脉冲宽度调制
什么是脉冲宽度调制及其在电路中的应用
![什么是脉冲宽度调制及其在电路中的应用](https://img.taocdn.com/s3/m/75a2756fe3bd960590c69ec3d5bbfd0a7956d5c1.png)
什么是脉冲宽度调制及其在电路中的应用脉冲宽度调制(Pulse Width Modulation,简称PWM)是一种调制方式,通过控制脉冲信号的宽度来实现信号的调制。
在电路中,PWM 广泛应用于调光、电机速度控制、音频放大等领域。
本文将详细介绍PWM的原理及其在电路中的应用。
一、PWM原理脉冲宽度调制的原理是利用周期为固定值的脉冲信号来表示模拟信号的幅度大小。
它的关键在于调制器,通过控制调制器输出脉冲的宽度,从而实现对模拟信号的调制。
在PWM信号中,脉冲的宽度代表了信号的幅度,宽度越大表示幅度越高,宽度越小表示幅度越低。
通常,PWM信号的周期是固定的,脉冲的宽度则根据输入模拟信号进行动态调整。
二、PWM在电路中的应用1. 调光控制PWM在LED调光控制中得到了广泛的应用。
通过控制PWM信号的频率和占空比(脉冲高电平与周期之比),可以实现对LED的亮度调节。
当占空比为100%时,LED处于全亮状态;当占空比为0%时,LED关闭。
2. 电机速度控制PWM可以用于电机的速度控制。
通过控制PWM信号的占空比,可以控制电机的平均输出功率,从而调节电机的转速。
一般情况下,占空比越大,电机转速越高;占空比越小,电机转速越低。
3. 音频放大PWM还可以用于音频放大电路中。
通过将音频信号转换为PWM 信号,再通过滤波电路将其转换为模拟信号,可以实现音频的放大。
PWM音频放大具有高效率和低失真的优点,因此在功率放大器中得到了广泛的应用。
4. 电源控制PWM可以用于电源控制电路中,通过控制PWM信号的占空比来调节输出电压的大小。
这种方式在开关电源中特别常见,可以实现高效率的能量转换,并具备较好的稳定性和响应速度。
5. 无线通信PWM在无线通信系统中也有一定的应用。
在数模转换和调制过程中,会使用PWM信号对模拟信号进行抽样和调制,转换成数字信号后再通过调制器进行数据传输。
三、总结脉冲宽度调制是一种通过控制脉冲信号的宽度来实现信号调制的方法。
脉宽调制原理
![脉宽调制原理](https://img.taocdn.com/s3/m/8b5e9f4bf02d2af90242a8956bec0975f465a4b7.png)
脉宽调制原理
脉宽调制(Pulse Width Modulation,PWM)是一种常用的调
制技术,通常应用于电子电路中。
脉宽调制的原理是通过改变信号的脉冲宽度来控制电路输出的电平。
脉宽调制一般使用方波信号来进行调制,通过调整方波的高电平时间和低电平时间的比例,来实现对输出电平的控制。
在脉宽调制中,通常有一个固定的载波频率,称为调制频率。
通过控制脉冲的宽度,即高电平时间,来决定输出信号的电平。
当脉冲宽度较窄时,即高电平时间较短,输出信号的电平较低;当脉冲宽度较宽时,即高电平时间较长,输出信号的电平较高。
脉宽调制常用于控制电器设备的功率输出,如直流电机的速度调节、音频信号的放大等。
它可以通过自动控制电路实现动态调节,使得输出信号在一定的范围内连续变化。
脉宽调制技术在工程实践中应用广泛,具有调节灵活、精度高、输出功率大等特点。
同时,它也具有一定的噪声特性,需要在工程设计中充分考虑,采取适当的滤波措施以提高输出信号的质量。
总而言之,脉宽调制是一种基于脉冲宽度调节的技术,通过控制脉冲的宽度来控制输出信号的电平,广泛应用于电子电路中。
脉冲宽度调制
![脉冲宽度调制](https://img.taocdn.com/s3/m/69c15bc3240c844769eaeeb0.png)
脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。
通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。
PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。
电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。
通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。
只要带宽足够,任何模拟值都可以使用PWM进行编码。
PWM之所以要配置这么多的寄存器是(表中只有少部分不用配置),应因为基本上是定时器不仅有PWM输出还有间隔定时器、方波输出、外部事件计数器、分频器、输入脉冲间隔测量、输入信号的高/低电平宽度的测量、延迟计数器、单触发脉冲输出功能。
首先配置PER0中的TAU0EN为1,允许输入时钟的供应。
再用TPS0来分频得到CK01、CK00这两个时钟(在选择的通道0和通道1是的时钟时可以选择一个时钟作为两个时钟,当然也可以一个通道一个时钟)。
接下来是控制定时器单元启停的TE0、TS0、TT0,其中TE0也就是说在这里我们不用配置。
TS0和TSH0寄存器是触发寄存器,用于初始化定时器/计数器寄存器0n (TCR0n)并开始各通道的计数操作。
(启用)TT0和TTH0寄存器为用于停止各通道的计数操作的触发寄存器。
(停用)接下来是控制输出寄存器TOE0、TO0、TOL0、TOM0,其中TOE0寄存器用于允许或禁止各通道的定时器输出。
TO0寄存器是各通道的定时器输出的缓冲器寄存器。
TOL0寄存器是用于控制各通道定时器输出电平的寄存器。
TOM0寄存器用于控制各通道的定时器输出模式。
(这里我们选择TOM0的TOM01为1:从属通道输出模式)接下来是TMR0xH和TMR0xL。
TMR0n寄存器包括两个8位寄存器,用于设置通道n的操作模式。
该寄存器用于选择工作时钟(fMCK),选择计数时钟,选择主/从属,选择16位或8位定时器(仅限通道1),设置开始触发和捕捉触发,选择定时器输入的有效边沿,以及设置操作模式(间隔、捕捉、事件计数器、单计数、或者捕捉&单计数)最后是TDR0xH和TDR0xL,其中初值和空占比都是由此设置。
脉冲电路PWM调制PPT课件
![脉冲电路PWM调制PPT课件](https://img.taocdn.com/s3/m/7b8545f21b37f111f18583d049649b6649d70965.png)
脉冲宽度
指高电平持续的时间,通常用占空比表示,即脉冲宽度与周期的比 值。
PWM调制的基本原理
通过改变脉冲宽度来等效改变输出电压或电流的大小。
PWM信号的生成原理
采样控制理论
PWM信号的生成基于采样控制理论,通过对输入信号进行采样,并根据采样结果生成相 应的PWM信号。
电流模式控制PWM调制是通过检测输出电流的占空比来实现对输出电流的控制。
电流模式控制PWM调制具有电流响应速度快、控制精度高等优点,因此在许多应用 中得到广泛应用。
电流模式控制PWM调制的主要缺点是可能会产生较大的输出电流纹波。
电压和电流模式比较
电压模式控制PWM调制和电流模式控制PWM调制各有优缺点,具体选择哪种方式要根据 实际应用需求来决定。
