【通俗易懂】从电路到电磁场

【通俗易懂】从电路到电磁场
【通俗易懂】从电路到电磁场

长期以来,我们了解电路是从回路开始的,以直流稳恒回路为例,电池把化学能转换成电能,电能通过导线传递到负载上,如下图:

电池中,化学能把电子从一极移向另一极,缺少电子一极为正极,获得电子一极为负极,两端形成了电势差(Vdc),也就存在了电场,方向从正极指向负极,化学能要驱动电子克服这个电场从正极移动到负极,电池内部的电流移动跟电场方向相反。

传统对于电子的理解是带负电荷量为e的一个实体,往往指起本身,但是,这个理解是不够准确的,电子除了本身,还应该包括它激发的负电场,电子与电子等作用,根本上是它们各自激发的电场与电场的作用。举个例子一块砖头从天空加速掉下来,是这块砖头激发的引力场与地球的引力场之间的作用导致砖头掉下来的,电子也是这个概念。所以对电子的认知,以前都是基于它的实体认知,现在更多的可以基于它激发的电场来认知,两者是等价的,但基于电场的认知,有助于理解高频、电磁场。

当用导线连接电池与负载构成一个电路回路,假设为理想导线,内阻为0,则导线跟所连接的正负极等电势,于是在导线之间也形成了电场,负载两端也有这个电势差(Vdc),所以负载内部也有电场。

很多人可能对于导线之间的电场无法理解,因为以前很少有提到的,所以往往无视,这是重点指出的。我们换一种思维想这个问题,把正负极之间的两根导线看作是一个电容,这个电容两端接在电源上,那么就很好理解了,这个电容被充电了,正负两端就集聚了正负电荷,两极之间就充满了电场,红色矩阵表示正极导线,绿色矩阵表示负极导线,里面的颜色表示内部的电荷分布,要靠近两电极边缘,这样保证导体整个形成等势体,理想导体内部是没有电场的,因为是等

就电池单独来讲,刚开始时,电池两端电压为0V,化学能搬移电子从正极到负极,当两极电子集聚或减少的的越来越多的时候,电势差越来越大,以镍氢电池为例,当达到1.2V时,就不再增长,因为这个化学能中Ni转变为Ni离子最大的电动势就是1.2V。所以当电极两端达到1.2V之后,两极电场就阻值了化学

能继续反应。

当电池两端连接了理想导线和负载之后,理想导线要跟两极等电势,所以从电极上获得电荷,跟正极接的导线失去电子获得正电荷,负极接的导线获得电子也就是获得负电荷,这样两导线因为获得不同电荷,之间形成电压差,也就是电池电压,这个电压加在负载R上,对负载R内的自由电子做功,碰撞负载R内的原子发热,类似于电子管里的电子从阴极飞到阳极。之后通过导线回到电池内部,被化学能克服电场重新搬移到正极开始下一轮的循环。

这儿反复强调,理想导体是等电势,所以内部没有电场。电子在理想导体中移动因为没有受到电场力的作用,所以整体均匀上讲,是匀速运动的,这个电子也可以分布在导体内任何位置移动。

这里举一个形象的实际例子,吊车把地面的石头举起来,石头克服地球引力(等价于电池),之后平行搬移到另外一个地方(理想导线),放下石头(对负载做功发热),再把它平移回来(理想导线)。直流电模型中,整个回路的电子都可以理解为匀速移动的,两根导线中因为不受力,所以匀速,电池中,化学能抵消电场力,所以匀速,负载中,电子与原子的碰撞发热与电场力抵消,所以匀速。

理想导体,关键在于“导”字,“导”就是通的意思。通的,就是没有电压差,也就是没有电场,所以不存在加速过程,只是匀速平移。很多人认为,导体中有电流移动,所以就有电压,其实,均匀的电流移动,是可以不需要电压的,这个跟物理中的物体做匀速运动,不需要外力是一个道理。

