七年级数学上册全册单元测试卷测试卷(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册全册单元测试卷测试卷(解析版)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8
(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,
(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.
【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.
(2)MN=
【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;
(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.
2.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0
(1)求A,B两点之间的距离;
(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;
(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).
①分别表示甲、乙两小球到原点的距离(用t表示);
②求甲、乙两小球到原点的距离相等时经历的时间
【答案】(1)解:因为,
所以2a+4=0,b-6=0,
所以a=−2,b=6;
所以AB的距离=|b−a|=8;
(2)解:设数轴上点C表示的数为c.
因为AC=2BC,
所以|c−a|=2|c−b|,即|c+2|=2|c−6|.
因为AC=2BC>BC,
所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.
①当C点在线段AB上时,则有−2 得c+2=2(6−c),解得c= ; ②当C点在线段AB的延长线上时,则有c>6, 得c+2=2(c−6),解得c=14. 故当AC=2BC时,c= 或c=14; (3)解:①因为甲球运动的路程为:1×t=t,OA=2, 所以甲球与原点的距离为:t+2; 乙球到原点的距离分两种情况: (Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O, 因为OB=6,乙球运动的路程为:2×t=2t, 所以乙球到原点的距离为:6−2t; (Ⅱ)当t>3时,乙球从原点O处开始一直向右运动, 此时乙球到原点的距离为:2t−6; ②当0 解得t= ; 当t>3时,得t+2=2t−6, 解得t=8. 故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等. 【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可. 3.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起. (1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________; (2)如图2,若∠AOC=140°,则∠BOD=________; (3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由. (4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由. 【答案】(1)145°;45° (2)40° (3)解:∠AOC 与∠BOD 互补. ∵∠AOD+∠BOD+∠BOD+∠BOC=180°. ∵∠AOD+∠BOD+∠BOC=∠AOC, ∴∠AOC+∠BOD=180°, 即∠AOC 与∠BOD 互补 (4)解:OD⊥AB 时,∠AOD=30°, CD⊥OB 时,∠AOD=45°, CD⊥AB 时,∠AOD=75°, OC⊥AB 时,∠AOD=60°, 即∠AOD 角度所有可能的值为:30°、45°、60°、75° 【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°, ∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°, 则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°; ( 2 )如图 2,若∠AOC=140°, 则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°; 故答案为:(1)145°,45°;(2)40°. 【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。 (2)观察如图2可证∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD,代入计算可求解。 (3)观察图形可得出∠AOD+∠BOD+∠BOD+∠BOC=180°,而∠AOC=∠AOD+∠BOD+∠BOC ,即可证得结论。 (4)分情况讨论:OD⊥AB 时;CD⊥OB 时;CD⊥AB 时;OC⊥AB 时,根据垂直的定义,分别求出∠AOD的度数。 4.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处. (1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;