七年级数学上册全册单元测试卷测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册全册单元测试卷测试卷(解析版)

一、初一数学上学期期末试卷解答题压轴题精选(难)

1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8

(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,

(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.

【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.

(2)MN=

【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;

(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.

2.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0

(1)求A,B两点之间的距离;

(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;

(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).

①分别表示甲、乙两小球到原点的距离(用t表示);

②求甲、乙两小球到原点的距离相等时经历的时间

【答案】(1)解:因为,

所以2a+4=0,b-6=0,

所以a=−2,b=6;

所以AB的距离=|b−a|=8;

(2)解:设数轴上点C表示的数为c.

因为AC=2BC,

所以|c−a|=2|c−b|,即|c+2|=2|c−6|.

因为AC=2BC>BC,

所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.

①当C点在线段AB上时,则有−2

得c+2=2(6−c),解得c= ;

②当C点在线段AB的延长线上时,则有c>6,

得c+2=2(c−6),解得c=14.

故当AC=2BC时,c= 或c=14;

(3)解:①因为甲球运动的路程为:1×t=t,OA=2,

所以甲球与原点的距离为:t+2;

乙球到原点的距离分两种情况:

(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,

因为OB=6,乙球运动的路程为:2×t=2t,

所以乙球到原点的距离为:6−2t;

(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,

此时乙球到原点的距离为:2t−6;

②当0

解得t= ;

当t>3时,得t+2=2t−6,

解得t=8.

故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.

【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.

3.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.

(1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________;

(2)如图2,若∠AOC=140°,则∠BOD=________;

(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.

(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.

【答案】(1)145°;45°

(2)40°

(3)解:∠AOC 与∠BOD 互补.

∵∠AOD+∠BOD+∠BOD+∠BOC=180°.

∵∠AOD+∠BOD+∠BOC=∠AOC,

∴∠AOC+∠BOD=180°,

即∠AOC 与∠BOD 互补

(4)解:OD⊥AB 时,∠AOD=30°,

CD⊥OB 时,∠AOD=45°,

CD⊥AB 时,∠AOD=75°,

OC⊥AB 时,∠AOD=60°,

即∠AOD 角度所有可能的值为:30°、45°、60°、75°

【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,

∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,

则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;

( 2 )如图 2,若∠AOC=140°,

则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;

故答案为:(1)145°,45°;(2)40°.

【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。

(2)观察如图2可证∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD,代入计算可求解。

(3)观察图形可得出∠AOD+∠BOD+∠BOD+∠BOC=180°,而∠AOC=∠AOD+∠BOD+∠BOC ,即可证得结论。

(4)分情况讨论:OD⊥AB 时;CD⊥OB 时;CD⊥AB 时;OC⊥AB 时,根据垂直的定义,分别求出∠AOD的度数。

4.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.

(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;

相关文档
最新文档