理想导体因为是完全导通没有电压差的,理论上讲是可以通任意电流大小电流的。最终在导体中的电流大小,取决于负载上流过的电流大小。

实际中的导体都不是理想导体,都是有内阻的,所以会有一定的沿着导线方向的

电压差,所以会发热,但理想导体或者超导体是绝对没有沿着导体方向的电压差的。

对于一个闭环的超导体回路来说,因为内阻为零,有一定长度,可以完全理解为一个纯电感,当变化的磁场通过超导体回路会产生涡电场,也就是有一个电动势加在闭环超导体中,这个时候,因为理想导体内部不能有电场,所以这个电场由纯电感感应的逆电动势抵消来保持理想导体内部无电场,这等效于给这个纯电感充电,准确的讲是充磁(感谢网友“大宝小莉啊”纠正),电流按照电感公式U = L * I / T变化。

我们可以来一个总结:

1、理想导体,因为是等电势,所以内部是没有电场的。

2、有电压差,就能产生电场:E = U / D,E为电场强度,U为电压差,D为距离。

3、电流,其实就是磁场的另外一种表现形式,电流与磁场如同电子如电场的关系。

现实中因为不存在磁单极,所以磁产生的根源是基于电流,比如磁铁就是基于电子绕原子核转动而产生磁场,当这个磁场方向一致,磁场叠加就表现为磁铁。有过开关电源经验的都知道,在绕制变压器的时候,一般用安匝(NI)表征磁场的激励源。

我们很多自小就接触电子,因为那个时候接受事物的能力有限,所以接触的一些概念,往往是比较形象的,比如把电路理解为一个回路,电流在这个回路里流,大家很容易想象着,电场方向也是跟电流方向一致的。其实,在导体里,电场方向是否跟电流一致,书本上其实是回避了的,但这个是我们自己的潜意识形成的,而这一点却严重的制约了后来对电磁场的理解。

接下来分析一下常规导线里面的电场与外部电场的关系,看看是否是我们原先所认知的那样。我们以家庭常用的220VAC交流电源线为例,红黑双根分别为火线和地线,铜线截面积为0.5平方毫米,线中心与线中心之间间距4mm,单根导线每米电阻为0.1欧姆,我们做一些初略的计算分析线内外的电场情况,设电压为220V。

线外电场:E = 220伏 / 0.04米 = 5500伏/米。这个是平板电容的计算方式,导线与导线之间的电场,要略低于这个值,估算降低一个数量级为550伏/米。(感谢网友“haulegend”纠正)

线内电场:E = 0.1欧姆 * N安培 / 1米 = 0.1N伏/米

这个N根据实际电流大小决定,若为1安培,则导线内的电场只有0.1伏/米,

远远小于线外的电场强度550伏/米,可以忽略不计。

工频交流电

日常交流电是50Hz,虽然只有50Hz,我们先承认基于电磁场理论的,尤其是几千公里的电力线传输,是需要考虑电磁场效应的,我们先推算一下它的波长。

波长 = 300 000 000 / 50 = 6 000 000米 = 6000千米。

这也就是说,我们先承认50Hz的交流电是电磁波的话,那么它的波长是6000

千米,因为这个尺度太大了,远远超出了我们实际常用的尺寸,所以哪怕是电磁场,我们也感觉不到。这如同人相对于地球非常渺小,视野非常有限,发现不了地球到底是圆的,还是平的,一个道理。

直流电,我们可以认为是频率为0Hz的电磁波,它的波长是无穷大。

高频交流信号

我们使用电,是从直流到交流,从低频到高频这样的顺序过来的,就民用来说,最早收音机AM:525~1605KHz、FM:72~108MHz到GSM手机900MHz和1800MHz

再到无线局域网WIFI:2400MHz,我们的需求逼迫我们用更高的频率来传递更多的信息,可以肯定未来基于高频高速的需求将是主流,而达到百兆级别以上的信号,波长已经接近器件、连线或PCB布线尺度了,电磁场效应不得不考虑。

