生物化学笔记第三章脂类

生物化学笔记第三章脂类
生物化学笔记第三章脂类

第三章脂类

提要

一、概念

脂类、类固醇、萜类、多不饱和脂肪酸、必需脂肪酸、皂化值、碘值、酸价、酸败、油脂的硬化、甘油磷脂、鞘氨醇磷脂、神经节苷脂、脑苷脂、乳糜微粒

二、脂类的性质与分类单纯脂、复合脂、非皂化脂、衍生脂、结合脂

单纯脂

脂肪酸的俗名、系统名和缩写、双键的定位

三、油脂的结构和化学性质

(1)水解和皂化脂肪酸平均分子量=3×56×1000÷皂化值

(2)加成反应碘值大,表示油脂中不饱和脂肪酸含量高,即不饱和程度高。(3)酸败

蜡是由高级脂肪酸和长链脂肪族一元醇或固醇构成的酯。

四、磷脂(复合脂)

(一)甘油磷脂类

最常见的是卵磷脂和脑磷脂。卵磷脂是磷脂酰胆碱。脑磷脂是磷脂酰乙醇胺。

卵磷脂和脑磷脂都不溶于水而溶于有机溶剂。磷脂是兼性离子,有多个可解离基团。在弱碱下可水解,生成脂肪酸盐,其余部分不水解。在强碱下则水解成脂肪酸、磷酸甘油和有机碱。磷脂中的不饱和脂肪酸在空气中易氧化。

(二)鞘氨醇磷脂

神经鞘磷脂由神经鞘氨醇(简称神经醇)、脂肪酸、磷酸与含氮碱基组成。脂酰基

与神经醇的氨基以酰胺键相连,所形成的脂酰鞘氨醇又称神经酰胺;神经醇的伯醇基与磷脂酰胆碱(或磷脂酰乙醇胺)以磷酸酯键相连。磷脂能帮助不溶于水的脂类均匀扩散于体内的水溶液体系中。

非皂化脂

(一)萜类是异戊二烯的衍生物

多数线状萜类的双键是反式。维生素A、E、K等都属于萜类,视黄醛是二萜。天然橡胶是多萜。

(二)类固醇都含有环戊烷多氢菲结构

固醇类是环状高分子一元醇,主要有以下三种:

动物固醇胆固醇是高等动物生物膜的重要成分,对调节生物膜的流动性有一定意义。胆固醇还是一些活性物质的前体,类固醇激素、维生素D3、胆汁酸等都是胆固醇的衍生物。

植物固醇是植物细胞的重要成分,不能被动物吸收利用。

1,酵母固醇存在于酵母菌、真菌中,以麦角固醇最多,经日光照射可转化为维生素D2。

2.固醇衍生物类

胆汁酸是乳化剂,能促进油脂消化。

强心苷和蟾毒它们能使心率降低,强度增加。

性激素和维生素D

3. 前列腺素

结合脂

1.糖脂。它分为中性和酸性两类,分别以脑苷脂和神经节苷脂为代表。

脑苷脂由一个单糖与神经酰胺构成。

神经节苷脂是含唾液酸的糖鞘脂,有多个糖基,又称唾液酸糖鞘脂,结构复杂。

2.脂蛋白

根据蛋白质组成可分为三类:核蛋白类、磷蛋白类、单纯蛋白类,其中单纯蛋白类主要有水溶性的血浆脂蛋白和脂溶性的脑蛋白脂。

血浆脂蛋白根据其密度由小到大分为五种:

乳糜微粒主要生理功能是转运外源油脂。

极低密度脂蛋白(VLDL) 转运内源油脂。

低密度脂蛋白(LDL) 转运胆固醇和磷脂。

高密度脂蛋白(HDL) 转运磷脂和胆固醇。

极高密度脂蛋白(VHDL) 转运游离脂肪酸。

脑蛋白脂不溶于水,分为A、B、C三种。top

第一节概述

一、脂类是脂溶性生物分子脂类(lipids)泛指不溶于水,易溶于有机溶剂的各类生物分子。脂类都含有碳、氢、氧元素,有的还含有氮和磷。共同特征是以长链或稠环脂肪烃分子为母体。脂类分子中没有极性基团的称为非极性脂;有极性基团的称为极性脂。极性脂的主体是脂溶性的,其中的部分结构是水溶性的。

二、分类

1.单纯脂单纯脂是脂肪酸与醇结合成的酯,没有极性基团,是非极性脂,又称中性脂。三酰甘油、胆固醇酯、

蜡等都是单纯脂。蜡是由高级脂肪酸和高级一元醇形成的酯。

2.复合脂复合脂又称类脂,是含有磷酸等非脂成分的脂类。复合脂含有极性基团,是极性脂。磷脂是主要的复合脂。

3.非皂化脂包括类固醇、萜类和前列腺素类。不含脂肪酸,不能被碱水解,称为非皂化脂。类固醇又称甾醇,是以环戊烷多氢菲为母核的一种脂类。胆固醇是人体内最重要的类固醇,它因有羟基而属于极性脂。萜类是异戊二烯聚合物,前列腺素是二十碳酸衍生物。

4.衍生脂指上述物质的衍生产物,如甘油、脂肪酸及其氧化产物,乙酰辅酶A。

5.结合脂类脂与糖或蛋白质结合,形成糖脂和脂蛋白。

三、分布与功能

(一)三酰甘油是储备能源三酰甘油主要分布在皮下、胸腔、腹腔、肌肉、骨髓等处的脂肪组织中,是储备能源的主要形式。三酰甘油作为能源储备有以下优点:

1.可大量储存在三大类能源物质中,只有三酰甘油能大量储备。体内糖原的储量少(不到体重的1%),储存期短(不到半天),而三酰甘油储量可高达体重的10-20%以上,并可长期储存。

2.功能效率高由于脂肪酸的还原态远高于其他燃料分子,所以体内氧化三酰甘油的功能价值可高达37Kj/g,而氧化糖和蛋白质分别只有17和16Kj/g。

3.占空间少可以无水状态

存在。而1克糖原可以结合2克水,所以1克无水的脂肪储存的能量是1克水合的糖原的6倍多。

4.还有绝缘保温、缓冲压力、减轻摩擦振动等保护功能。(二)极性脂参与生物膜的构成

磷脂、糖脂、胆固醇等极性脂是构成人体生物膜的主要成分。他们构成生物膜的水不溶性液态基质,规定了生物膜的基本特性。膜的屏障、融合、绝缘、脂溶性分子的通透性等功能都是膜脂特性的表现,膜脂还给各种膜蛋白提供功能所必须的微环境。脂类作为细胞表面物质,与细胞的识别、种特异性和组织免疫等有密切关系。(三)有些脂类及其衍生物具有重要生物活性肾上腺皮质激素和性激素的本质是类固醇;各种脂溶性维生素也是不可皂化脂;介导激素调节作用的第二信使有的也是脂类,如二酰甘油、肌醇磷脂等;前列腺素、血栓素、白三烯等具有广泛调节活性的分子是20碳酸衍生物。

(四)有些脂类是生物表面活性剂

磷脂、胆汁酸等双溶性分子(或离子),能定向排列在水-脂或水-空气两相界面,有降低水的表面张力的功能,是良好的生物表面活性剂。例如:肺泡细胞分泌的磷脂覆盖在肺泡壁表面,能通过降低肺泡壁表面水膜的表面张力,防止肺泡在呼吸中萎陷。缺少这些磷脂时,可造成呼吸窘迫综合征,患

儿在呼吸后必须用力扩胸增大胸内负压,使肺泡重新充气。胆汁酸作为表面活性剂,可乳化食物中脂类,促进脂类的消化吸收。

(五)作为溶剂

一些脂溶性的维生素和激素都是溶解在脂类物质中才能被吸收,他们在体内的运输也需要溶解在脂类中。如维生素A、E、K、性激素等都是如此。

第二节单纯脂

一、脂肪酸

(一)特性

动植物中的脂肪酸比较简单,都是直链的,可含有多至六个双键,而细菌的脂肪酸最多只有一个双键。细菌的脂肪酸比较复杂,可有支链或含有环丙烷环,如结核酸就是饱和支链脂肪酸。植物中可能含有三键、环氧基及环丙烯基等。