PWM调制技术在能源转换、电机控制、通 信等领域具有广泛的应用前景,随着技术 的不断成熟,其应用领域将进一步拓展。
经济价值
社会效益
PWM调制技术的推广应用将带来显著的经 济效益,有助于推动相关产业的发展和经 济增长。
PWM调制技术的节能减排效果明显,对于 应对全球气候变化、推动可持续发展具有 重要意义。
04 PWM调制在脉冲电路中 的优势与挑战
PWM调制在脉冲电路中的优势
高效能
PWM调制能够有效地控 制脉冲宽度,从而提高 脉冲电路的能量效率。
灵活性高
PWM调制允许在单个脉 冲中实现多个级别的电 压或电流,从而提供更
大的灵活性。
易于实现
PWM调制可以通过简单 的数字或模拟电路实现, 降低了设计和实现的复
线性度
PWM信号的线性度取决于采样电 路和PWM生成电路的设计,高质 量的PWM信号应具有良好的线性
12bit脉冲宽度调制 -回复
![12bit脉冲宽度调制 -回复](https://img.taocdn.com/s3/m/59c0d03a178884868762caaedd3383c4ba4cb44c.png)
12bit脉冲宽度调制-回复12-bit脉冲宽度调制(PWM)是一种数字信号调制技术,用于控制电子设备中的电压和功率输出。
它通过调整脉冲的宽度来控制输出信号的平均值,从而实现对设备的精确控制。
本文将详细介绍12-bit PWM的原理、应用和优势等方面。
第一部分:12-bit PWM的原理和工作方式12-bit PWM是通过对脉冲的宽度进行调整,以模拟连续的电压或功率输出。
脉冲的宽度由一个12位的数字值决定,从而提供了4096种不同的输出级别。
PWM信号的频率通常是固定的,而宽度则可以根据需要进行调整。
在12-bit PWM中,每个周期分为12个等分,每个等分对应一个二进制数。
根据所需输出级别的数字值,可以选择一段时间内脉冲为高电平(通常表示为逻辑"1")的时间,而其余时间脉冲为低电平(通常表示为逻辑"0")。
通过控制脉冲的高电平时间来调整输出电压或功率的平均值。
第二部分:12-bit PWM的应用领域12-bit PWM广泛用于各种电子设备和系统中。
以下是一些常见的应用领域:1. 电机控制:12-bit PWM可以用于直流电机和交流电机的速度和方向控制。
通过调整PWM信号的脉冲宽度,可以改变电机的转速和转向。
2. LED照明:PWM可以用来调整LED灯的亮度。
通过改变脉冲宽度,可以控制电流的平均值,从而实现不同的亮度级别。
3. 电源管理:12-bit PWM在电源管理系统中起着重要作用。
它可以用来调整直流-直流(DC-DC)转换器中的输出电压,并控制电池充电和放电过程。
4. 声音合成:PWM可以用于数字音频合成。
通过调整脉冲宽度,可以模拟连续的声音波形,从而实现不同音调和音量。
5. 高效电力转换:PWM技术可以在电力转换和逆变器中实现高效能的电能转换。
PWM控制可以提高电力系统的效率,并减少能量的损耗。
第三部分:12-bit PWM的优势12-bit PWM相较于低位数的PWM有以下优点:1. 更精确的控制:12-bit PWM提供了更多的输出级别,可以实现更精确的电压或功率控制。
脉冲宽度调制
![脉冲宽度调制](https://img.taocdn.com/s3/m/8f87defdc0c708a1284ac850ad02de80d5d8065a.png)
脉冲宽度调制脉冲宽度调制(Pulse Width Modulation,PWM)是一种用模拟方法来表达数字化级别所使用的传输手段。
它具有高灵敏度、耐用性强、信号品质Թռ等优点。
该传输会由脉宽调制信号编码而成,包括有:脉冲宽度调制(Pulse Width Modulation,PWM)是一种改变信号脉冲的宽度,以控制电力输出的技术。
它通过改变周期性脉冲的脉冲宽度来指示输出的大小。
通常,是用模拟方法来表达数字化级别。
基本的PWM电路将通过一个脉冲信号通过一个电路来控制电压或电流的最大值。
它的原理是:通过以固定周期发送脉冲,并以不同宽度和幅度的脉冲,来控制输出信号的大小。
脉冲宽度调制信号是一个连续的高频脉冲所组成的、重复的模式,它和载波相对应(而不是直接对应)。
三、应用脉冲宽度调制技术在很多领域里有着广泛的应用,例如:1、电动和气动机器:PWM用于控制电动机和气动机器的速度,以及机器所受的力。
2、自动化系统:PWM技术用于控制不同设备的精度和计算功能,包括自动化控制系统(如处理器控制器系统)以及测量仪器系统。
3、信号检测:PWM技术用于检测不同电子信号的质量,以鉴别传送的信号是否正确。
4、通信系统:PWM技术用于多种通信系统,可用于高速数据传输或低信号传播等。
四、优势PWM技术具有一定的优势,如高灵敏度、耐用性强、信号品质Թռ、降低失真等优点。
它还能够减少电子设备的功耗,同时可以提高设备的效率和可靠性。
五、常见PWM调制技术1、恒定频率PWM:这种调制技术的特点是信号的频率是一定的,可以用固定的控制操作来在基础频率上增加或减少PWM脉冲的宽度。
2、变频率PWM:它的特点在于固定频率的变化,可以通过改变PWM脉冲的宽度来改变信号的频率,有效地提高噪声位数。
3、脉冲调制:Pulse Modulation方式用脉冲信号来表达不同频率,以更大的精度来控制电压和电流输出,以及提高系统的可靠性。
4、模拟调制: Analog modulation方式利用复杂的模拟技巧来模拟电力信号,从而达到调制的目的。
PWM脉冲宽度调制
![PWM脉冲宽度调制](https://img.taocdn.com/s3/m/40a4fe55a517866fb84ae45c3b3567ec102ddcfb.png)
PWM脉冲宽度调制脉冲宽度调制百科名片脉冲宽度调制脉冲宽度调制(pwm),是英文“pulsewidthmodulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
目录简介基本原理具体过程脉冲宽度调制优点控制方法脉冲宽度调制相关应用领域具体应用简介基本原理具体过程脉冲宽度调制优点控制方法脉冲宽度调制相关应用领域具体应用展开编辑本段简介脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管栅极或基极的偏置,来实现开关稳压电源输出晶体管或晶体管导通时间的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。
pwm控制技术以其掌控直观,有效率和动态积极响应不好的优点而沦为电力电子技术最广泛应用的掌控方式,也就是人们研究的热点.由于当今科学技术的发展已经没了学科之间的界限,融合现代掌控理论思想或同时实现并无谐振硬控制器技术将可以沦为pwm控制技术发展的主要方向之一。
编辑本段基本原理随着电子技术的发展,出现了多种pwm技术,其中包括:相电压控制pwm、脉宽pwm法、随机pwm、spwm法、线电压控制pwm等,而在镍氢电池智能充电器中采用的脉宽pwm法,它是把每一脉冲宽度均相等的脉冲列作为pwm波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。
可以通过调整pwm的周期、pwm的占空比而达到控制充电电流的目的。
