2019-2020学年湖北省黄石市阳新县八年级(上)期末数学试卷 (解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年湖北省黄石市阳新县八年级(上)期末数学试卷一、选择题(共10小题).
1.下列图形中,有且只有三条对称轴的是()
A.B.
C.D.
2.解分式方程+=3时,去分母后变形正确的是()
A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)
C.2﹣(x+2)=3D.2﹣(x+2)=3(x﹣1)
3.下列等式正确的是()
A.(﹣1)﹣3=1B.(﹣2)3×(﹣2)3=﹣26
C.(﹣5)4÷(﹣5)4=﹣52D.(﹣4)0=1
4.如图,已知∠1=∠2,AC=AD,增加下列条件:其中不能使△ABC≌△AED的条件()
A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E
5.下列各多项式从左到右变形是因式分解,并分解正确的是()
A.(a﹣b)3﹣b(b﹣a)2=(b﹣a)2(a﹣2b)
B.(x+2)(x+3)=x2+5x+6
C.4a2﹣9b2=(4a﹣9b)(4a+9b)
D.m2﹣n2+2=(m+n)(m﹣n)+2
6.某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x千米/小时,则方程可列为()
A.=
B.=
C.+1=﹣
D.+1=+
7.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()
A.B.
C.D.
8.在显微镜下测得一个病毒的直径为0.00000000205米,该数据用科学记数法表示为()A.0.205×10﹣8米B.2.05×109米
C.20.5×10﹣10米D.2.05×10﹣9米
9.根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明多项式的乘法运算是()
A.(a+3b)(a+b)=a2+4ab+3b2
B.(a+3b)(a+b)=a2+3b2
C.(b+3a)(b+a)=b2+4ab+3a2
D.(a+3b)(a﹣b)=a2+2ab﹣3b2
10.根据如图数字之间的规律,问号处应填()
A.61B.52C.43D.37
二、填空题(本大题共6个小题,每小题3分,共18分)下列各題不需要写出解答过程,请将结果直接写在答题卷指定位置
11.已知a2+b2=18,ab=﹣1,则a+b=.
12.将一副学生用三角板(即分别含30°角、45°角的直角三角板)按如图所示方式放置,则∠1=°.
13.如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入号球袋.
14.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.
15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.
16.在△ABC中,∠ACB=90°,∠B=60°,AB=8,点D是直线BC上动点,连接AD,在直线AD的右侧作等边△ADE,连接CE,当线段CE的长度最小时,线段CD的长度为.
三、解答题(共9个题,共72分)解题应写出文字说明,证明过程或推演步骤,如果觉得有点困难,那么把自己能写出来解答尽量写出来
17.计算:
(1)(x+3)(x﹣3)﹣x(x﹣2);
(2)(﹣0.125)2018×(﹣2)2018×(﹣4)2019.
18.分解因式:
(1)﹣3a2+6ab﹣3b2;
(2)9a2(x﹣y)+4b2(y﹣x).
19.解方程:
(1)+=;
(2)+=.
20.先化简,再求值:(x+1)÷(2+),其中x=﹣.
21.如图所示,∠A=∠D=90°,AB=DC,AC,BD相交于点M,求证:(1)∠ABC=∠DCB;
(2)AM=DM.
22.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?
23.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN周长最小时,求∠MAN的度数是多少?
24.小东同学在学习多项式乘以多项时发现:(x+4)(2x+5)(3x﹣6)的结果是一个多项式,并且最高次项为:x•2x•3x=3x3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢?要解决这个问题就是要确定该一次项的系数,根据尝试和总结他发现:一次项系数就是:•5•(﹣6)+2•(﹣6)•4+3•4•5=﹣3,即一次项为﹣3x,认真领会小东同学解决问题的思路方法,仔细分析上面等式的结构特征,结合自己对多项式乘法法则的理解,解决以下问题.
(1)计算(x+2)(3x+1)(5x﹣3)所得多项式的一次项系数为.
(2)(x+6)(2x+3)(5x﹣4)所得多项式的二次项系数为.
(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所得多项式的一次项系数为0,则a=.(4)若(x+1)2021=a0x2021+a1x2020+a2x2019+…+a2020x+a2021,则a2020=.25.【问题原型】如图1,在等腰直角三形ABC中,∠ACB=90°,BC=8.将边AB绕点B顺时针旋转90°得到线段BD,连结CD,过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.
【初步探究】如图2,在Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积并说明理由.【简单应用】如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连续CD,求△BCD的面积(用含a的代数式表示).