幂函数的图像及性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

讲义

教材与考点分析:

本节课学习的内容是了解幂函数的图像及性质,如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。

幂函数

一般地,形如y=x a x(a为实数)的函数叫幂函数对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p

次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数无界。

练习:

1、下列函数中哪个是幂函数( )

A .31-⎪⎭⎫ ⎝⎛=x y

B .22-⎪⎭⎫ ⎝⎛=x y

C .32-=x y

D .()32--=x y 2、函数65

-=

x y 的定义域为( ) A .()∞+∞-,

B .()∞+,0

C .[)∞+,0

D .()()∞+⋃∞-,00, 3、函数72x y =

的值域为( ) A .()∞+∞-,

B .()∞+,0

C .[)∞+,0

D .()()∞+⋃∞-,00,

4、函数32x y =是( )

A .奇函数

B .偶函数

C .既不是奇函数也不是偶函数

D .以上都不是

5、函数6-=x y 的图像关于( )

A .原点中心对称

B .y 轴轴对称

C .x 轴轴对称

D .直线x y =

对称

6、求作函数34

x y =、53-=x y 的简图

7、比较两数的大小:

(1)

3367与 (2)()e e 66.032--⎪⎭⎫ ⎝⎛与

相关文档
最新文档