人体及高等动物体内的脂肪酸有以下特点:

1.是由偶数碳原子构成的一元酸,最多见的是C16、C18、C22等长链脂肪酸。

2.碳链无分支。

3.分为饱和脂肪酸和不饱和脂肪酸。不饱和脂肪酸的双键都呈顺式构型,有多个双键的脂肪酸称为高度不饱和脂肪酸或多不饱和脂肪酸。相邻双键之间都插入亚甲基,不构成共轭体系。(二)分类和命名

1.脂肪酸的俗名、系统名和缩写

脂肪酸的俗名主要反映其来源和特点。系统名反映其碳原子数目、双键数和位臵。如:硬脂酸的系统名是十八

烷酸,用18:0表示,其中“18”表示碳链长度,“0”表示无双键;油酸是十八碳烯酸,用18:1表示,“1”表示有一个双键。反油酸用18:1Δ9,trans表示。

2.双键的定位

双键位臵的表示方法有两种,原来用Δ编号系统,近来又规定了ω或(n)编号系统。前者按碳原子的系统序数(从羧基端数起),用双键羧基侧碳原子的序数给双键定位。后者采用碳原子的倒数序数(从甲基端数起),用双键甲基侧碳原子的(倒数)序数给双键定位。这样可将脂肪酸分为代谢相关的4组,即ω3、ω6、ω7、ω9,在哺乳动物体内脂肪酸只能由该族母体衍生而来,各族母体分别是软油酸(16:1,ω7)、油酸(18:1,ω9)、亚油酸(18:2,ω6)和α亚麻酸(18:3,ω3)

哺乳动物体内能合成饱和脂肪酸和单不饱和脂肪酸,不能合成多不饱和脂肪酸,如亚油酸、亚麻酸等。我们把维持哺乳动物正常生长所必需的而体内又不能合成的脂肪酸称为必需脂肪酸。(三)反应

脂肪酸常见的反应有两个:活化硫酰化,生成脂酰辅酶A。这是脂肪酸的活性形式。不饱和脂肪酸的双键可以氧化,生成过氧化物,最后产生自由基。对人体有害。二、油脂

(一)油脂的结构

油脂是由一分子甘油与一至三分子脂肪酸所形成的酯。根据脂肪酸数量,可分为单

酰甘油、二酰甘油和三酰甘油(过去称为甘油三酯)。前两者在自然界中存在极少,而三酰甘油是脂类中含量最丰富的一类。通常所说的油脂就是指三酰甘油。

若三个脂肪酸相同,则称简单三酰甘油,命名时称三某脂酰甘油,如三硬脂酰甘油,三油酰甘油等。如三个脂肪酸不同,则称为混合三酰甘油,命名时以α、β和α’分别表示不同脂肪酸的位臵。

天然油脂多数是多种混合三酰甘油的混合物,简单三酰甘油极少,仅橄榄油中含三油酰甘油较多,约占70%。(二)油脂的性质

1.物理性质

油脂一般无色、无味、无臭,呈中性。天然油脂因含杂质而常具有颜色和气味。油脂比重小于1,不溶于水而溶于有机溶剂(丁酸酯可溶)。在乳化剂如胆汁酸、肥皂等存在的情况下,油脂能在水中形成乳浊液。在人体和动物的消化道内,胆汁酸盐使油脂乳化形成乳糜微粒,有利于油脂的消化吸收。

因为不饱和脂肪酸的熔点比相应的饱和脂肪酸低,所以一般三酰甘油中,不饱和脂肪酸含量较高者在室温时为液态,俗称油,如棉籽油的不饱和脂肪酸占75%。而饱和脂肪酸含量高的三酰甘油在室温时通常为固态,俗称脂,如牛脂中饱和脂肪酸占60-70%。天然油脂都是多种油脂的混合物,没有固定的熔点和沸点,通常简称为油脂。硬脂酸熔点为70℃,

油酸熔点为14℃。相应的,三硬脂酸甘油酯的熔点是60℃,而三油酸甘油酯的熔点是0℃。

如油脂中1,3位的脂肪酸不同,则具有旋光性,一般按照L-型甘油醛的衍生物命名。

油脂是脂肪酸的储备和运输形式,也是生物体内的重要溶剂,许多物质是溶于其中而被吸收和运输的,如各种脂溶性维生素(A、D、E、K)、芳香油、固醇和某些激素等。

2.化学性质

油脂的化学性质与组成它的脂肪酸、甘油以及酯键有关。

(1)水解和皂化

油脂能在酸、碱、蒸汽及脂酶的作用下水解,生成甘油和脂肪酸。当用碱水解油脂时,生成甘油和脂肪酸盐。脂肪酸的钠盐和钾盐就是肥皂。因此把油脂的碱水解称为皂化。

使1克油脂完全皂化所需的氢氧化钾的毫克数称为皂化值。根据皂化值的大小可以判断油脂中所含脂肪酸的平均分子量。皂化值越大,平均分子量越小。

式中56是KOH的分子量,因为三酰甘油中含三个脂肪酸,所以乘以3。

肥皂是高级脂肪酸钠(或钾),既含有极性的-COO-Na+基团,易溶于水;又含有非极性的烃基,易溶于脂类,所以肥皂是乳化剂,可是油污分散在水中而被除去。当用含较多钙、镁离子的硬水洗涤时,由于脂肪酸

钠转变为不溶的钙盐或镁盐而沉淀,肥皂的去污能力就大大降低。

(2)加成反应

含不饱和脂肪酸的油脂,分子中的碳-碳双键可以与氢、卤素等进行加成反应。氢化:在高温、高压和金属镍催化下,碳-碳双键与氢发生加成反应,转化为饱和脂肪酸。氢化的结果使液态的油变成半固态的脂,所以常称为“油脂的硬化”。人造黄油的主要成分就是氢化的植物油。某些高级糕点的松脆油也是适当加氢硬化的植物油。棉籽油氢化后形成奶油。油容易酸败,不利于运输,海产的油脂有臭味,氢化也可解决这些问题。

卤化:卤素中的溴、碘可与双键加成,生成饱和的卤化脂,这种作用称为卤化。通常把100克油脂所能吸收的碘的克数称为碘值。碘值大,表示油脂中不饱和脂肪酸含量高,即不饱和程度高。由于碘和碳-碳双键的加成反应较慢,所以在实际测定中,常用溴化碘或氯化碘代替碘,其中的溴或氯原子能使碘活化。碘值大于130的称为干性油,小于100的为非干性油,介于二者之间的称半干性油。

(3)酸败

油脂在空气中放臵过久,会腐败产生难闻的臭味,这种变化称为酸败。酸败是由空气中氧、水分或霉菌的作用而引起的。阳光可加速这个反应。酸败的化学本质是油脂水解放出游离的脂肪酸,不饱和脂肪酸氧化产生过氧

化物,再裂解成小分子的醛或酮。脂肪酸β-氧化时产生短链的β-酮酸,再脱酸也可生成酮类物质。低分子量的脂肪酸(如丁酸)、醛和酮常有刺激性酸臭味。

酸败程度的大小用酸价(酸值)表示。酸价就是中和1克油脂中的游离脂肪酸所需的KOH毫克数。酸价是衡量油脂质量的指标之一。(4)干化

某些油在空气中放臵,表面能生成一层干燥而有韧性的薄膜,这种现象叫做干化。具有这种性质的油称为干性油。一般认为,如果组成油脂的脂肪酸中含有较多的共轭双键,油的干性就好。桐油中含桐油酸(CH3(CH2)3CH=CH-CH=CH-C H=CH-(CH2)7COOH)达79%,是最好的干性油,不但干化快,而且形成的薄膜韧性好,可耐冷、热和潮湿,在工业上有重要价值。