模拟信号的值可以已连续变化,其时间和幅度的分辨率都没管制。
9v电池就是一种演示器件,因为它的输入电压并不精确地等同于9v,而是随其时间发生变化,并可行任何实数值。
与此相似,从电池稀释的电流也不限量在一组可能将的值域范围之内。
模拟信号与数字信号的区别是后者的值域通常就可以属预先确定的可能将值域子集之内,比如在{0v,5v}这一子集中值域。
pwm脉冲宽度调制原理
![pwm脉冲宽度调制原理](https://img.taocdn.com/s3/m/4a2b56835122aaea998fcc22bcd126fff7055dab.png)
pwm脉冲宽度调制原理好,今天我们来聊聊PWM脉冲宽度调制原理,听起来很高大上的样子,但其实就是个有趣的小玩意儿。
想象一下,你在玩遥控车,按下按钮,它就开始飞快地跑起来。
这背后其实就有一个小小的秘密,那就是PWM。
其实PWM就像是一种调音器,能让我们的设备根据需要调节“声音”,也就是电流的强度。
简单说,就是通过控制电流开关的时间长短,来调整电机的转速或者LED灯的亮度。
就像你在开灯的时候,调节调光器,想亮点就多开点,想暗点就少开点,这样就能得到你想要的效果。
这玩意儿可是非常聪明的哦。
想象一下,PWM就像一个非常会做饭的大厨,拿着自己的菜谱,分分钟给你调制出各种美味。
比如说,厨师可以通过调节火候,来让你的菜又嫩又香,PWM也是如此。
通过调节脉冲的宽度,来让设备在不同的状态下工作。
这脉冲的时间长了,电流也就大,设备就转得快;脉冲的时间短了,电流就小,设备就慢了,真是个神奇的道理。
这个原理在我们生活中可谓是无处不在。
说到这里,你可能会问,PWM和我有什么关系呢?别着急,听我慢慢说。
想想你的智能手机,手机屏幕的亮度就是用PWM来调节的。
当你在阳光下看手机屏幕,亮度调高点,看得清楚;在晚上,调低点,眼睛舒服。
就像夜深人静时,调小音量,不打扰到别人,这样的道理。
再说说电动玩具,很多小朋友都爱。
玩具里的电机,转得飞快,没错,PWM在背后默默地支持着你的小乐趣。
电动火车,电动小车,都是通过PWM来控制速度的,让你的小玩具生动有趣,仿佛有了生命。
谁说大人的世界才能玩高科技,小朋友们也是能玩的开心,哈哈。
说到这里,PWM还有个妙用,那就是节能。
大家都知道,节能环保是我们现在提得最热的话题。
用PWM调节亮度或者转速,可以减少不必要的电能消耗。
就像你平时省电一样,没事的时候关掉灯,不光是为了省钱,更是为了保护环境。
用PWM来控制设备,既能让我们享受生活,又能为地球出一份力,简直是双赢嘛。
PWM在音频设备中的应用也是别具一格。
脉冲宽度调制(PWM)和正弦波脉宽调制(SPWM)变频技术简介
![脉冲宽度调制(PWM)和正弦波脉宽调制(SPWM)变频技术简介](https://img.taocdn.com/s3/m/bbfdf973a22d7375a417866fb84ae45c3a35c270.png)
变频技术之PWM调制技术与SPWM调制技术详解变频技术通过改变电力信号的频率来调节电动机、压缩机和其他电气设备的运行速度。
在实际应用中,变频器是变频技术的核心装置,而脉冲宽度调制(PWM)技术和正弦波脉宽调制(SPWM)技术是实现变频器控制的重要手段。
什么是PWM调制技术PWM调制技术通过控制脉冲信号的宽度,实现对输出电压的调节。
在变频技术中,PWM被广泛应用于变频器中,以控制电动机的速度和转矩输出。
通过改变脉冲信号的占空比(脉冲宽度与周期之比),可以实现对电动机的精确控制。
当需要增大输出电压时,增加脉冲信号的宽度;当需要减小输出电压时,减小脉冲信号的宽度。
这种方式使得电动机可以在不同负载条件下保持稳定的转速和扭矩输出。
同时,PWM调制技术还具有响应快、控制精度高、效率高等优点,被广泛应用于各种电力控制系统中。
PWM调制波形如图1所示:图1PWM调制波形PWM技术具有以下优点:高效性:由于PWM技术可以通过调整脉冲宽度来控制电机的输出电压和频率,因此可以实现电机在不同负载条件下的高效运行。
通过减小电机额定电压,PWM技术可以降低电机的功耗,提高整体效率。
精确控制:PWM技术具有响应速度快、控制精度高的特点。
通过微调脉冲宽度和周期,可以实现对电机转速和扭矩的精确调节,满足不同应用的需求。
减少机械冲击:PWM技术可以实现电机的软启动和软停止,减少了机械系统的冲击和磨损,延长了设备的使用寿命。
尽管PWM技术具有许多优点,但也存在一些局限性:谐波问题:PWM技术在产生脉冲信号时会引入谐波成分,可能对电力网络和其他设备造成干扰。
为了减少谐波,需要采取滤波和抑制措施,增加了系统的复杂性和成本。
开关损耗:PWM技术使用高频开关装置,开关的频繁操作会产生开关损耗。
这些损耗会转化为热能,需要适当的散热系统来冷却电路。
EMI干扰:由于高频开关操作,PWM技术可能会产生电磁干扰(EMI),对周围的电子设备和无线通信系统造成干扰。
脉宽调制方波
![脉宽调制方波](https://img.taocdn.com/s3/m/3bd4da454b7302768e9951e79b89680203d86b3a.png)
脉宽调制方波脉宽调制(PWM)是一种广泛应用的数字信号处理技术,通过调整脉冲宽度来模拟连续信号。
脉宽调制技术广泛应用于各种电子设备和系统中,如电机控制、音频处理、开关电源等。
在电机控制领域,PWM技术被广泛应用于直流电机、步进电机、无刷电机等的控制。
通过调整PWM信号的占空比,可以精确地控制电机的速度和转矩。
这种控制方式具有响应速度快、调速范围广、节能等优点。
在音频处理领域,PWM技术被用于产生音频信号。
通过将音频信号转换为PWM信号,可以控制音频功率放大器的开关状态,从而产生连续的音频信号。
PWM音频信号的质量取决于脉冲宽度和频率的精度,因此,高精度的PWM音频信号可以提供高质量的音频输出。
在开关电源领域,PWM技术被用于调节输出电压和电流的大小。
通过调整PWM信号的占空比,可以改变输出电压和电流的平均值,从而实现稳压和恒流输出。
开关电源中的PWM控制器通常具有过流保护、过压保护、欠压保护等功能,以确保电源的安全可靠运行。
除了在上述领域中的应用外,PWM技术还被应用于LED照明、温度控制、压力传感器等多个领域。
通过脉宽调制技术,可以实现精确的控制和调节,提高系统的性能和稳定性。
为了实现精确的脉宽调制,需要使用高精度的定时器和计数器。
此外,还需要注意PWM信号的频率、占空比、死区时间等参数的设置和控制。
在实际应用中,需要根据具体需求和系统参数进行合理的配置和调整,以达到最佳的控制效果。
总之,脉宽调制技术在许多领域都有广泛的应用,是实现数字化控制的重要手段之一。
通过脉宽调制技术,可以实现精确的控制和调节,提高系统的性能和稳定性。
随着数字化技术的不断发展,脉宽调制技术的应用范围还将不断扩大,为各领域的创新和发展提供重要的技术支持。
在电机控制方面,PWM技术可以用于实现直流电机的速度控制和方向控制。
通过改变PWM信号的占空比,可以调节电机驱动器的输入电压,从而改变电机的转速和方向。
这种控制方式具有简单、可靠、成本低等优点,因此在电动自行车、电动汽车等领域得到广泛应用。
脉冲宽度调制
