函数是( )(A)sin y x = (B)cos y x = (C)sin 2y x = (D)cos 2y x =【答案】B10.(2020年普通高等学校招生统一考试重庆数学(理)试题(含答案))004cos50tan 40-= ( )A.2B.232+ C.3 D.221- 【答案】C11.(2020年高考湖南卷(理))在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin 3,a B b A =则角等于 A.12π B.6π C.4π D.3π【答案】D12.(2020年高考湖北卷(理))将函数()3cos sin y x x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( )A.12π B.6π C.3π D.56π【答案】B 二、填空题13.(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))ABC ∆中,090=∠C ,M 是BC 的中点,若31sin =∠BAM ,则=∠BAC sin ________. 【答案】6314.(2020年高考新课标1(理))设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______【答案】255-. 15.(2020年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))如图ABC∆中,已知点D 在BC 边上,AD ⊥AC,22sin ,32,33BAC AB AD ∠===则BD 的长为_______________【答案】316.(2020年上海市春季高考数学试卷(含答案))函数2sin y x =的最小正周期是_____________【答案】2π17.(2020年高考四川卷(理))设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.【答案】318.(2020年高考上海卷(理))若12cos cos sin sin ,sin 2sin 223x y x y x y +=+=,则sin()________x y +=【答案】2sin()3x y +=. 19.(2020年高考上海卷(理))已知△ABC 的内角A 、B 、C 所对应边分别为a 、b 、c,若22232330a ab b c ++-=,则角C 的大小是_______________(结果用反三角函数值表示)【答案】1arccos 3C π=-20.(2020年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知α是第三象限角,1sin 3a =-,则cot a =____________.【答案】2221.(2020年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))函数)42sin(3π+=x y 的最小正周期为___________.【答案】π22.(2020年上海市春季高考数学试卷(含答案))在ABC ∆中,角 A B C 、、所对边长分别为 a b c 、、,若5 8 60a b B ===o ,,,则b=_______ 【答案】723.(2020年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设ABC ∆的内角,,A B C 所对边的长分别为,,a b c .若2b c a +=,则3sin 5sin ,A B =则角C =_____.【答案】π3224.(2020年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=________.【答案】105-25.(2020年高考江西卷(理))函数2sin 223sin y x x =+的最小正周期为T为_________.【答案】π26.(2020年上海市春季高考数学试卷(含答案))函数4sin 3cos y x x =+的最大值是_______________【答案】5 三、解答题27.(2020年高考北京卷(理))在△ABC 中,a=3,b=26,∠B=2∠A.(I)求cosA 的值; (II)求c 的值.【答案】解:(I)因为a=3,b=26,∠B=2∠A. 所以在△ABC 中,由正弦定理得326sin sin 2A A =.所以2sin cos 26sin 3A A A =.故6cos 3A =. (II)由(I)知6cos 3A =,所以23sin 1cos 3A A =-=.又因为∠B=2∠A,所以21cos 2cos 13B A =-=.所以222sin 1cos 3B B =-=.在△ABC 中,53sin sin()sin cos cos sin 9C A B A B A B =+=+=. 所以sin 5sin a Cc A==.28.(2020年高考陕西卷(理))已知向量1(cos ,),(3sin ,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】解:(Ⅰ)()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x . 最小正周期ππ==22T . 所以),62sin()(π-=x x f 最小正周期为π.(Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f .所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.29.(2020年普通高等学校招生统一考试重庆数学(理)试题(含答案))在ABCV 中,内角,,A B C 的对边分别是,,a b c ,且2222a b ab c ++=. (1)求C ; (2)设()()2cos cos 322cos cos ,5cos 5A B A B ααα++==,求tan α的值. 【答案】由题意得30.(2020年普通高等学校招生统一考试天津数学(理)试题(含答案))已知函数2()2sin 26sin cos 2cos 41,f x x x x x x π⎛⎫=-++- ⎪+⎝⎭∈R .(Ⅰ) 求f(x)的最小正周期;(Ⅱ) 求f(x)在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】31.(2020年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))设向量()()3sin ,sin ,cos ,sinx ,0,.2a x x b x x π⎡⎤==∈⎢⎥⎣⎦(I)若.a b x =求的值; (II)设函数()(),.f x a b f x =g 求的最大值【答案】32.(2020年高考上海卷(理))(6分+8分)已知函数()2sin()f x x ω=,其中常数0ω>;(1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,区间[,]a b (,a b R ∈且a b <)满足:()y g x =在[,]a b 上至少含有30个零点,在所有满足上述条件的[,]a b 中,求b a -的最小值.【答案】(1)因为0ω>,根据题意有34202432ππωωππω⎧-≥-⎪⎪⇒<≤⎨⎪≤⎪⎩ (2) ()2sin(2)f x x =,()2sin(2())12sin(2)163g x x x ππ=++=++1()0sin(2)323g x x x k πππ=⇒+=-⇒=-或7,12x k k Z ππ=-∈,即()g x 的零点相离间隔依次为3π和23π,故若()y g x =在[,]a b 上至少含有30个零点,则b a -的最小值为2431415333πππ⨯+⨯=. 