三、蜡

蜡是不溶于水的固体,由高级脂肪酸和长链脂肪族一元醇或固醇构成的酯。

蜡酸如月桂酸(C12)、豆蔻酸(C14)、蜡酸(C26)蜂花酸(C30)等,通式为CH3(CH2)nCOOH。

蜡醇通式为CH3(CH2)nCH2OH,如C16、C30等。

温度较高时,蜡是柔软的固体,温度低时变硬。蜂蜡是软脂酸(C16)和有26-34个碳的蜡醇形成的酯。羊毛脂是脂肪酸和羊毛固醇形成的酯。

第三节复合脂类

复合脂是由简单脂和一些非脂物质如磷酸、含氮碱基等共同组成的。以下介绍磷脂。

一、磷脂的种类

(一)甘油磷脂类

甘油磷脂又称磷酸甘油酯,是磷脂酸的衍生物。甘油磷脂种类繁多,结构通式如下:甘油磷脂中最常见的是卵磷脂和脑磷脂。动物的心、脑、肾、肝、骨髓以及禽蛋的卵黄中,含量都很丰富。大豆磷脂是卵磷脂、脑磷脂和心磷脂等的混合物。

α-卵磷脂分子中与磷脂酸相连的是胆碱,所以称为磷脂酰胆碱。可控制肝脏脂肪代谢,防止脂肪肝的形成。脑磷脂最先是从脑和神经组织中提取出来,所以称为脑磷脂。是磷脂酰乙醇胺。脑磷脂的结构与卵磷脂相似,只是X基不同。与凝血有关。磷脂中的脂肪酸常见的是软脂酸、硬脂酸、油酸以及少量不饱和程度高的脂肪酸。通常α-位的脂肪酸是饱和脂肪酸,β-位的是不饱和脂肪酸。天然磷脂常是含不同脂肪酸的几种磷脂的混合物。

卵磷脂和脑磷脂的性质相似,都不溶于水而溶于有机溶剂,但卵磷脂可溶于乙醇而脑磷脂不溶,故可用乙醇将二者分离。二者的新鲜制品都是无色的蜡状物,有吸水性,在空气中放臵易变为黄色进而变成褐色,这是由于分子中不饱和脂肪酸受氧化所致。卵磷脂和脑磷脂可从动物的新鲜大脑及大豆中提取。

磷脂是兼性离子,有多个可

解离基团。在弱碱下可水解,生成脂肪酸盐,其余部分不水解。在强碱下则水解成脂肪酸、磷酸甘油和有机碱。磷脂中的不饱和脂肪酸在空气中易氧化。

(二)鞘氨醇磷脂

神经鞘磷脂由神经鞘氨醇(简称神经醇)、脂肪酸、磷酸与含氮碱基组成。脂酰基与神经醇的氨基以酰胺键相连,所形成的脂酰鞘氨醇又称神经酰胺;神经醇的伯醇基与磷脂酰胆碱(或磷脂酰乙醇胺)以磷酸酯键相连。在神经鞘磷脂中发现的脂肪酸有软脂酸、硬脂酸、掬焦油酸、神经烯酸(24:1Δ15)等。神经鞘磷脂不溶于丙酮、乙醚,而溶于热乙醇。

自然状态的磷脂都有两条比较柔软的长烃链,因而有脂溶性;而磷脂的另一组分是磷酰化物,它是强亲水性的极性基团,使磷脂可以在水中扩散成胶体,因此具有乳化性质。磷脂能帮助不溶于水的脂类均匀扩散于体内的水溶液体系中。

二、磷脂与生物膜

细胞及细胞器表面覆盖着一层极薄的膜,统称生物膜。生物膜主要由脂类和蛋白质组成,脂类约占40%,蛋白质占60%。不同种类的生物膜中二者比例变化很大,如线粒体内膜只含20-25%的脂类,而有些神经细胞表面的髓磷脂膜含脂类高达75%。构成生物膜的脂类很多,其中最主要的是甘油磷脂类,也有一些糖脂和胆固醇。

生物膜具有及其重要的生物

功能:(1)它具有保护层的作用,是细胞表面的屏障;(2)它是细胞内外环境进行物质交换的通道;能量转换和信息传递也都要通过膜进行。(3)许多酶系与膜相结合,一系列生化反应在膜上进行。生物膜的功能是由它的结构决定的。膜的结构可用液态镶嵌模型表示,其要点为:(1)膜磷脂排列成双分子层,构成膜的基质。双分子层的每一个磷脂分子既规则地排列着,又有转动、摆动和横向流动的自由,处于液晶状态。磷脂双分子层具有流动性、柔韧性、高电阻性和对高极性分子的不通透性。(2)多种蛋白质包埋于基质中,称为膜蛋白。膜蛋白是球蛋白,他们的极性区伸出膜的表面,而非极性区埋藏在膜的疏水的内部。埋藏或贯穿于双分子层者称内在蛋白,附着于双分子层表面的称表在蛋白。

膜中的脂类主要是磷脂、胆固醇和糖脂(动物是糖鞘脂,植物和微生物是甘油酯)。膜是不对称的,膜中的脂和蛋白的分布也是不对称的。如人的红细胞,外层含卵磷脂和糖鞘脂较多,而内层含磷脂酰丝氨酸和磷脂酰乙醇胺较多。两层的电荷、流动性不同,蛋白也不同。这种不对称性由细胞维持。膜的相变温度可达几十度。

第四节非皂化脂

一、萜类

萜类是异戊二烯的衍生物,不含脂肪酸,是非皂化脂。其分类主要根据异戊二烯的数目,由两个构成的称单萜,

4个称二萜,3个叫倍半萜。还有三萜、多萜等。

萜类有线状、环状,有头尾相连,也有尾尾相连。多数线状萜类的双键是反式。

植物中多数萜类具有特殊气味,是植物特有油类的主要成分。如柠檬苦素、薄荷醇、樟脑等。

维生素A、E、K等都属于萜类,视黄醛是二萜。天然橡胶也是多萜。

二、类固醇

类固醇都含有环戊烷多氢菲结构,不能皂化。其中固醇是在核的3位有一个羟基,在17位有一个分支烃链。(一)固醇类

是环状高分子一元醇,分布很广,可游离存在或与脂肪酸成酯。主要有以下三种:动物固醇多以酯的形式存在。胆固醇(Cholesterol)是脊椎动物细胞的重要成分,在神经组织和肾上腺中含量特别丰富,约占脑固体物质的17%。胆石几乎全是由胆固醇构成的。

胆固醇易溶于有机溶剂,不能皂化。其3位羟基可与高级脂肪酸成酯。胆固醇酯是其储存和运输形式,血浆中胆固醇有三分之二被酯化,主要是18:2,ω6胆固醇酯。胆固醇是高等动物生物膜的重要成分,占质膜脂类的20%以上,占细胞器膜的5%。其分子形状与其他膜脂不同,极性头是3位羟基,疏水尾是4个环和3个侧链。它对调节生物膜的流动性有一定意义。温度高时,它能阻止双分子层的无序化;温度低时又可干扰其有序化,

阻止液晶的形成,保持其流动性。

胆固醇还是一些活性物质的前体,类固醇激素、维生素D3、胆汁酸等都是胆固醇的衍生物。维生素D3是由7-脱氢胆固醇经日光中紫外线照射转变而来的。

2.植物固醇是植物细胞的重要成分,不能被动物吸收利用。主要有豆固醇、麦固醇等。

3.酵母固醇存在于酵母菌、真菌中,以麦角固醇最多,经日光照射可转化为维生素D2。

(二)固醇衍生物类

胆汁酸在肝中合成,人的胆汁中有三种胆汁酸:胆酸、脱氧胆酸、鹅脱氧胆酸。胆酸能与甘氨酸或牛磺酸以肽键结合,生成甘氨胆酸或牛磺胆酸,它们的胆苦的主要原因。胆酸与脂肪酸或其他脂类,如胆固醇等成盐。它们是乳化剂,能促进油脂消化。