![脉冲宽度调制](https://img.taocdn.com/s3/m/22b2ca8ead51f01dc381f129.png)
脉冲宽度调制————————————————————————————————作者:————————————————————————————————日期:ﻩ脉冲宽度调制脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
目录1简介2背景介绍3基本原理4谐波频谱5具体过程6优点7控制方法8应用领域9具体应用1简介脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。
这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。
2背景介绍随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。
可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。
9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。
与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。
模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。
脉冲宽度调制
![脉冲宽度调制](https://img.taocdn.com/s3/m/56d99654b307e87100f6960c.png)
4) 采用滞环比较方式实现电压跟踪控制
把指令电压u*和输出电压u进行比较,滤除偏差信号中 的谐波,滤波器的输出送入滞环比较器,由比较器输 出控制开关器件的通断,从而实现电压跟踪控制。
电压跟踪控制电路
和电流跟踪控制电路相比,只是把指令和反馈信号从 电流变为电压。 输出电压PWM波形中含大量高次谐波,必须用适当的 滤波器滤除。
用一系列等幅不等宽的脉冲来代替一个正弦半波
u
SPWM波
ωt
u
O
>
O
> ωt
u
O
ωt
>
用一系列等幅不等宽的脉冲来代替一个正弦半波
u u
SPWM波
> ω tt ω
u
O O
>
O
> ωt
u
O
ωt
>
若要改变等效输出正弦 波幅值,按同一比例改 变各脉冲宽度即可。
对于正弦波的负半周,采取同样的方法,得到PWM 波形,因此正弦波一个完整周期的等效PWM波为:
u O uUN'
Ud 2 Ud 2
urU
uc urV
urW
t
O
t
uVN' O uWN'
t
O
t
3)分段同步调制—— 异步调制和同步调制的综合应用。
2.4
把整个fr范围划分成若干个频 段,每个频段内保持N恒定, 不同频段的N不同。
201 147 99
2.0
69
45
33
fc /kHz
1.6 1.2
21
0.8 在fr高的频段采用较低的N,使 0.4 载波频率不致过高;在 fr 低的 频段采用较高的 N ,使载波频 0 10 20 30 40 50 60 70 率不致过低。 f /Hz 图6-11 为防止fc在切换点附近来回跳动,采用滞后切换的方法。 同步调制比异步调制复杂,但用微机控制时容易实现。 可在低频输出时采用异步调制方式,高频输出时切换到同步 调制方式,这样把两者的优点结合起来,和分段同步方式效 果接近。
什么是电力电子中的脉冲宽度调制技术?
![什么是电力电子中的脉冲宽度调制技术?](https://img.taocdn.com/s3/m/85471a6a11661ed9ad51f01dc281e53a58025194.png)
什么是电力电子中的脉冲宽度调制技术?在我们的日常生活中,电无处不在,从点亮灯光到驱动各种电子设备,电力的应用无所不及。
而在电力电子领域,有一种重要的技术——脉冲宽度调制技术(Pulse Width Modulation,简称 PWM),它在电力转换和控制中发挥着关键作用。
那么,到底什么是脉冲宽度调制技术呢?让我们来逐步揭开它神秘的面纱。
简单来说,脉冲宽度调制技术是一种通过改变脉冲的宽度来控制输出电压或电流平均值的方法。
想象一下,我们有一个电源,它能够提供恒定的电压,就像是一个稳定的水流。
而通过 PWM 技术,我们可以将这个稳定的水流“切割”成一系列快速开启和关闭的小水流,通过控制这些小水流开启的时间长短,也就是脉冲的宽度,来实现对整体水流平均流量的控制。
在电力电子电路中,PWM 技术通常是通过一个控制器来实现的。
这个控制器会产生一系列具有固定周期的脉冲信号,但每个脉冲的宽度是可以变化的。
例如,如果我们想要得到一个较低的平均电压,控制器就会产生宽度较窄的脉冲;反之,如果需要较高的平均电压,就产生宽度较宽的脉冲。
为什么要使用脉冲宽度调制技术呢?这是因为它具有很多显著的优点。
首先,PWM 技术能够实现高效的能量转换。
在许多电力应用中,如电机驱动、电源转换等,效率是至关重要的。
通过精确地控制脉冲宽度,我们可以使电力电子器件在导通和截止之间快速切换,从而减少能量的损耗,提高整个系统的效率。
其次,PWM 技术具有良好的动态响应性能。
这意味着它能够快速地适应负载的变化,及时调整输出电压或电流,保证系统的稳定运行。
比如说,在电机调速的应用中,当电机的负载突然增加时,PWM 控制器可以迅速增加脉冲宽度,提供更大的电流,以保持电机的转速稳定。
再者,PWM 技术还可以实现对电压和电流的精确控制。
这对于一些对电源质量要求较高的设备,如精密仪器、通信设备等,是非常重要的。
通过微调脉冲宽度,我们可以将输出电压或电流控制在非常精确的范围内。
脉冲宽度调制技术
![脉冲宽度调制技术](https://img.taocdn.com/s3/m/e4c2def72dc58bd63186bceb19e8b8f67c1cef8f.png)
脉冲宽度调制(PWM)技术在电力电子变流器掌握系统中,对于掌握电路的要求往往是除能够掌握负载的加电与断电外,还应当能够掌握加载到负载上的电压凹凸及功率大小。
在大功率电力电子电路中,掌握加载至负载上电压及功率的有用方法就是脉冲宽度调制(PU1Sewidthmodu1ation,PWM)01.面积等效原理在掌握理论中,有一个重要的原理,即冲量等效原理:大小、波形不相同的窄脉冲变量(冲量)作用在具有惯性的环节上时,只要这些变量对时间的积分相等,其作用的效果将基本相同。
这里所说的效果基本相同是指惯性环节的输出响应波形基本相同。
例如,下图1示出的三个窄脉冲电压波形分别为矩形波、三角波和正弦波,但这二个窄脉冲电压对时间的积分相等,或者说它们的面积相等。
当这三个窄脉冲分别作用在只有惯性的同一环节上时,其输出响应基本相同。
因此,冲量等效原理也可以称为面积等效原理。
S)矩形波(b)」.角波9)正弦波图1面积相等的三种脉冲信号从数学角度进行分析,对上图1所示的三个窄脉冲电压波形进行傅里叶变换,则其低频段的特性特别相近,仅在高频段有所不同,而高频段对于具有惯性负载的电路影响特别小。
由此进一步证明白面积等效原理的正确性。
