基于matlab的运动目标检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 绪论
课题研究背景及意义
运动目标检测是图像处理与计算机视觉的一个分支,在理论和实践上都有重大意义,长久以来一直被国内外学者所关注。在实际中,视频监控利用摄像机对某一特定区域进行监视,是一个细致和连续的过程,它可以由人来完成,但是人执行这种长期枯燥的例行监测是不可靠,而且费用也很高,因此引入运动监测非常有必要[1]。它可以减轻人的负担,并且提高了可靠性。概括起来运动监测主要包括三个内容[2]:运动目标检测,方向判断和图像跟踪。运动目标检测是整个监测过程的基础,运动目标的提取准确与否,直接关系到后续高级过程的完成质量。
国内外研究现状
运动目标检测在国外已经取得了一些的研究成果[3],许多相关技术已经开始应用到实际系统中,但是国内研究相对落后,与国外还有较大差距。传统的视频目标提取大致可以分两类,一类以空间同性为准则,先用形态学滤波器或其他滤波器对图像作预处理;然后对该图像的亮度、色度或其他信息作空间上的分割以对区域作边缘检测;之后作运动估计,并合并相似的运动区域以得到最终的提取结果。如光流算法、主动轮廓模型算法。此类方法结果较为准确但是运算量相对较大。另一类算法主要以时间变化检测作为准则,这类算法主要通过帧差检测图像上的变化区域和不变区域,将运动物体与静止背景进行分割。此类方法运算量小,提取结果不如前类方法准确。此外,还有时空结合方法、时空亮度梯度信息结合的方法等等[4]。本文将围绕以时间变化监测为基础的方法展开分析和讨论。
本文结构
第1章介绍了本文的研究意义及国内外发展状况;第2章分为四个部分详细讲述了运动目标检测的方法,介绍了背景提取与更新算法,检测算法,阈值选取,形态学滤波等;第三章对全文作出了总结。
2运动目标检测的一般过程
背景提取与更新算法
在进行运动目标检测时,一个很重要的步骤就是区分出运动目标和背景范围,常见的一种情况是摄像机处于静止状态并且焦距也是固定的。此时,图像中的背景区域固定不动。在这种情况下,运动目标识别无论是使用背景差法,还是使用背景差法结合帧间差法,质量良好的背景的建立显得及其重要。另外,当涉及到背景的使用时,一旦背景发生一些变化时,如背景中频繁地出现运动物体,或者光照发生变化、树叶等小物体的晃动等等,使得不能准确地提取背景作为参考图像,从而不能正确地分割出视频序列中的运动物体。为了克服上述问题,国内外众多研究人员提出了背景建立和自适应的背景模型,实现了背景模型的实时更新,能够比较准确地识别出运动目标。在能够满足实时性和实用性要求的前提下,讨论并研究下列几种算法[5]。
手动背景法
手动背景法需要人观察到没有前景物体时启动该帧图像,作为背景图像。这种背景提取方法增加了人力和物力的需求,而且在很多情况下很难在没有前景的情况下获得背景图像,比如高速公路的车辆监测系统、小区的门禁系统等等。这种方法不能实现自适应背景更新的功能,需要使用其他方法修正由于光线,亮度等的变化带来的背景误差。
统计中值法
考虑到运动物体较少的情况下,连续多帧图像中背景的像素值占主要部分,这样在一段时间内变化缓慢,取中值便可以认为是背景图像。统计中值算法从统计学的角度统计单个像素点A i(x,y),(i=1,2,…N)在连续帧图像中的亮度值B i。在一段时间内对视频序列图像的亮度值(或者色彩信息) B i进行排序,然后取中值M i(x,y)作为背景。该算法存在的问题在于:图像帧的像素点大多以数万,数十万的数量级出现,而用于取中值的图像帧数量N也应该比较大。对如此大的数组进行排序取出中值,实现时计算量较大,处理较慢。同时需要占用大量的内存单元用于存储数据。
算术平均法
采用算术平均法提取背景图像,可以总结为在特定的时间段内对像素点的亮度和色彩信息取平均值,用均值作为背景图像对应像素点数值。在读入一段视频时,对某一像素点进行观察,会发现在没有前景的运动目标通过时,该点的灰度值保持稳定,变化很小,只有当前景的运动目标通过时,该点的灰度才会发生剧烈的变化。这样就可以连续读入N帧图像,对图像各点的灰度或色彩信息进行统计的方法,使得变化剧烈的像素点变得平缓,取其平均值作为背景图像像素点的值。这样也可以滤除背景图像中的突变噪声点。其统计公式如下:
∑==N i N y x Ii y x B 11
),(),( (2-1)
公式中式中:B (x, y)表示背景图像,Ii(x,y)表示第i 帧序列图像,N 表示平均帧数。在实际场景中,一段时间内,同一区域很少有可能总是存在运动物体。而通过平均法得到的背景就会消除亮暗分布不均匀的情况。
选取N=120,MATLAB 仿真,从序列图像的第1、60、120帧可以看出,在第1帧至第120帧时都存在运动目标,如2-1图。经过对连续120帧计算算术平均值,得到了基本不包含运动目标的背景图像,如2-2图。
(a)第1帧图像 (b)第60帧图像 (c)第120帧图像
图2-1 各帧图像
图2-2 算术法提取的背景图像
由上述仿真实验证明,算术平均法的特点是模型简单,计算方便,可以较好的得到背景图像。但是在仿真过程中,也发现了该方法的一些问题。其中最明显的是,该算法得到背景图像需要获取的图像帧较大。受运动物体数量的影响,随着平均帧数的增加,得到的背景图像的质量越好。由于是求取序列图像的算术平均值,如果N 值太小,背景图像中的运动物体不容易被滤除,很容易在背景图像中留下“影子”。而且在运动物体很多,轨迹很固定的情况下,也需要加大N 的数值,以使得平均值更加接近与真实的背景图像。在这种情况下,背景的建立就需要较长的时间。本算法也有一定自适应更新功能。随着时间的推移,在背景提取后获取的图像帧也可以作为新的信息量,与背景图像进行统计平均或加权平均,实现背景的自适应更新。因此这种方法也使用于实时背景更新算法。
Surendra算法
Surendra背景更新算法[6][7]能够自适应地获取背景图像,该算法提取背景的思想是对差值图像的亮度值进行判断,如亮度大于阈值,背景图像对应位置的像素点保持不变,否则利用当前帧对背景图像进行替换更新。其算法可以分成以下几个步骤:
(1)将第1帧图像I1作为背景B1。
(2)选取阈值T,迭代次数m=1,最大迭代次数MAXSTEP。
(3)求当前帧的帧差分图像
1 |I i-I i-1|>T
Di= (2-2)
(4)由二值图像Di更新背景图像Bi,
B i-1(x,y) Di=1
Bi= (2-3)
αI i(x,y)+(1-α)I i-1(x,y) Di=0
式中Bi(x,y),Di(x,y)为背景图像和差分二值图像在(x, y)的灰度值,Ii(x,y)为输入的第i 帧图像,α为更新速度。
(5)迭代次数m=m+1,进行第(3)步的运算。当迭代次数m=MAXSTEP时结束迭代,此时Bi(x,y)可当作背景图像。
选取MAXSTEP=80,α=,选取固定阈值T=20。在MATLAB中进行仿真第30帧背景(灰度)第30帧图像
第80帧背景(灰度)第80帧图像
0 |I i-I i-1|≤T