强心苷和蟾毒它们能使心率降低,强度增加。强心苷来自玄参科及百合科植物,水解后产生糖和苷原,最常见的是洋地黄毒素。蟾毒是蟾蜍分泌的,以酯的形式存在,与前者相似。

性激素和维生素D 见激素和维生素部分。

三、前列腺素

第五节结合脂类

一、糖脂

糖与脂类以糖苷键相连形成的化合物称为糖脂。通常指不包括磷酸的鞘氨醇衍生物,称糖鞘脂类。它分为中

性和酸性两类,分别以脑苷脂和神经节苷脂为代表。

脑苷脂由一个单糖与神经酰胺构成,占脑干重的11%,各种脑苷脂的区别主要在于脂肪酸(二十四碳)不同。其糖基C3位被硫酸酯化后称为脑硫脂类。

神经节苷脂是含唾液酸的糖鞘脂,有多个糖基,又称唾液酸糖鞘脂。其结构复杂,常用缩写表示,以G代表神经节苷脂,M、T、D代表含有唾液酸残基的数目(1、2、3),用阿拉伯数字表示无唾液酸寡糖链的类型。

分,其糖结构突出于质膜表面,与细胞识别和免疫有关。位于神经细胞的还与神经传递有关。

神经节苷脂在脑灰质和胸腺中含量丰富,与神经冲动的传导有关。红细胞表面的神经节苷脂决定血型专一性。某些神经节苷脂是激素(促甲状腺素、绒毛膜促性腺激素等)、毒素(破伤风、霍乱毒素等)和干扰素等的受体。

二、脂蛋白

根据蛋白质组成可分为三类:

(一)核蛋白类

其代表是凝血致活酶,含脂达40-50%(主要是卵磷脂、脑磷脂和神经磷脂),核酸占18%。

(二)磷蛋白类

如卵黄中的脂磷蛋白,含脂18%,溶于盐水,除去脂后就不溶。

(三)单纯蛋白类

主要有水溶性的血浆脂蛋白和脂溶性的脑蛋白脂。

血浆脂蛋白有多种类型,通常用超离心法根据其密度由小到大分为五种:

乳糜微粒(CM)由小肠上皮细胞合成,主要来自食物油脂,颗粒大,使光散射,呈乳浊状,这是用餐后血清浑浊的原因。其比重小,在4℃冰箱过夜时,上浮形成乳白色奶油样层,是临床检验的简易方法。主要生理功能是转运外源油脂。电泳时乳糜微粒留在原点。

极低密度脂蛋白(VLDL) 有肝细胞合成,主要成分也是油脂。当血液流经油脂组织、肝和肌肉等组织的毛细血管时,乳糜微粒和VLDL被毛细血管壁脂蛋白脂酶水解,所以正常人空腹时不易检出乳糜微粒和VLDL。主要生理功能是转运内源油脂,如肝脏中由葡萄糖转化生成的脂类。电泳时称为前β脂蛋白。低密度脂蛋白(LDL) 来自肝脏,富含胆固醇,磷脂。主要生理功能是转运胆固醇和磷脂到肝脏。含量过高易患动脉粥样硬化。电泳时称为β脂蛋白。

高密度脂蛋白(HDL) 来自肝脏,其颗粒最小,脂类主要是磷脂和胆固醇。主要生理功能是转运磷脂和胆固醇。电泳时称为α脂蛋白。可激活脂肪酶,清除胆固醇。

极高密度脂蛋白(VHDL) 由清蛋白和游离脂肪酸构成,前者由肝脏合成,在油脂组织中组成VHDL。主要生理功能是转运游离脂肪酸。

脑蛋白脂从脑组织中分离得到。不溶于水,分为A、B、C三种。

1,脂类的概论、分类及功能。2,脂肪酸的特征:链长、双键的位臵、构型。

3,三脂酰甘油的性质:皂化、酸败、氢化、卤化及乙酰化。4,自然界常见的脂肪酸。5,甘油磷脂的组成、种类、性质。

6,血浆脂蛋白的分类。

7,胆固醇的结构及衍生物。

脂肪酸(fatty acid):是指一端含有一个羧基的长的脂肪族碳氢链。脂肪酸是最简单的一种脂,它是许多更复杂的脂的成分。

饱和脂肪酸(saturated fatty acid):不含有—C=C —双键的脂肪酸。

不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。

必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,Eg亚油酸,亚麻酸。

三脂酰苷油(triacylglycerol):那称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。

磷脂(phospholipid):含有磷酸成分的脂。Eg卵磷脂,脑磷脂。

鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其

是在中枢神经系统的组织内含量丰富。

鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。

卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。

脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。

脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。

生物膜(bioligical membrane):镶嵌有蛋白质的脂双层,起着画分和分隔细胞和细胞器作用生物膜也是与许多能量转化和细胞内通讯有关的重要部位。

内在膜蛋白(integral membrane protein):插入脂双层的疏水核和完全跨越脂双层的膜蛋白。

外周膜蛋白(peripheral membrane protein):通过与膜脂的极性头部或内在的膜蛋白的离子相互作用和形成氢键与膜的内或外表面弱结合的膜蛋白。

流体镶嵌模型(fluid mosaic model):针对生物膜的结构提出的一种模型。在这个模型中,生物膜被描述成镶嵌有蛋白质的流体脂双层,脂双层在结构和功能上都表现出不对称性。有的蛋白质“镶“在脂双层表面,有的则部分或全部嵌入其内部,有的则横跨整个膜。另

2009复旦大学生物化学试题

2009年复旦大学生命科学学院研究生招生试题 一、是非题(对○,错╳;每题1分,共30分) 1.一级氨基酸就是必须氨基酸。(错) 2.热激蛋白(Heat shock protein)只存在于真核生物中。(错) 3.某些微生物能用D型氨基酸合成肽类抗生素。(对)4.SDS能与氨基酸结合但不能与核苷酸结合。(对)5.Sanger的最大贡献是发明了独特的蛋白质N末端标记法。(错,还有测序)6.有机溶剂的电介常数比水小使得静电作用增强而导致蛋白质变性。(对) 7. RNaseP中的RNA组分比蛋白质在分子量和空间上都要大得多。(对) 8.有些生物的结构基因的起始密码子是GTG。(对) 少数细菌(属于原核生物)以GUG(缬氨酸)或UUG为起始密码。 最近研究发现线粒体和叶绿体使用的遗传密码稍有差异,比如线粒体和叶绿体以AUG、AUU、AUA 为起始密码子。 9. Pauling提出了肽键理论。(错,H.E.fischer)10.有证据表明大肠杆菌拥有第21个一级氨基酸的tRNA。(对) 11. 4-羟基脯氨酸是在胶原蛋白被合成后脯氨酸上发生的修饰。(对) 12.米氏方程最早是根据实验数据推导的经验公式。(对) 13.酶反应动力学的特征常数Km是指室温下的测定值。(错) 14.人体皮肤上的黑色素是通过氨基酸合成而来。(对,生物蝶呤和酪氨酸) 15.疏水氨基酸残基也会分布在球蛋白的表面。(对) 16. 红血球上存在大量糖蛋白,是为了防止相互碰撞发生融合。(对,负电性) 17. Edman降解是一种内切蛋白质的化学反应。(错,N端外切)18.P450是肝脏中负责解毒的一群酶,其活性的抑制会导致药物反应。(对) 19.α-amanitin只能抑制真核生物蛋白质的合成。(对)20.SDS是蛋白酶K的激活剂。(错) 21.离子通道蛋白通常以数个α螺旋成束状镶嵌在细胞膜中。(对)22.DTT让T aq DNA聚合酶保持活性是通过将所有二硫键打开来达到的。(错) 23. 脂肪酸生物合成的限速步骤是脂肪酸合成酶复合物催化的反应。(错,生物素羧化酶) 24. 胰岛素是抑制脂肪酶活化(抗脂解)的激素。(对) 25. 核苷酸补救途径的特征是所有核苷酸都可以用现成的碱基合成核苷酸。(错,C) 26. 人脑中的γ-氨基丁酸是由谷氨酸代谢产生的。(对) 27. 激素必须与靶细胞的受体结合才能发挥其生物化学作用。(对) 28. 人类有可能继续发现更多的维生素和具有新作用的现有维生素。(对)