2.脉冲宽度调制技术依据面积等效原理,在电路中可以采用低端电源开关或高端电源开关,以肯定频率的导通和截止连续切换,使电源电压Ui以一系列等幅脉冲(或称为矩形波)的形式加载到负载上,加载在负载上的电源电压Uo波形如图2所示。
图2所示的矩形波的电压平均值:必=V m D此式表明在一个脉冲周期内,电压的平均值与脉冲的占空比是成正比的,于是,可以通过转变脉冲的占空比来调整加载到负载上的电压大小。
当占空比小时,加载到负载上的平均电压就低,即加载到负载上的功率小;而占空比大时,加载到负载上的平均电压就高,加载到负载上的功率大。
这种通过等幅脉冲调整负载平均电压及功率的方法称为脉冲宽度调制,诩为斩波掌握。
采纳脉冲宽度调制方式为负载供电,由于供电电压是脉动的,势必会产生出各种谐波。
脉冲宽度调制
![脉冲宽度调制](https://img.taocdn.com/s3/m/ecba358e03d8ce2f006623ba.png)
正弦波脉冲宽度调制
![正弦波脉冲宽度调制](https://img.taocdn.com/s3/m/339ab2a8afaad1f34693daef5ef7ba0d4a736dc1.png)
较为纯净的正弦波信号。
滤波器通常由电阻、电容和电感等元件组成,通过适 当的电路设计,使得滤波器对高频成分具有较大的阻
抗,而对低频成分具有较小的阻抗。
滤波器的性能直接影响输出信号的质量,因此需要选 择合适的元件和电路设计,以确保输出信号的准确性
和稳定性。
负载
负载是正弦波脉冲宽度调制系统的最终输出部分,它负责将滤波器输出的 正弦波信号转换为实际需要的功率或能量。
正弦波脉冲宽度调制产生的谐波成分较少 ,对电网的污染较小。
易于实现数字化控制
高精度控制
正弦波脉冲宽度调制可以通过数字信号处理 器(DSP)等数字控制器实现,提高了系统 的可编程性和灵活性。
正弦波脉冲宽度调制能够实现高精度的输 出电压和电流控制,有利于提高系统的稳 定性和精度。
局限性
对电源要求高
正弦波脉冲宽度调制需要高质 量的输入电源,否则可能会影
智能化技术
人工智能和机器学习等智能化技术的应用,将有 助于实现正弦波脉冲宽度调制系统的自适应和自 主学习。
集成化与模块化
未来正弦波脉冲宽度调制系统将更加集成化和模 块化,方便安装和维护,同时也有助于提高系统 的可靠性和稳定性。
面临的挑战与解决方案
电压和电流谐波问题
正弦波脉冲宽度调制会产生电压和电流谐波,对电网造成污染。解决方案包括优化调制算法、采用滤波器等措施来降 低谐波影响。
滤波
去除信号中的噪声和干扰,提高信号的纯净度。
脉冲宽度的调制
脉冲宽度调制器
根据输入信号的幅度值,生成相应宽度的脉冲信号。
脉冲宽度与幅度关系
脉冲宽度与输入信号的幅度值成正比,幅度越大,脉 冲宽度越宽。
脉冲宽度调制原理
通过改变脉冲的宽度来控制输出信号的平均功率,实 现高效、灵活的功率控制。
pwm(脉冲宽度调制)的工作原理、分类及其应用
![pwm(脉冲宽度调制)的工作原理、分类及其应用](https://img.taocdn.com/s3/m/5b04506832687e21af45b307e87101f69e31fb2a.png)
pwm(脉冲宽度调制)的工作原理、分类及其应用PWM(Pulse Width Modulation, 脉冲宽度调制)是一种通过改变电路输出高低电平的时间比例,来产生不同的输出电压或输出功率的调制技术。
它被广泛应用于电机控制、照明调节、电源管理等领域。
PWM的工作原理是通过给定一个周期,然后在每个周期内分配一个脉冲宽度,从而产生输出信号。
其输出信号的高低电平比例能够被改变,从而可以控制输出电流或电压的大小。
PWM技术的基本原理是:将所需控制的模拟信号与一个高频的脉冲信号进行比较,通过改变脉冲信号的占空比来控制模拟信号的大小。
根据输出信号的周期和脉冲宽度的变化方式,PWM可分为以下几种类型:1. 单极性PWM:输出信号只有高电平和低电平两种状态,不会出现中间状态。
单极性PWM输出的波形呈现方波状,行驶平稳,肉眼观测基本无抖动。
2. 双极性PWM:可以产生负电压的PWM输出方式,信号可以在赫兹周期内的0V ~ + Vcc 之间波动,同时也可以在0V ~ -Vcc之间波动。
3. 比例PWM:比例PWM是根据输入信号的幅值变化,改变信号高低电平比例的一种方式。
比例PWM输出的波形呈现类似圆形的波形,行驶上比单极性PWM要更稳。
PWM技术被广泛应用于各种领域,例如:1. 电机控制:具有比较器作用的PWM电路,可以通过对电机施加不同的电压和电流,实现电机转速、方向、扭矩等参数的控制。
2. 照明调节:通过调节灯具对PWM信号的响应能力来改变灯光亮度,实现明暗程度的调节。
3. 电源管理:PWM技术可以用来调节电源的输出电压和电流,实现负载的动态功率管理,增强电源的效率和稳定性。
总之,PWM技术是一种能够获取精确控制的调制技术,被广泛应用于各种领域,它在现代电子工业中的作用不可替代。
正弦脉冲宽度调制的原理
![正弦脉冲宽度调制的原理](https://img.taocdn.com/s3/m/f7851fa2534de518964bcf84b9d528ea81c72fce.png)
正弦脉冲宽度调制的原理正弦脉冲宽度调制(Sinusoidal Pulse Width Modulation,简称SPWM),是一种常用的调制技术,常用于电力电子领域中的逆变器和变频器等设备中。
该调制技术通过改变正弦波的脉冲宽度来实现对输出信号的调制,以达到控制输出电压和频率的目的。
SPWM的原理是利用一个基准正弦波信号和一个三角波信号进行比较,根据比较的结果来控制开关器件的开关时间,从而控制输出信号的脉冲宽度。
具体来说,当基准正弦波信号的幅值大于三角波信号时,开关器件关闭,输出信号的脉冲宽度为0;当基准正弦波信号的幅值小于三角波信号时,开关器件打开,输出信号的脉冲宽度为最大值。
通过不断调整三角波信号的频率和幅值,可以实现对输出信号的频率和幅值的调节。
SPWM技术具有以下几个特点:1. 高精度:SPWM技术可以实现对输出信号的精确控制,输出波形更加接近理想的正弦波。
这对于一些对输出波形质量要求较高的应用场合非常重要。
2. 低谐波含量:相比其他调制技术,SPWM技术可以有效降低输出信号的谐波含量,减少对其他设备的干扰。
这对于一些需要保持电网质量的应用场合尤为重要。
3. 高效率:SPWM技术可以实现对开关器件的高效利用,提高系统的能量转换效率。
这对于一些功率要求较高、对能量利用效率要求较严格的应用场合非常重要。
4. 调节范围广:SPWM技术可以通过调节基准正弦波信号和三角波信号的频率和幅值,实现对输出信号频率和幅值的广范围调节。
这使得SPWM技术在不同应用场合下都具有很大的灵活性和适应性。
SPWM技术在电力电子领域中有着广泛的应用。
例如,在逆变器中,SPWM技术可以将直流电源转换为交流电源,用于驱动交流电机等设备;在变频器中,SPWM技术可以实现对电机转速的精确调节,从而满足不同负载要求;在电力调制器中,SPWM技术可以实现对电力的精确控制,提高电能的利用效率。
正弦脉冲宽度调制是一种常用的调制技术,通过改变正弦波的脉冲宽度来实现对输出信号的调制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲宽度调制脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛使用在从测量、通信到功率控制和变换的许多领域中。