为方便计算,考察300MHz信号,一秒钟信号按正弦波规律变化300百万次。

波长(真空或空气中) = 300 000 000 / 300 000 000 = 1米

一个波长1米范围内,表征了一个完整的信号变化,1秒钟产生了300M个完整的信号周期。理想情况下电压、电流按正弦波规律变化,对应的电场和磁场也是按这个变化,在一个长的均匀平行传输线中,每隔一个波长位置信号电压是完全相同的,每隔半个波长位置信号电压是完全相反的。当前高速PCB布板,比如DDR2 内存就工作在这个200~300MHz频率附近(数字信号可以分解为各个正弦波的叠加,这个例子对正弦波和方波都适用,信号不考虑反射条件下),以 300MHz 计算,考虑到PCB板介电常数是3.9~4.2,取整数为4,(真空或空气中为1)那么波长缩短为4倍,只有1 / 4 = 0.25米,也就是波长只有25厘米。DDR2地址、数据线有很多根,假如因为布线条件决定引起各根地址或者数据线之间长短不一,比如差12.5cm,数据就完全相反了,0变成了1,1变成了0。哪怕差1cm,也引起了1 / 25 * 360 = 14.4度的相位差。这也严重的影响了时钟信号的采样判断点。所以在DDR2等多地址、数据线的条件下,无法忽视因为信号电磁场传播延时引起的数据相位差问题了。

我们忽略了什么?

很多人认为,电磁场理论适合高频,对低频意义不太大,这个不否定。但是,当我们需要用到高频的时候,我们却往往还是用低频的理解来思考高频,用低频的经验应用于高频,这个就不应该了,既然电磁场理论对于高低频都是适用的,那么在低频下,我们到底忽略了什么,让太多的人无法理解高频下的电磁场,甚至是抵触。

1、低频电路回路模型回避了信号的传递速度问题,信号的传递跟时间无关,这与信号传递最高速度是光速这个常识违背。

2、低频电路回路模型认为导线是一个带一定电阻的理想模型。不考虑导线的粗细,导线的形状,导线内外的磁场和导线与导线之间的电场关系,这些都被忽略了。

第一点是信号的传递速度问题,也就是说,任何信号的传递是有一个定速的,虽然电磁场的传递速度是光速,非常快,但是,无论多快,它还是有一个延时效应

存在,信号源信号的变化,需要通过导线上信号的变化(导线上信号的变化就是电场和磁场的变化)才能传递到负载端,信号源变化的越快就表现在在导线上变化的越快,导线线方向相邻两点的信号差异就越大。

第二个是信号的载体问题,信号是什么,它只是一个信息,一个事件,本身没有实体,所以它必须要基于一个实体载体,能量就是信号的载体,信号从信号源到目标,也就是说能量从信号源到了目标。那这个能量的存在形式就是以电场能量和磁场能量方式存在,电场分布在两根导线之间,若考虑导线存在内阻,导线内部也有一定的电场;磁场可以在导线内,也可以在导线外,围绕导线。

电子是电场的载体之一,以前常用电子描述,现在都用电场描述,因为还有好几种也能产生电场,比如原子核产生正电场,变化磁场产生的涡电场等,并非只有电子。

在平衡传输线中,我们更喜欢用上下两根平衡导线分布的正负电荷构成的垂直于导线的电场来描述,这个电场到了哪儿,导线上对应的正负电荷就到了相同的垂直位置。

高速观察波形

虽然现在我们使用的频率越来越高,但是目前的测试设备也越来越先进,远远超出使用的频率。我们假设用泰克(Tektronix)TDS3000C系列示波器观察300MHz 高频信号波形。TDS3000C的采样频率是5GS/s,可以理解为每秒钟采样5G次,300MHz信号一个周期可以采样16.7个点,基本上可以比较清晰反应一个完整的周期了,假设信号从直流电压Vdc开始按300MHz正弦波规律变化。

1 / 4周期

设导线单根长度为0.25米,对300MHz信号来说就是1 / 4波长长度,信号电压为Vdc,我们把信号按正弦波规则从Vdc降为0V,所花时间为1 / 4周期,1周期 = 1 / 300M = 3.33nS。传输线上电场和磁场分布如下图:

因为信号电压按300MHz正弦波规则从Vdc下降为0V,如上图,靠近信号源的(1)处的电压被信号源牵引而电压降低,对应的电场就变小,相应的,(1) 对(2)产生影响,依次类推到负载(R)。为了分析的更清晰,我们对上图的各点进行进一步的量化,假设负载为20欧姆,Vdc电压为20V,取电池中心点为参考点,那么正极为10V,负极为-10V,四分之一周期后的波形如下图所示。