生物化学第3章 脂类的化学

课外练习题 一、名词解释 1、活性脂质; 2、必须多不饱和脂肪酸; 3、脂蛋白; 4、磷脂; 5、鞘磷脂; 二、符号辨识 1、TG; 2、FFA; 3、PL; 4、CM; 5、VLDL; 6、IDL; 7、LDL; 8、HDL; 9、PUFA;10、PC;11、PE;12、PG;13、CL; 三、填空 1、脂类按其化学组成分类分为()、()和(); 2、脂类按其功能分类分为()、()和(); 3、脂肪酸的Δ命名法是指双键位置的碳原子号码从()端向()末端计数; 4、脂肪酸的()命名法是指双键位置的碳原子号码从甲基末端向羧基端计数; 5、天然脂肪酸的双键多为()式构型; 6、必须多不饱和脂肪酸是指人体及哺乳动物虽能制造多种脂肪酸,但不能向脂肪酸引入超过()的双键,因而不能合成()和(),必须由膳食提供。 7、简单三酰甘油的R1=R2=R3,()、()和()等都属于简单三酰甘油; 8、鲛肝醇和鲨肝醇属于()酰基甘油; 9、()是由长链脂肪酸和长链一元醇或固醇形成的酯; 10、复脂是指含有磷酸或糖基的脂类,分为()和()两大类; 11、()是构成生物膜的第一大类膜脂; 12、重要的甘油磷脂有()、()和()等; 13、磷脂酰丝氨酸、脑磷脂和卵磷脂的含氮碱分别是()、()和(),它们可以相互转化; 14、血小板活化因子是一种()甘油磷脂; 15、鞘氨醇磷脂由()、()和()组成; 16、糖脂是指糖通过其半缩醛羟基以()与脂质连接的化合物; 17、鞘糖脂根据糖基是否含有()或硫酸基成分分为()鞘糖脂和()鞘糖脂; 18、最简单的硫苷脂是()脑苷脂;神经节苷脂的糖基部分含有(); 19、萜类是()的衍生物,不含脂肪酸,属简单脂类; 20、类固醇的基本结构骨架是以()为基础构成的甾核; 21、糖脂分为()类和()类。前者主要是()细胞膜的结构和功能物质,后者主要是()的重要结构成分,动物中含量甚微。 22、脂肪酸及由其衍生的脂质的性质与脂肪酸的()和()有密切关系; 23、磷脂是分子中含磷酸的复合脂,包括()和()两大类,是生物膜的重要成分; 24、鞘磷脂是由()、()、()和胆碱或乙醇胺组成的脂质; 25、最常见的固醇是(),主要在肝脏中合成,是()脂质中的一个成分; 26、人体中许多激素、胆汁中的胆酸、昆虫的蜕皮激素、植物中的皂素和强心苷等,都有()的甾体骨架,这些甾体化合物统称为(); 27、脂蛋白是由脂质和蛋白质组成的复合物,脂质和蛋白质之间没有()结合; 28、脂质混合物的分离可根据它们的()差别或在非极性溶剂中的()差别进行; 四、判别正误 1、磷脂的极性头基团在电荷与极性上表现出变化;() 2、高等动植物中的脂肪酸的碳原子数都是偶数;() 3、鞘糖脂的极性头部分是鞘氨醇;() 4、动物细胞中所有的糖脂几乎都是鞘糖脂;() 5、由于胆固醇是两亲性分子,能在水中形成微团;() 6、植物油的必须脂酸含量丰富,所以植物油比动物油营养价值高;()

生物化学笔记(整理版)1

《生物化学》绪论 生物化学可以认为是生命的化学,是研究微生物、植物、动物及人体等的化学组成和生命过程中的化学变化的一门科学。 生命是发展的,生命起源,生物进化,人类起源等,说明生命是在发展,因而人类对生命化学的认识也在发展之中。 20世纪中叶直到80年代,生物化学领域中主要的事件: (一)生物化学研究方法的改进 a. 分配色谱法的创立——快捷、经济的分析技术由Martin.Synge创立。 b. Tisellius用电泳方法分离血清中化学构造相似的蛋白质成分。吸附层析法分离蛋白质及其他物质。 c. Svedberg第一台超离心机,测定了高度复杂的蛋白质。 d. 荧光分析法,同位素示踪,电子显微镜的应用,生物化学的分离、纯化、鉴定的方法向微量、快速、精确、简便、自动化的方向发展。 (二)物理学家、化学家、遗传学家参加到生命化学领域中来 1. Kendrew——物理学家,测定了肌红蛋白的结构。 2. Perutz——对血红蛋白结构进行了X-射线衍射分析。 3. Pauling——化学家,氢键在蛋白质结构中以及大分子间相互作用的重要性,认为某些protein具有类似的螺旋结构,镰刀形红细胞贫血症。 (1.2.3.都是诺贝尔获奖者) 4.Sanger―― 生物化学家 1955年确定了牛胰岛素的结构,获1958年Nobel prize化学奖。1980年设计出一种测定DNA内核苷酸排列顺序的方法,获1980年诺贝尔化学奖。 5.Berg―― 研究DNA重组技术,育成含有哺乳动物激素基因的菌株。 6.Mc clintock―― 遗传学家发现可移动的遗传成分,获1958年诺贝尔生理奖。 7.Krebs―― 生物化学家 1937年发现三羧酸循环,对细胞代谢及分生物的研究作出重要贡献,获1953年诺贝尔生理学或医学奖。 8.Lipmann―― 发现了辅酶A。 9. Ochoa——发现了细菌内的多核苷酸磷酸化酶 10.Korberg——生物化学家,发现DNA分子在细菌内及试管内的复制方式。(9.10.获1959年的诺贝尔生理医学奖) 11.Avery―― 加拿大细菌学家与美国生物学家Macleod,Carty1944年美国纽约洛克菲勒研究所著名实验。肺炎球菌会产生荚膜,其成分为多糖,若将具荚膜的肺炎球菌(光滑型)制成无细胞的物质,与活的无荚膜的肺炎球菌(粗糙型)细胞混合 ->粗糙型细胞也具有与之混合的光滑型的荚膜->表明,引起这种遗传的物质是DNA 1 / 29

2018年复旦大学基础医学院生物化学与分子生物学 [071010]考试科目、参考书目、复习经验

2018年复旦大学基础医学院生物化学与分子生物学 [071010]考 试科目、参考书目、复习经验 一、招生信息 所属学院:基础医学院 所属门类代码、名称:理学[07] 所属一级学科代码、名称:生物学[0710] 二、研究方向 10 (全日制)脂肪细胞的分化机制 11 (全日制)生物技术药物研制 12 (全日制)棕色脂肪代谢和代谢性疾病防治 13 (全日制)血小板激活机制与抗血小板药物 14 (全日制)糖生物学 15 (全日制)真核细胞的基因调控 16 (全日制)天然活性小分子药物的分子机制研究以及新药筛选 17 (全日制)肿瘤细胞迁移的机制 18 (全日制)出生缺陷的病因及治疗靶点 19 (全日制)肿瘤糖生物学 20 (全日制)肿瘤代谢 21 (全日制)肿瘤微环境和代谢调控 三、考试科目 ①101思想政治理论②201英语一③758细胞生物学(一)④911生物化学(二) 四、复习指导 一、参考书的阅读方法 (1)目录法:先通读各本参考书的目录,对于知识体系有着初步了解,了解书的内在逻辑结构,然后再去深入研读书的内容。