33.(2020年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I)求B (II)若31sin sin 4A C -=,求C . 【答案】34.(2020年高考四川卷(理))在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;(Ⅱ)若42a =,5b =,求向量BA u u u r在BC uuu r 方向上的投影.【答案】解:()I 由()()232cos cos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-()II 由3cos ,05A A π=-<<,得4sin 5A =, 由正弦定理,有sin sin a bA B=,所以,sin 2sin 2b A B a ==. 由题知a b >,则A B >,故4B π=.根据余弦定理,有()2223425255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去).故向量BA u u u r 在BC uuu r 方向上的投影为2cos 2BA B =u u u r35.(2020年普通高等学校招生统一考试山东数学(理)试题(含答案))设△ABC的内角,,A B C 所对的边分别为,,a b c ,且6a c +=,2b =,7cos 9B =. (Ⅰ)求,a c 的值; (Ⅱ)求sin()A B -的值.【答案】解:(Ⅰ)由余弦定理2222cos b a c ac B =+-,得()222(1cos )b ac ac B =+-+,又6a c +=,2b =,7cos 9B =,所以9ac =,解得3a =,3c =.(Ⅱ)在△ABC 中,242sin 1cos 9B B =-=,由正弦定理得sin 22sin 3a B A b ==,因为a c =,所以A 为锐角,所以21cos 1sin 3A A =-=因此102sin()sin cos cos sin 27A B A B A B -=-=.36.(2020年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))已知函数()4cos sin (0)4f x x x πϖϖϖ⎛⎫=⋅+> ⎪⎝⎭的最小正周期为π.(Ⅰ)求ϖ的值; (Ⅱ)讨论()f x 在区间[]0,2上的单调性.【答案】解: (Ⅰ)2)42sin(2)12cos 2(sin 2)cos (sin cos 22++=++=+⇒πωωωωωωx x x x x x122=⇒=⇒ωπωπ.所以1,2)42sin(2)(=++=ωπx x f (Ⅱ) ;解得,令时,当8242]4,4[)42(]2,0[ππππππππ==++∈+∈x x x x所以.]28[]8,0[)(上单调递减,上单调递增;在在πππx f y =37.(2020年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像.(1)求函数()f x 与()g x 的解析式;(2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2020个零点.【答案】解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω=又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x = (Ⅱ)当(,)64x ππ∈时,12sin 22x <<,10cos 22x << 所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈则()cos cos cos 22sin 2(2sin )G x x x x x x '=++-因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增又1()064G π=-<,2()042G π=> 且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意(Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈ 现研究(0,)(,2)x πππ∈U 时方程解的情况 令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x +'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表x(0,)2π2π (,)2ππ 3(,)2ππ 32π 3(,2)2ππ ()h x ' + 0- -0 +()h xZ]] 1-Z当0x >且x 趋近于0时,()h x 趋向于-∞ 当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞ 当2x π<且x 趋近于2π时,()h x 趋向于+∞故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点;当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点;当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点38.(2020年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD版含附加题))本小题满分14分.已知(cos ,sin )(cos ,sin )a b ααββ=r r =,,παβ<<<0.(1)若||2a b -=r r ,求证:a b ⊥r r ;(2)设(0,1)c =r,若a b c +=r r r ,求βα,的值.【答案】解:(1)∵2||=-b a ∴2||2=-b a 即()22222=+-=-b b a a b a ,又∵1sin cos ||2222=+==ααa a ,1sin cos ||2222=+==ββb b ∴222=-b a ∴0=b a ∴b ⊥a(2)∵)1,0()sin sin ,cos (cos b a =++=+βαβα ∴⎩⎨⎧=+=+1sin sin 0cos cos βαβα即⎩⎨⎧-=-=βαβαsin 1sin cos cos 两边分别平方再相加得:βsin 221-= ∴21sin =β ∴21sin =α ∵παβ<<<0 ∴πβπα61,65==39.(2020年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知函数()2cos 12f x x π⎛⎫=-⎪⎝⎭,x ∈R . (Ⅰ) 求6f π⎛⎫- ⎪⎝⎭的值; (Ⅱ) 若3cos 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭.【答案】(Ⅰ)2cos 2cos 2cos 1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(Ⅱ) 22cos 22cos 2cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为3cos 5θ=,3,22πθπ⎛⎫∈⎪⎝⎭,所以4sin 5θ=-,所以24sin 22sin cos 25θθθ==-,227cos 2cos sin 25θθθ=-=- 所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin 2θθ=-72417252525⎛⎫=---= ⎪⎝⎭. 