标识(1)处

正极为10*Cos(75) = 2.6V,(2)处正极为10*Cos(60)=5V,依次类推。两导线对称点之间的电压从负载20V到信号源0V依次变小,必然在两根导线线方向上也表达出来。比如(1)与(2)的线电压差就有2.4V,因为理想导线内部是不允许有电场的,那么这个因为电场正弦分布引起的导线线电压差必须要由另外一个反电动势来抵消。这个时候,必须要降低(1)、(2)之间的导线电流,电流对应的是磁场,变小的磁场产生一个反电动势抵消(1)、(2)的导线线电压差,依次类推到负载,于是导线上的电流也是按照正弦波规律从信号源的0A到负载最大值的1A。

以上感性的分析了四分之一周期300MHz的变化过程,这里面回避了三个问题。

1、信号源电压是正弦波变化,导线上的电场和磁场就一定是正弦波变化?相位就一定相同?

2、电压一定,负载一定,最大电流是一定的,若在这个电流下的正弦波磁场变化产生的反电动势满足不了导线线电压差,情况将如何?

这两个问题,前者确认是否只有正弦波才能符合传输线传输,后者提出了阻抗匹配概念,这两个问题在后面进一步讲解。

1 / 2周期

信号源按300MHz正弦规则从正向最大值变为反相最大值,也就是1/2周期,传输线长度设为0.5米,也就是1/2波长,所对应的传输线电场、磁场波形。

注意在传输

线中心点位置电压为0V,左边电场向上,右边电场向下。左边导线的电流也跟右边的相反。

3 / 4周期

信号源按300MHz正弦规再从反相最大值变为0V,也就是3/4周期,传输线长度仍为为0.5米,也就是1/2波长,当负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于左边再传过来一个1/4周期波,右边移出一个1/4周期。

一个及多个周期

信号源按300MHz正弦规则变化完整1个周期,电压从0开始变化,也就是相位从0开始,传输线长度为1米,即1个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了2个方向相反的电流圈。

信号源按300MHz正弦规则变化完整2个周期,电压从0开始变化,也就是相位从0开始,传输线长度为2米,即2个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了4个电流圈。

信号源

按300MHz正弦规则变化完整2个周期,电压从0开始变化,也就是相位从0开始,传输线长度为2米,即2个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了4

个电流圈,用圈表示,仅为形象简化,表示半个周期,紧挨着的相反的一对为一个周期。

波粒二象性

在msOS群内,当贴出这个图的时候,就有群友认为,这就是波粒二象性啊,当频率越高,圈圈的密度就越大,圈圈内包含的就是能量,电场和磁场的能量。一个个圈圈的从信号源传到负载那儿去。当这个圈圈密度足够高,也就是能量足够强,进入量子尺寸,这个就变成了光子,既是波,又是粒子,一个个的过去,正反两个圈圈就是一个周期的波,当然这个只能意会,不是十分准确。

电磁场的传输很像现在的高速铁路,传输线两根导线,如同铁轨,要均匀对齐,这样适合电场和磁场均匀无变化的向前推进,每节车厢里装两个圈圈,一正一反的,一个波长。这列火车有N节车厢,一直不停的往前开。

阻抗匹配

我们看下图:

导线线方向

的电压差,由垂直围绕导线的磁场变化产生的反电动势来抵消。同理,导线线方向的电流差,由垂直导线放射型的电场变化产生的反磁动势来抵消。只是这个变化电场产生磁场,在实际中我们很少见到,常见的都是磁生电,所以比较难以理解。

传输线两导线之间的电场分布如上左图所示,当这个电场变化的时候,会产生对应垂直于电场的磁动势,也就产生了磁场,如上右图所示,实线为电场,虚线为磁场。变化的电场所产生的磁场,是垂直电场的,垂直导线,围绕导线的。以上两图都来自网络。这就是传输线里面,电磁场磁生电、电生磁本质,都是为了一个平衡。