(2)体系法:为自己所学的知识建立起框架,否则知识内容浩繁,容易遗忘,最好能够闭上眼睛的时候,眼前出现完整的知识体系。 (3)问题法:将自己所学的知识总结成问题写出来,每章的主标题和副标题都是很好的出题素材。尽可能把所有的知识要点都能够整理成问题。 二、学习笔记的整理方法 (1)第一遍学习教材的时候,做笔记主要是归纳主要内容,最好可以整理出知识框架记到笔记本上,同时记下重要知识点,如假设条件,公式,结论,缺陷等。记笔记的过程可以强迫自己对所学内容进行整理,并用自己的语言表达出来,有效地加深印象。第一遍学习记笔记的工作量较大可能影响复习进度,但是切记第一遍学习要夯实基础,不能一味地追求速度。第一遍要以稳、细为主,而记笔记能够帮助考生有效地达到以上两个要求。并且在后期逐步脱离教材以后,笔记是一个很方便携带的知识宝典,可以方便随时查阅相关的知识点。 (2)第一遍的学习笔记和书本知识比较相近,且以基本知识点为主。第二遍学习的时候可以结合第一遍的笔记查漏补缺,记下自己生疏的或者是任何觉得重要的知识点。再到后期做题的时候注意记下典型题目和错题。 (3)做笔记要注意分类和编排,便于查询。可以在不同的阶段使用大小合适的不同的笔记本。也可以使用统一的笔记本但是要注意各项内容不要混杂在以前,不利于以后的查阅。同时注意编好页码等序号。另外注意每隔一定时间对于在此期间自己所做的笔记进行相应的复印备份,以防原件丢失。统一的参考书书店可以买到,但是笔记是独一无二的,笔记是整个复习过程的心血所得,一定要好好保管。

生物化学试题及其参考答案脂类

一、填空题 1.在所有细胞中乙酰基的主要载体是辅酶A(-CoA) ,ACP是酰基载体蛋白,它在体内的作用是以脂酰基载体的形式,作脂肪酸合成酶系的核心。 2.脂肪酸在线粒体内降解的第一步反应是脂酰辅酶A 脱氢,该反应的载氢体是FAD 。 3.发芽油料种子中,脂肪酸要转化为葡萄糖,这个过程要涉及到三羧酸循环,乙醛酸循环,糖降解逆反应,也涉及到细胞质,线粒体,乙醛酸循环体,将反应途径与细胞部位配套并按反应顺序排序为 b. 三羧酸循环细胞质 a. 乙醛酸循环线粒体c. 糖酵解逆反应乙醛酸循环体。 4.脂肪酸b—氧化中有三种中间产物:甲、羟脂酰-CoA; 乙、烯脂酰-CoA 丙、酮脂酰- CoA,按反应顺序排序为乙;甲;丙。 5.脂肪是动物和许多植物的主要能量贮存形式,是由甘油与3分子脂肪酸脂化而成的。6.三脂酰甘油是由3-磷酸甘油和脂酰-CoA 在磷酸甘油转酰酶作用下,先生成磷脂酸再由磷酸酶转变成二脂酰甘油,最后在二脂酰甘油转酰基酶催化下生成三脂酰甘油。 7.每分子脂肪酸被活化为脂酰-CoA需消耗 2 个高能磷酸键。 8.一分子脂酰-CoA经一次b-氧化可生成1个乙酰辅酶A 和比原来少两个碳原子的脂酰-CoA。 9.一分子14碳长链脂酰-CoA可经 6 次b-氧化生成7个乙酰-CoA, 6 个NADH+H+,6 个FADH2 。10.真核细胞中,不饱和脂肪酸都是通过氧化脱氢途径合成的。 11.脂肪酸的合成,需原料乙酰辅酶A 、NADPH 、和ATP、HCO3-等。 12.脂肪酸合成过程中,乙酰-CoA来源于葡萄糖分解或脂肪酸氧化,NADPH主要来源于磷酸戊糖途径。 13.乙醛酸循环中的两个关键酶是苹果酸合成酶和异柠檬酸裂解酶,使异柠檬酸避免了在三羧酸循环中的两次脱酸反应,实现了以乙酰-CoA合成三羧酸循环的中间物。 14.脂肪酸合成酶复合体I一般只合成软脂酸,碳链延长由线粒体或内质网酶系统催化,植物Ⅱ型脂肪酸碳链延长的酶系定位于细胞质。 15.脂肪酸b-氧化是在线粒体中进行的,氧化时第一次脱氢的受氢体是FAD ,第二次脱氢的受氢 体NAD+。 二、选择题 1.D 2.D 3.C 4.C 5.C 6.C 7.D 8.C 9.A 10.B 1.脂肪酸合成酶复合物I释放的终产物通常是:D A、油酸 B、亚麻油酸 C、硬脂酸 D、软脂酸 2.下列关于脂肪酸从头合成的叙述错误的一项是:D A、利用乙酰-CoA作为起始复合物 B、仅生成短于或等于16碳原子的脂肪酸 C、需要中间产物丙二酸单酰CoA D、主要在线粒体内进行 3.脂酰-CoA的b-氧化过程顺序是:C A、脱氢,加水,再脱氢,加水 B、脱氢,脱水,再脱氢,硫解 C、脱氢,加水,再脱氢,硫解 D、水合,脱氢,再加水,硫解 4.缺乏维生素B2时,b-氧化过程中哪一个中间产物合成受到障碍C A、脂酰-CoA B、b-酮脂酰-CoA

复旦大学生物化学考研试题

复旦大学2000年硕士研究生入学生物化学考试试题 一.是非题(共30分) 1.天然蛋白质中只含19种L—型氨基酸和无L/D—型之分的甘氨酸达20种氨基酸的残基。( ) 2.胶原蛋白质由三条左旋螺旋形成的右旋螺旋,其螺旋周期为67nm。 ( ) 3.双链DNA分子中GC含量越高,Tm值就越大。( ) 4.。—螺旋中Glu出现的概率最高,因此poly(Glu)可以形成最稳定的。—螺旋。( ) 5.同一种辅酶与酶蛋白之间可有共价和非共价两种不同类型的结合方式。 ’ ( ) 6.在蛋白质的分子进化中二硫键的位置得到了很好的保留。( ) 7.DNA双螺旋分子的变性定义为紫外吸收的增加。( ) 8.有机溶剂沉淀蛋白质时,介电常数的增加是离子间的静电作用的减弱而致。( ) 9.RNA由于比DNA多了一个羟基,因此就能自我催化发生降解。( ) 10.RNA因在核苷卜多一个辑基而拥有多彩的二级结构。( ) 11.限制性内切酶特指核酸碱基序列专一性水解酶。( ) 12.pH8条件下,蛋白质与SDS充分结合后平均每个氨基酸所带电荷约为0.5个负电荷。( ) 13.蛋白质的水解反应为一级酶反应。( ) 14.蛋白质变性主要由于氢键的破坏,这一概念是由Anfinsen提出来的。 ( ) 15.膜蛋白的二级结构均为。—螺旋。( ) 16.糖对于生物体来说,所起的作用就是作为能量物质和结构物质。( ) 17.天然葡萄糖只能以一种构型存在,因此也只有一种旋光度。( ) 18.人类的必需脂肪酸是十六碳的各级不饱和脂肪酸。( ) 19.膜的脂质·由甘油脂类和鞘脂类两大类脂质所组成。’( ):20.维生素除主要由食物摄取外,人类自身也可以合成一定种类和数量的维生素。( );21.激素是人体自身分泌的一直存在于人体内的一类调节代谢的微量有机物。’( ) 22.甲状腺素能够提高BMR的机理是通过促进氧化磷酸化实现的。( ) 23.呼吸作用中的磷氧比(P/O)是指一个电子通过呼吸链传递到氧所产生ATP的个数。( ) 24.人体正常代谢过程中,糖可以转变为脂类,脂类也可以转变为糖。( ) 25.D—氨基酸氧化酶在生物体内的分布很广,可以催化氨基酸的氧化脱氨。 ·( ) 26.人体内所有糖分解代谢的中间产物都可以成为糖原异生的前体物质。 ( ) 27.人体HDL的增加对于防止动脉粥样硬化有一定的作用。( ) 28.胆固醇结石是由于胆固醇在胆囊中含量过多而引起的结晶结石。( ) 29.哺乳动物可以分解嘌呤碱为尿素排出体外。( ) 30.THFA所携带的一碳单位在核苷酸的生物合成中只发生于全程途径。 ( ) 二、填空题(共40分)