目录1简介2背景介绍3基本原理4谐波频谱5具体过程6优点7控制方法8使用领域9具体使用1简介脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。
这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛使用的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。
2背景介绍随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压和频率协调变化。
可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。
9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。
和此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。
模拟信号和数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。
模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。
在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。
拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。
和收音机一样,模拟电路的输出和输入成线性比例。
尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。
其中一点就是,模拟电路容易随时间漂移,因而难以调节。
能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。
模拟电路还有可能严重发热,其功耗相对于工作元件两端电压和电流的乘积成正比。
模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。
通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。
此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。
3基本原理脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。
也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。
按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。
例如,把正弦半波波形分成N等份,就可把正弦半波看成由N个彼此相连的脉冲所组成的波形。
这些脉冲宽度相等,都等于∏/n ,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。
如果把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(即冲量)相等,就得到一组脉冲序列,这就是PWM波形。
可以看出,各脉冲宽度是按正弦规律变化的。
根据冲量相等效果相同的原理,PWM波形和正弦半波是等效的。
对于正弦的负半周,也可以用同样的方法得到PWM波形。
在PWM波形中,各脉冲的幅值是相等的,要改变等效输出正弦波的幅值时,只要按同一比例系数改变各脉冲的宽度即可,因此在交-直-交变频器中,整流电路采用不可控的二极管电路即可,PWM逆变电路输出的脉冲电压就是直流侧电压的幅值。
根据上述原理,在给出了正弦波频率,幅值和半个周期内的脉冲数后,PWM波形各脉冲的宽度和间隔就可以准确计算出来。
按照计算结果控制电路中各开关器件的通断,就可以得到所需要的PWM波形。
下图为变频器输出的PWM波的实时波形。
PWM实际波形图(2张)4谐波频谱假设SPWM波的载波频率为fc,基波频率为fs,fc/fs称为载波比N,对于三相变频器,当N为3的整数倍时,输出不含3次谐波及3的整数倍谐波。
且谐波集中载波频率整数倍附近,即谐波次数为:kfc±mfs,k和m为整数。
右图是基波频率fs=50Hz,载波频率fc=3kHz,调制比为0.8的SPWM的波形及频谱的Matlab仿真图。
图中58次谐波和60次谐波的幅值分别为27.8%和27.7%,含量最大的谐波为119次和121次谐波,谐波幅值分别为39.1%和39.3%。
即最大谐波在两倍载波频率附近。
PWM测量装置(4张)随着谐波频率的升高,谐波幅值整体呈现下降趋势,按照GB/T22670变频器供电三相笼型感应电动机试验方法的规定,变频电量变送器的带宽应该在载波频率的6倍以上,当载波频率为3kHz时,带宽至少为18kHz,实际使用建议采用30kHz以上带宽的变频功率传感器及变频功率分析仪。
实际的SPWM波,其载波比不一定为整数,此时,为了降低频谱泄露,可适当增加傅里叶窗口长度,对多个基波周期的PWM进行傅里叶变换(FFT或DFT)。
5具体过程脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。
通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。
PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。
电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。
通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。
只要带宽足够,任何模拟值都可以使用PWM进行编码。
多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz,通常调制频率为1kHz到200kHz之间。
许多微控制器内部都包含有PWM控制器。
例如,Microchip公司的PIC16C67内含两个PWM控制器,每一个都可以选择接通时间和周期。
占空比是接通时间和周期之比;调制频率为周期的倒数。
执行PWM操作之前,这种微处理器要求在软件中完成以下工作:1、设置提供调制方波的片上定时器/计数器的周期2、在PWM控制寄存器中设置接通时间3、设置PWM输出的方向,这个输出是一个通用I/O管脚4、启动定时器5、使能PWM控制器如今几乎所有市售的单片机都有PWM模块功能,若没有(如早期的8051),也可以利用定时器及GPIO口来实现。
更为一般的PWM模块控制流程为(笔者使用过TI的2000系列,AVR的Mega系列,TI的LM系列):1、使能相关的模块(PWM模块以及对应管脚的GPIO模块)。
2、配置PWM模块的功能,具体有:①:设置PWM定时器周期,该参数决定PWM波形的频率。