40.(2020年高考湖南卷(理))已知函数2()sin()cos().()2sin 632xf x x xg x ππ=-+-=.(I)若α是第一象限角,且33()5f α=.求()g α的值; (II)求使()()f x g x ≥成立的x 的取值集合.【答案】解:(I)533sin 3)(sin 3sin 23cos 21cos 21sin 23)(==⇒=++-=ααf x x x x x x f .51cos 12sin 2)(,54cos )2,0(,53sin 2=-===⇒∈=⇒ααααπααg 且(II)21)6sin(cos 21sin 23cos 1sin 3)()(≥+=+⇒-≥⇒≥πx x x x x x g x fZ k k k x k k x ∈+∈⇒++∈+⇒],322,2[]652,62[6ππππππππ41.(2020年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.如图,游客从某旅游景区的景点A处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲.乙两位游客从A 处下山,甲沿AC 匀速步行,速度为min /50m .在甲出发min 2后,乙从A乘缆车到B ,在B 处停留min 1后,再从匀速步行到C .假设缆车匀速直线运动的速度为min /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C . (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【答案】解:(1)∵1312cos =A ,53cos =C ∴),(、20π∈C A ∴135sin =A ,54sin =C∴[]6563sin cos cos sin sin sin sin =+=+=+-=C A C A C A C A B )()(π 根据sinB sinC AC AB =得m C AC AB 1040sin sinB== (2)设乙出发t 分钟后,甲.乙距离为d,则CBA1312)50100(1302)50100()130(222⨯+⨯⨯-++=t t t t d ∴)507037(20022+-=t t d∵13010400≤≤t 即80≤≤t ∴3735=t 时,即乙出发3735分钟后,乙在缆车上与甲的距离最短.(3)由正弦定理sinBsinA ACBC =得50013565631260sin sinB ===A AC BC (m) 乙从B 出发时,甲已经走了50(2+8+1)=550(m),还需走710 m 才能到达C设乙的步行速度为V min /m ,则350710500≤-v ∴3507105003≤-≤-v ∴14625431250≤≤v ∴为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎥⎦⎤⎢⎣⎡14625,431250范围内 法二:解:(1)如图作BD ⊥CA 于点D, 设BD=20k,则DC=25k,AD=48k, AB=52k,由AC=63k=1260m, 知:AB=52k=1040m.(2)设乙出发x 分钟后到达点M, 此时甲到达N 点,如图所示. 则:AM=130x,AN=50(x+2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·ANcosA=7400 x 2-14000 x+10000,其中0≤x ≤8,当x=3537 (min)时,MN 最小,此时乙在缆车上与甲的距离最短.(3)由(1)知:BC=500m,甲到C 用时:126050 =1265(min).若甲等乙3分钟,则乙到C 用时:1265 +3=1415 (min),在BC 上用时:865(min) .此时乙的速度最小,且为:500÷865 =125043m/min.若乙等甲3分钟,则乙到C 用时:1265 -3=1115 (min),在BC 上用时:565(min) .此时乙的速度最大,且为:500÷565 =62514 m/min.故乙步行的速度应控制在[125043 ,62514]范围内.42.(2020年高考湖北卷(理))在ABC ∆中,角A ,B ,C 对应的边分别是a ,b ,c .已知()cos23cos 1A B C -+=. (I)求角A 的大小;(II)若ABC ∆的面积53S =,5b =,求sin sin B C 的值.【答案】解:(I)由已知条件得:cos23cos 1A A +=CBADMN22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II)1sin 532S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==43.(2020年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))△ABC 在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求△ABC 面积的最大值.【答案】44.(2020年高考新课标1(理))如图,在△ABC 中,∠ABC=90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC=90°(1)若PB=12,求PA;(2)若∠APB=150°,求tan ∠PBA【答案】(Ⅰ)由已知得,∠PBC=o 60,∴∠PBA=30o ,在△PBA 中,由余弦定理得2PA =o 11323cos3042+-⨯⨯=74,∴PA=72; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得,o o 3sin sin150sin(30)αα=-,化简得,3cos 4sin αα=, ∴tan α=34,∴tan PBA ∠=34. 45.(2020年上海市春季高考数学试卷(含答案))本题共有2个小题,第一小题满分4分,第二小题满分9分.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记1n n n P AP θ+∠=,n N *∈.(1)若31arctan 3θ=,求点A 的坐标;(2)若点A 的坐标为(0 82),,求n θ的最大值及相应n 的值. [解](1)P 2 0 x yA P 1 P 3 P 4(2)【答案】[解](1)设(0 )A t ,,根据题意,12n n x -=.由31arctan 3θ=,知31tan 3θ=, 而3443343223443()4tan tan()321x x t x x t t t OAP OAP x x t x x t t tθ--=∠-∠===+⋅++⋅, 所以241323t t =+,解得4t =或8t =. 故点A 的坐标为(0 4),或(0 8),.(2)由题意,点n P 的坐标为1(2 0)n -,,12tan 82n n OAP -∠=. 11112122218282tan tan()2221622182828282282n n n n n n n n n n n OAP OAP θ--+---=∠-∠===+⋅++. 因为162222282n n +≥,所以12tan 422n θ≤=, 当且仅当1622282n n =,即4n =时等号成立. 易知0 tan 2n y x πθ<<=,在(0 )2π,上为增函数, 因此,当4n =时,n θ最大,其最大值为2arctan 4. 46.(2020年高考江西卷(理))在△ABC 中,角A,B,C 所对的边分别为a,b,c,已知cosC+(conA-错误!未找到引用源。