生物化学脂质代谢知识点总结

第七章脂质代谢 第一节脂质的构成、功能及分析 脂质的分类 脂质可分为脂肪和类脂,脂肪就是甘油三脂,类脂包括胆固醇及其脂、磷脂和糖脂。 脂质具有多种生物功能 1.甘油三脂机体重要的能源物质 2.脂肪酸提供必需脂肪酸合成不饱和脂肪酸衍生物 3.磷脂构成生物膜的重要组成成分磷脂酰肌醇是第二信使前体 4.胆固醇细胞膜的基本结构成分 可转化为一些有重要功能的固醇类化合物 第二节脂质的消化吸收 条件:1,乳化剂(胆汁酸盐、甘油一酯、甘油二酯等)的乳化作用; 2,酶的催化作用 位置:主要在小肠上段

第三节甘油三脂代谢 甘油三脂的合成 1.合成的部位:肝脏(主要),脂肪组织,小肠粘膜 2.合成的原料:甘油,脂肪酸 3.合成途径:甘油一脂途径(小肠粘膜细胞) 甘油二脂途径(肝,脂肪细胞)

注:3-磷酸甘油主要来源于糖代谢,部肝、肾等组织摄取游离甘油,在甘油激酶的作用下可合成部分。 内源性脂肪酸的合成: 1.场所:细胞胞质中,肝的活性最强,还包括肾、脑、肺、脂肪等 2.原料:乙酰COA,ATP,NADPH,HCO??,Mn离子 3.乙酰COA出线粒体的过程:

4.反应步骤 ①丙二酸单酰COA的合成: ②合成软脂酸:

③软脂酸延长在内质网和线粒体内进行: 脂肪酸碳链在内质网中的延长:以丙二酸单酰CoA为二碳单位供体 脂肪酸碳链在线粒体中的延长:以乙酰CoA为二碳单位供体 脂肪酸合成的调节: ①代谢物的调节作用: 1.乙酰CoA羧化酶的别构调节物。 抑制剂:软脂酰CoA及其他长链脂酰CoA 激活剂:柠檬酸、异柠檬酸 糖代谢增强,相应的NADPH及乙酰CoA供应增多,异柠檬酸及柠檬酸堆积,有利于脂酸的合成。 ②激素调节: 甘油三脂的氧化分解: ①甘油三酯的初步分解: 1.脂肪动员:指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。 2.关键酶:激素敏感性甘油三脂脂肪酶(HSL)

生物化学重点笔记(整理版)

教学目标: 1.掌握蛋白质的概念、重要性和分子组成。 2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。 3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。 4.了解蛋白质结构与功能间的关系。 5.熟悉蛋白质的重要性质和分类 导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性? 1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。 蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。 单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。生物的运动、生物体的防御体系离不开蛋白质。蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。 第一节蛋白质的分子组成 一、蛋白质的元素组成 经元素分析,主要有C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。 各种蛋白质的含氮量很接近,平均为16%。因此,可以用定氮法来推算样品中蛋白质的大致含量。 每克样品含氮克数×6.25×100=100g样品中蛋白质含量(g%) 二、蛋白质的基本组成单位——氨基酸 蛋白质在酸、碱或蛋白酶的作用下,最终水解为游离氨基酸(amino acid),即蛋白质组成单体或构件分子。存在于自然界中的氨基酸有300余种,但合成蛋白质的氨基酸仅20种(称编码氨基酸),最先发现的是天门冬氨酸(1806年),最后鉴定的是苏氨酸(1938年)。 (一)氨基酸的结构通式 组成蛋白质的20种氨基酸有共同的结构特点: 1.氨基连接在α- C上,属于α-氨基酸(脯氨酸为α-亚氨基酸)。 2.R是側链,除甘氨酸外都含手性C,有D-型和L-型两种立体异构体。天然蛋白质中的氨基酸都是L-型。 注意:构型是指分子中各原子的特定空间排布,其变化要求共价键的断裂和重新形成。旋光性是异构体的光学活性,是使偏振光平面向左或向右旋转的性质,(-)表示左旋,(+)表示右旋。构型与旋光性没有直接对应关系。 (二)氨基酸的分类 1.按R基的化学结构分为脂肪族、芳香族、杂环、杂环亚氨基酸四类。 2.按R基的极性和在中性溶液的解离状态分为非极性氨基酸、极性不带电荷、极性带负电荷或带正电荷的四类。 带有非极性R(烃基、甲硫基、吲哚环等,共9种):甘(Gly)、丙(Ala)、缬(Val)、亮(Leu)、异亮(Ile)、苯丙(Phe)、甲硫(Met)、脯(Pro)、色(Trp) 带有不可解离的极性R(羟基、巯基、酰胺基等,共6种):丝(Ser)、苏(Thr)、天胺(Asn)、谷胺(Gln)、酪(Tyr)、半(Cys)带有可解离的极性R基(共5种):天(Asp)、谷(Glu)、赖(Lys)、精(Arg)、组(His),前两个为酸性氨基酸,后三个是碱性氨基酸。 蛋白质分子中的胱氨酸是两个半胱氨酸脱氢后以二硫键结合而成,胶原蛋白中的羟脯氨酸、羟赖氨酸,凝血酶原中的羧基谷氨酸是蛋白质加工修饰而成。 (三)氨基酸的重要理化性质 1.一般物理性质 α-氨基酸为无色晶体,熔点一般在200 oC以上。各种氨基酸在水中的溶解度差别很大(酪氨酸不溶于水)。一般溶解于稀酸或稀碱,

生物化学脂类代谢习题答案

脂类代 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体; ②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成2.5mol、1.5mol的ATP,因

此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5。 4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

生物化学笔记(完整版)

第一章绪论 一、生物化学的的概念: 生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。 二、生物化学的发展: 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。 第二章蛋白质的结构与功能 一、氨基酸: 1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。 2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。 二、肽键与肽链: 肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO -NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。 三、肽键平面(肽单位): 肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。 四、蛋白质的分子结构:

生物化学脂类代谢

掌握内容: 必需脂酸的概念及种类: 人体需要但又不能合成,必须从食物中获取的脂酸。人体必需的脂酸是亚油酸,亚麻酸,花生四烯酸。 脂肪动员: 概念及过程:储存于脂肪细胞中的甘油三酯,在三种脂肪酶的作用下逐步水解为游离脂酸和甘油,释放入血供其他组织氧化利用的过程,称脂肪动员。甘油三酯脂肪酶是脂肪动员的限速酶。(过程PPT29、30) 激素敏感性脂肪酶的定义和作用: 甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激素调节故称激素敏感性脂肪酶 脂解激素:增加脂肪动员限速酶活性,促进脂肪动员活性的激素。(肾上腺素、去甲状腺激素、胰高血糖素、促肾上腺皮质激素、促甲状腺激素 抗脂解激素:抑制脂肪动员,(胰岛素,前列腺素E2,烟酸) 甘油的代谢甘油的主要去路: *经糖异生转变为葡萄糖 *氧化分解为水、二氧化碳、提供能量 *参与TG和磷脂的合成 甘油→3-磷酸甘油→磷酸二羟丙酮→氧化分解,供能 ↓↓