②:设置PWM定时器比较值,该参数决定PWM波形的占空比。
③:设置死区(deadband),为避免桥臂的直通需要设置死区,一般较高档的单片机都有该功能。
④:设置故障处理情况,一般为故障是封锁输出,防止过流损坏功率管,故障一般有比较器或ADC或GPIO检测。
⑤:设定同步功能,该功能在多桥臂,即多PWM模块协调工作时尤为重要。
3、设置相应的中断,编写ISR,一般用于电压电流采样,计算下一个周期的占空比,更改占空比,这部分也会有PI控制的功能。
4、使能PWM波形发生。
6优点PWM的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。
让信号保持为数字形式可将噪声影响降到最小。
噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。
对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因。
从模拟信号转向PWM可以极大地延长通信距离。
在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。
总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计使用中使用的有效技术。
7控制方法采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率.PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现.直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到使用.随着电力电子技术,微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论,非线性系统控制思想的使用,PWM控制技术获得了空前的发展.到目前为止,已出现了多种PWM控制技术,根据PWM控制技术的特点,到目前为止主要有以下8类方法.等脉宽PWM法VVVF(Variable Voltage Variable Frequency)装置在早期是采用PAM(Pulse Amplitude Modulation)控制技术来实现的,其逆变器部分只能输出频率可调的方波电压而不能调压.等脉宽PWM法正是为了克服PAM法的这个缺点发展而来的,是PWM法中最为简单的一种.它是把每一脉冲的宽度均相等的脉冲列作为PWM波,通过改变其周期,达到调频的效果。
改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压和频率协调变化. 相对于PAM法,该方法的优点是简化了电路结构,提高了输入端的功率因数,但同时也存在输出电压中除基波外,还包含较大的谐波分量.随机PWM在上世纪70年代开始至上世纪80年代初,由于当时大功率晶体管主要为双极性达林顿三极管,载波频率一般不超过5kHz,电机绕组的电磁噪音及谐波造成的振动引起了人们的关注.为求得改善,随机PWM方法应运而生.其原理是随机改变开关频率使电机电磁噪音近似为限带白噪声(在线性频率坐标系中,各频率能量分布是均匀的),尽管噪音的总分贝数未变,但以固定开关频率为特征的有色噪音强度大大削弱.正因为如此,即使在IGBT已被广泛使用的今天,对于载波频率必须限制在较低频率的场合,随机PWM仍然有其特殊的价值;另一方面则说明了消除机械和电磁噪音的最佳方法不是盲目地提高工作频率,随机PWM技术正是提供了一个分析,解决这种问题的全新思路.SPWM法SPWM(Sinusoidal PWM)法是一种比较成熟的,如今使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同的. SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积和所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.该方法的实现有以下几种方案.等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形.通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形.其实现方法简单,可以用模拟电路构成三角波载波和正弦调制波发生电路,用比较器来确定它们的交点,在交点时刻对开关器件的通断进行控制,就可以生成SPWM波.但是,这种模拟电路结构复杂,难以实现精确的控制.软件生成法由于微机技术的发展使得用软件生成SPWM波形变得比较容易,因此,软件生成法也就应运而生.软件生成法其实就是用软件来实现调制的方法,其有两种基本算法,即自然采样法和规则采样法.以正弦波为调制波,等腰三角波为载波进行比较,在两个波形的自然交点时刻控制开关器件的通断,这就是自然采样法.其优点是所得SPWM波形最接近正弦波,但由于三角波和正弦波交点有任意性,脉冲中心在一个周期内不等距,从而脉宽表达式是一个超越方程,计算繁琐,难以实时控制.规则采样法规则采样法是一种使用较广的工程实用方法,一般采用三角波作为载波.其原理就是用三角波对正弦波进行采样得到阶梯波,再以阶梯波和三角波的交点时刻控制开关器件的通断,从而实现SPWM法.当三角波只在其顶点(或底点)位置对正弦波进行采样时,由阶梯波和三角波的交点所确定的脉宽,在一个载波周期(即采样周期)内的位置是对称的,这种方法称为对称规则采样.当三角波既在其顶点又在底点时刻对正弦波进行采样时,由阶梯波和三角波的交点所确定的脉宽,在一个载波周期(此时为采样周期的两倍)内的位置一般并不对称,这种方法称为非对称规则采样.规则采样法是对自然采样法的改进,其主要优点就是是计算简单,便于在线实时运算,其中非对称规则采样法因阶数多而更接近正弦.其缺点是直流电压利用率较低,线性控制范围较小.以上两种方法均只适用于同步调制方式中.低次谐波消去法低次谐波消去法是以消去PWM波形中某些主要的低次谐波为目的的方法.其原理是对输出电压波形按傅氏级数展开,表示为u(ωt)=ansinnωt,首先确定基波分量a1的值,再令两个不同的an=0,就可以建立三个方程,联立求解得a1,a2及a3,这样就可以消去两个频率的谐波.该方法虽然可以很好地消除所指定的低次谐波,但是,剩余未消去的较低次谐波的幅值可能会相当大,而且同样存在计算复杂的缺点.该方法同样只适用于同步调制方式中.梯形波和三角波比较法前面所介绍的各种方法主要是以输出波形尽量接近正弦波为目的,从而忽视了直流电压的利用率,如SPWM法,其直流电压利用率仅为86.6%.因此,为了提高直流电压利用率,提出了一种新的方法--梯形波和三角波比较法.该方法是采用梯形波作为调制信号,三角波为载波,且使两波幅值相等,以两波的交点时刻控制开关器件的通断实现PWM控制.由于当梯形波幅值和三角波幅值相等时,其所含的基波分量幅值已超过了三角波幅值,从而可以有效地提高直流电压利用率.但由于梯形波本身含有低次谐波,所以输出波形中含有5次,7次等低次谐波.