从1/4波长图上我们可以看到,当电场、磁场在导线线方向都满足正弦,磁场变化产生的反电动势与导线线方向上的电压差是线性一致的,同理,电场变化产生的磁动势跟导线线方向上的磁压差是线性一致的,因为线性一致,若电场强度与磁场强度之间若满足一定的比例关系,则反电动势等于电压差,反磁动势等于磁压差。那么这时电场强度、磁场强度的比例关系,就叫做传输线阻抗,它表征了能让传输线传递电磁场所要求的电场与磁场之间强度的关系。

Z = E/H

对于传输线来说,我们一般不采用测量电场强度和磁场强度来计算,而是采用常规的单元微分电容电感的概念比较容易获得传输线阻抗,下图是一种单元微分化传输线模型,用单位长度L、C来描述传输线。

左图模型是教科书常规的等效模型图,但不能说准确,只是示意,实际上L和C 是是重叠的,C在L中间位置,而不是前后位置,如右图所示,因为很难用右图表达,所以一般采用了左图,但这也容易让读者感觉是一种LC振荡模型。

因为电磁场中,磁生电、电生磁,两者是相互转换的,这从能量守恒角度来讲,电场能量必然等于磁场能量,所以有以下公式:

1/2*C*U*U = 1/2*L*I*I 整理可得 Z = SQR(L/C),SQR为根号

我们在1/4周期段落预留了两个问题,一为什么是正弦波,二电场与磁场的比例关系。对于这两个问题的具体解答,严格的就必须要用数学来解答,这个就绕不开麦克斯韦方程了。

方程(1)为安培环路定律,磁场由两部分产生,一部分是电荷移动产生的电流对应的磁场,一部分是变化的电场产生的磁场。

方程(2)为法拉利电磁感应定律,因为现实中还不存在磁单极,所以电场只由变化的磁场产生。

方程(3)因为不存在磁单极,所以磁场只存在漩涡磁场。

方程(4)为高斯定律,因为存在正负电荷,所以存在激励辐射电场。

我们回到传输线中,导线线方向存在电流差,所以存在磁压差,这个磁压差由垂直于导线辐射的电场变化产生的反磁动势来抵消,满足方程(1)。

导线间电场按正弦波分布,所以导线线方向存在的电压差,这个电压差由垂直围绕导线的磁场变化产生的反电动势来抵消,满足方程(2)。

按照(1)、(2)方程基于数学推导的结果,波形只能是正弦波,并且很容易导出阻抗及传输速度C。

振荡与波

波虽然在自然界也很常见,比如声波、水波、振动波、电磁波。但大部分人对波的认识还非常有限。我认为对物理的认知分为层面:

1、点的认知,懂加减乘除即可,货物买卖就用这些知识。

2、线的认知,需要懂函数,计算推理一些简单的公式,求解线性方程。

3、圆的认知,理解三角函数、复数,应用于振荡、波之类的场合。

对于电子工程师来说,非常熟悉振荡,当看到LC,就会想到振荡,其实电磁波也是一种选项,只是我们常常被经验所左右,跳不出振荡这个概念。

振荡是L与C中的电磁能量互为转换的过程,但不是同一时刻相互进行的。这一时刻电场能量变成磁场能量,下一时刻,磁场能量变成电场能量。若用二维坐标轴描述,它们在Y轴一维上进行。

电磁波是电场与磁场相互转换,同时进行的。所以无法在二维坐标轴的Y轴上描述,必须要基于三维坐标轴空间表达。

安培定律和法拉利定律,磁场的变化就是电场,电场的变化就是磁场,按这个概念,大家第一反应电场与磁场相位应该差90度,因为有一个一阶微分存在。但因为电场和磁场在空间上按Y、Z轴分布,Y、Z轴本身就已经相差90度了,所以电场与磁场幅度在Y、Z上就同相位了。

趋肤效应

实际导线都是带有内阻的,也是有直径大小的,设导线为圆形均匀铜导线,我们把它从内到外的分为三部分:红、绿、蓝,到这三部分有电流流动的时候,就会产生对应的磁场,这个磁场围绕在所对应导体的外部(方向不作标记),磁场是可以在导体内部存在的。