合成磷脂和TG 糖异生 脂酸的氧化分解 概念:脂酸在胞液中活化成脂酰辅酶A,在肉碱的帮助下进入线粒体基质进行β--氧化,每次β--氧化可产生1MOL乙酰辅酶A和比原来少两个碳原子的脂酰辅酶A,偶数碳脂酸最终产生乙酰辅酶A,奇数碳脂酸除乙酰辅酶A外还有1MOL 丙酰辅酶A. 部位:肝、肌肉(脑和成熟红细胞不行) 反应阶段:1)脂酸的活化(胞液) 2)脂酰辅酶A进入线粒体 3)脂酰COA的β--氧化(线粒体) 过程及酶;

有关能量的计算:脂酰COA+7FAD+7NAD++7COA-SH+7H2O→8乙酰COA+7FADH2+7(NADH+H+) 1)软脂酸(16C饱和脂酸的)活化—2ATP 2)7次β--氧化4*7ATP 3)8乙酰COA进入TCA循环彻底氧化10*8ATP 净生成106ATP 脂酰辅酶Aβ--氧化小结 部位:线粒体 四部连续反应:脱氢、加水、再脱氢、硫解

复旦大学生物化学笔记完整版

复旦大学生物化学笔记完整版 第一篇生物大分子的结构与功能 第一章氨基酸和蛋白质 一、组成蛋白质的20种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 1、两性解离及等电点 氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 3、茚三酮反应 氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质还包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。

考研生物化学复习笔记

第一篇生物大分子的结构与功能 第一章氨基酸和蛋白质 一、组成蛋白质的20种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 1、两性解离及等电点 氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波 长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 3、茚三酮反应 氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素 称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽(GSH ):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质还包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。 1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架

生物化学脂类代谢习题答案

脂类代谢 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化与脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体;②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA; ③二碳片段的加入与裂解方式:合成就是以丙二酰ACP加入二碳片段,氧化的裂解方式就是乙酰CoA;④电子供体或受体:合成的供体就是NADPH,氧化的受体就是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成就是柠檬酸转运系统,氧化就是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2与H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+与1molFADH2 分别生成2、5mol、1、5mol的ATP,

因此,1mol甘油彻底氧化成CO2与H2O生成ATP摩尔数为6×2、5+1×1、5+3-1=18、5。 4、1mol硬脂酸(即18碳饱与脂肪酸)彻底氧化成CO2与H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体内可转变成哪些重要物质?合成胆固醇的基本原料与关键酶各就是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

第三章 脂类生物化学习题

中国海洋大学海洋生命学院
生物化学习题
2007 年
第三章 脂类生物化学
一、选择题 ⒈ 关于甘油磷脂的叙述错误的为( ) A、在 pH7 时卵磷脂和脑磷脂以兼性离子状态存在;B、用弱碱水解甘油磷脂可生成脂肪酸盐; C、甘油磷脂可用丙酮提取;D、将甘油磷脂置于水中,可形成微团结构;E、甘油磷脂与鞘磷 脂的主要差别在于所含醇基不同 ⒉ 关于油脂的化学性质的叙述错误的为( )
A、油脂的皂化值大时说明所含脂肪酸分子小;B、酸值低的油脂其质量也差;C、向油脂中加 入抗氧化剂是为了除去分子氧;D、油脂的乙酰化值大时,其分子中所含的羟基也多;E、氢化 作用可防止油脂的酸败 ⒊ 关于固醇类的叙述错误的是( )
A、人体内存在的胆石是由胆固醇形成的;B、胆固醇可在人体合成也可从食物中摄取;C、在 紫外线作用下,胆固醇可转变为维生素 D2;D、人体不能利用豆类中的豆固醇和麦类中的麦固 醇 E、羊毛脂是脂肪酸和羊毛固醇形成的酯 ⒋ 神经节苷脂是一种( ⒌ 前列腺素是一种( ) ) )类型的物质
A、脂蛋白;B、糖蛋白;C、糖脂;D、磷脂
A、多肽激素;B、寡聚糖;C、环羟脂酸;D、氨基酸 ⒍ 下列关于甘油三酯的叙述,哪一个是正确的(
A、甘油三酯是一分子甘油和三分子脂肪酸所形成的酯;B、任何一个甘油三酯分子总是包含三 个相同的脂酰基;C、在室温下甘油三酯可以是固体也可以是液体;D、甘油三酯可以制造肥皂; E、甘油三酯在氯仿中是可溶的。 ⒎ 脂肪的碱水解称为( ⒏ 下列哪个是脂酸( ) ) )
A、酯化;B、还原;C、皂化;D、氧化;E、水解
A、顺丁烯二酸;B、亚油酸;C、苹果酸;D、琥珀酸;E、柠檬酸 ⒐ 下列那种叙述是正确的?(
A、所有的磷脂分子中都含有甘油基;B、脂肪和胆固醇分子中都含有脂酰基;C、中性脂肪水 解后变成脂酸和甘油;D、胆固醇酯水解后变成胆固醇和氨基糖;E、碳链越长,脂肪酸越易溶 解于水。 ⒑ 乳糜微粒、中间密度脂蛋白(IDL) 、低密度脂蛋白(LDL)和极低密度脂蛋白(VLDL)都是血 清脂蛋白,这些颗粒按密度从低到高排列,正确的次序是( )
A、LDL、IDL、VLDL、乳糜微粒;B、乳糜微粒、VLDL、LDL、 IDL;C、VLDL、IDL、LDL、 乳糜微粒;D、乳糜微粒、VLDL、LDL、IDL;E、LDL、VLDL,IDL,乳糜微粒 ⒒ 生物膜的主要成分是脂和蛋白质,他们主要通过( 二、判断是非 ⒈ 在动物组织中大部分脂肪酸以结合形式存在。
-1-
)键相连。
A、共价键;B、二硫键;C、氢键;D、离子键;E、疏水作用

生物化学笔记(整理版)7

第六章维生素的机构与功能 1.概念 Vitamin 是维持生民正常生命过程所必需的一类有机物质,所需是很少,但对维持健康十分重要。其不能供给有机体热能,也不能作为构成组织的物质。功用--通过作为辅酶的成分调节由机体代谢。 如长期缺乏,会导致疾病,人体不能合成。必须从食物中摄取。所以要注意膳食平衡。 溶解度:a. 脂溶性维生素:溶于脂肪:A. D. E. K. b. 水溶性维生素:溶于水:B. C. 3.发现: a. 古代孙思邈动物肝--夜盲症谷皮汤--脚气病 b. 荷兰医生艾克曼米壳"保护因素"--神经类 c. 英国霍普金斯正常膳食处蛋白、脂类、糖类、还有必需的食物辅助因素 (Vitamin) d .美国化学学家门德尔和奥斯本发现:脂溶性vit A 水溶性Vit B 4. Vit 所具有的共同点: ①对维持生命有机体的正常生长、发育、繁殖是必需的,他们分比是某种 酶的辅酶、辅机的组分。 ②集体对他们的需要是微量的,但供应不足时,将出现代谢障碍和临床症 状。 ③集体不能合成它们,和合成两不足时,必须由外界摄取。

表3-1 重要维生素的来源、及缺乏症

第二节 Vit A 和胡萝卜素 A1--Vit A 视黄醇:﹤ A2 Vit A--存在于动物性食物中,鱼肝油含量较多 Vit A1--咸水鱼肝脏 A1动物性食物中含VitA原--β-胡萝卜素 Vit A2--淡水鱼肝脏植物性食物中不含VitA,仅含β-胡萝卜素 Vit A1、A2皆为含β-白芷酮环的不饱和一元醇分子中环的支链为两个2-甲基丁二烯和一个醇基所组成,位于支链为C9的不饱和醇。 Vit A2 是Vit A1 的3-脱氢衍生物。 区别:VitA2 在白芷酮环内C-3、C-4之间多一个双键

生物化学脂类代谢习题答案

生物化学脂类代谢习题 答案 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

脂类代谢 一、问答题 1、为什么摄入糖量过多容易长胖 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体;②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+

和1molFADH2 分别生成、的ATP,因此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×+1×+3-1=。 4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体内可转变成哪些重要物质合成胆固醇的基本原料和关键酶各是什么 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高 答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬

相关文档
最新文档