线电压控制PWM前面所介绍的各种PWM控制方法用于三相逆变电路时,都是对三相输出相电压分别进行控制的,使其输出接近正弦波,但是,对于像三相异步电动机这样的三相无中线对称负载,逆变器输出不必追求相电压接近正弦,而可着眼于使线电压趋于正弦.因此,提出了线电压控制PWM,主要有以下两种方法.马鞍形波和三角波比较法马鞍形波和三角波比较法也就是谐波注入PWM方式(HIPWM),其原理是在正弦波中加入一定比例的三次谐波,调制信号便呈现出马鞍形,而且幅值明显降低,于是在调制信号的幅值不超过载波幅值的情况下,可以使基波幅值超过三角波幅值,提高了直流电压利用率.在三相无中线系统中,由于三次谐波电流无通路,所以三个线电压和线电流中均不含三次谐波[4].除了可以注入三次谐波以外,还可以注入其他3倍频于正弦波信号的其他波形,这些信号都不会影响线电压.这是因为,经过PWM调制后逆变电路输出的相电压也必然包含相应的3倍频于正弦波信号的谐波,但在合成线电压时,各相电压中的这些谐波将互相抵消,从而使线电压仍为正弦波.单元脉宽调制法因为,三相对称线电压有Uuv+Uvw+Uwu=0的关系,所以,某一线电压任何时刻都等于另外两个线电压负值之和.如今把一个周期等分为6个区间,每区间60°,对于某一线电压例如Uuv,半个周期两边60°区间用Uuv本身表示,中间60°区间用-(Uvw+Uwu)表示,当将Uvw和Uwu作同样处理时,就可以得到三相线电压波形只有半周内两边60°区间的两种波形形状,并且有正有负.把这样的电压波形作为脉宽调制的参考信号,载波仍用三角波,并把各区间的曲线用直线近似(实践表明,这样做引起的误差不大,完全可行),就可以得到线电压的脉冲波形,该波形是完全对称,且规律性很强,负半周是正半周相应脉冲列的反相,因此,只要半个周期两边60°区间的脉冲列一经确定,线电压的调制脉冲波形就唯一地确定了.这个脉冲并不是开关器件的驱动脉冲信号,但由于已知三相线电压的脉冲工作模式,就可以确定开关器件的驱动脉冲信号了.该方法不仅能抑制较多的低次谐波,还可减小开关损耗和加宽线性控制区,同时还能带来用微机控制的方便,但该方法只适用于异步电动机,使用范围较小.电流控制PWM电流控制PWM的基本思想是把希望输出的电流波形作为指令信号,把实际的电流波形作为反馈信号,通过两者瞬时值的比较来决定各开关器件的通断,使实际输出随指令信号的改变而改变.其实现方案主要有以下3种.这是一种带反馈的PWM控制方式,即每相电流反馈回来和电流给定值经滞环比较器,得出相应桥臂开关器件的开关状态,使得实际电流跟踪给定电流的变化.该方法的优点是电路简单,动态性能好,输出电压不含特定频率的谐波分量.其缺点是开关频率不固定造成较为严重的噪音,和其他方法相比,在同一开关频率下输出电流中所含的谐波较多.三角波比较法该方法和SPWM法中的三角波比较方式不同,这里是把指令电流和实际输出电流进行比较,求出偏差电流,通过放大器放大后再和三角波进行比较,产生PWM波.此时开关频率一定,因而克服了滞环比较法频率不固定的缺点.但是,这种方式电流响应不如滞环比较法快.预测电流控制法预测电流控制是在每个调节周期开始时,根据实际电流误差,负载参数及其它负载变量,来预测电流误差矢量趋势,因此,下一个调节周期由PWM产生的电压矢量必将减小所预测的误差.该方法的优点是,若给调节器除误差外更多的信息,则可获得比较快速,准确的响应.如今,这类调节器的局限性是响应速度及过程模型系数参数的准确性.空间电压矢量控制PWM空间电压矢量控制PWM(SVPWM)也叫磁通正弦PWM法.它以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,用逆变器不同的开关模式所产生的实际磁通去逼近基准圆磁通,由它们的比较结果决定逆变器的开关,形成PWM波形.此法从电动机的角度出发,把逆变器和电机看作一个整体,以内切多边形逼近圆的方式进行控制,使电机获得幅值恒定的圆形磁场(正弦磁通).具体方法又分为磁通开环式和磁通闭环式.磁通开环法用两个非零矢量和一个零矢量合成一个等效的电压矢量,若采样时间足够小,可合成任意电压矢量.此法输出电压比正弦波调制时提高15%,谐波电流有效值之和接近最小.磁通闭环式引入磁通反馈,控制磁通的大小和变化的速度.在比较估算磁通和给定磁通后,根据误差决定产生下一个电压矢量,形成PWM波形.这种方法克服了磁通开环法的不足,解决了电机低速时,定子电阻影响大的问题,减小了电机的脉动和噪音.但由于未引入转矩的调节,系统性能没有得到根本性的改善.矢量控制PWM矢量控制也称磁场定向控制,其原理是将异步电动机在三相坐标系下的定子电流Ia,Ib及Ic,通过三相/二相变换,等效成两相静止坐标系下的交流电流Ia1及Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1及It1(Im1相当于直流电动机的励磁电流;It1相当于和转矩成正比的电枢电流),然后模仿对直流电动机的控制方法,实现对交流电动机的控制.其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制.通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制.但是,由于转子磁链难以准确观测,以及矢量变换的复杂性,使得实际控制效果往往难以达到理论分析的效果,这是矢量控制技术在实践上的不足.此外.它必须直接或间接地得到转子磁链在空间上的位置才能实现定子电流解耦控制,在这种矢量控制系统中需要配置转子位置或速度传感器,这显然给许多使用场合带来不便.直接转矩控制PWM1985年德国鲁尔大学Depenbrock教授首先提出直接转矩控制理论(Direct Torque Control简称DTC).直接转矩控制和矢量控制不同,它不是通过控制电流,磁链等量来间接控制转矩,而是把转矩直接作为被控量来控制,它也不需要解耦电机模型,而是在静止的坐标系中计算电机磁通和转矩的实际值,然后,经磁链和转矩的Band-Band控制产生PWM信号对逆变器的开关状态进行最佳控制,从而在很大程度上解决了上述矢量控制的不足,能方便地实现无速度传感器化,有很快的转矩响应速度和很高的速度及转矩控制精度,并以新颖的控制思想,简洁明了的系统结构,优良的动静态性能得到了迅速发展.但直接转矩控制也存在缺点,如逆变器开关频率的提高有限制.非线性控制PWM单周控制法[7]又称积分复位控制(Integration Reset Control,简称IRC),是一种新型非线性控制技术,其基本思想是控制开关占空比,在每个周期使开关变量的平均值和控制参考电压相等或成一定比例.该技术同时具有调制和控制的双重性,通过复位开关,积分器,触发电路,比较器达到跟踪指令信号的目的.单周控制器由控制器,比较器,积分器及时钟组成,其中控制器可以是RS触发器,其控制原理如图1所示.图中K可以是任何物理开关,也可是其它可转化为开关变量形式的抽象信号.单周控制在控制电路中不需要误差综合,它能在一个周期内自动消除稳态,瞬态误差,使前一周期的误差不会带到下一周期.虽然硬件电路较复杂,但其克服了传统的PWM控制方法的不足,适用于各种脉宽调制软开关逆变器,具有反应快,开关频率恒定,鲁棒性强等优点,此外,单周控制还能优化系统响应,减小畸变和抑制电源干扰,是一种很有前途的控制方法.谐振软开关PWM。