蓝色导体的磁场由导体外的磁场一部分组成。

绿色导体的磁场由导体外的磁场加绿色外的磁场两部分组成。

红色导体的磁场由导体外的磁场加绿色外的磁场再加红色自己外面的磁场三部分组成。

在1/4周期部分我们提到了,信号源电压变化导致靠近信号源的导线那边的电压跟着变化,而导线两端电压变化,引起导线在线方向上的电压也不同,也就存在电压差,所以这个电压差必须要由变化的磁场产生的反电动势和导线内阻来抵消。导线内部是可以存在磁场的,越是靠近中心的位置,围绕它的磁场越多,在磁场相同变化率的情况下,必然中心内部产生的反电动势比外部更大。它们要遵循下面公式表达:

V = R * I + L * dI / dT

我们以前在低频下,因为导线在线方向的电压差很小客户忽略不计,所以把导线直径忽略掉,把导线内部的磁场分布忽略掉,主要以导线的内阻对外表现,但在高频下,因为变化速度太快,导致导线在线方向的电压差无法忽略,而磁场引起的反电动势也足够大,已经表达出来与线内阻媲美,所以无法忽视这种因导线内部存在磁场引起的效应,这个效应就叫趋肤效应。

若是理想导线,R = 0,电感产生的反电动势完全抵消线方向电压差,这个时候导线必须要满足内部电流为0,所有电流都走表面。否则若导线中心有电流,它产生的反电动势高于边缘的反电动势,方程是无法成立的

若是非理想导线,R > 0, 也就是带电阻的导线,则当导线中心内部电流小于边缘电流,虽然导线中心产生的反电动势大于边缘的,但内部因为电阻存在,小的电流在电阻上产生的反电压也小,这样中心内部电感产生的反电动势大,流过电阻的电流产生的反电压小,两者相加跟边缘的反电动势一样,方程成立。

从上面这个公式可以看出,趋肤效应的大小,跟导线的电阻率有关,跟信号源的频率有关,此外还跟导线的形状有关。

本文仅从感性角度分析传输线,严谨的分析还需要靠专业的书本。本文首先是为了给自己解惑,让自己更深入理解电磁场,尤其是一些基础性的概念。若能对网友有所帮助,那就意外之喜了。

长按二维码识别关注电子路上,结伴而行!

电路实验心得体会

电路实验心得体会 电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在大一上学期将要结束之际,我们进行了一系列的电路实验,从简单的戴维南定理到示波器的使用,再到回转路-----,一共五个实验,通过这五个实验,我对电路实验有了更深刻的了解,体会到了电路的神奇与奥妙。 不过说实话在做这次试验之前,我以为不会难做,就像以前做的实验一样,操作应该不会很难,做完实验之后两下子就将实验报告写完,直到做完这次电路实验时,我才知道其实并不容易做。它真的不像我想象中的那么简单,天真的以为自己把平时的理论课学好就可以很顺利的完成实验,事实证明我错了,当我走上试验台,我意识到要想以优秀的成绩完成此次所有的实验,难度很大,但我知道这个难度是与学到的知识成正比的,因此我想说,虽然我在实验的过程中遇到了不少困难,但最后的成绩还是不错的,因为我毕竟在这次实验中学到了许多在课堂上学不到的东西,终究使我在这次实验中受益匪浅。 下面我想谈谈我在所做的实验中的心得体会: 在基尔霍夫定律和叠加定理的验证实验中,进一步学习了基尔霍夫定律和叠加定理的应用,根据所画原理图,连接好实际电路,测量出实验数据,经计算实验结果均在误差范围内,说明该实验做的成功。我认为这两个实验的实验原理还是比较简单的,但实际操作起来并不是很简单,至少我觉得那些行行色色的导线就足以把你绕花眼,所以我想说这个实验不仅仅是对你所学知识掌握情况的考察,更是对你的耐心和眼力的一种考验。 在戴维南定理的验证实验中,了解到对于任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻Ro等于该网络中所有独立源均置零时的等效电阻。这就是戴维南定理的具体说明,我认为其实质也就是在阐述一个等效的概念,我想无论你是学习理论知识还是进行实际操作,只要抓住这个中心,我想可能你所遇到的续都问题就可以迎刃而解。不过在做这个实验,我想我们应该注意一下万用表的使用,尽管它的操作很简单,但如果你马虎大意也是完全有可能出错的,是你整个的实验前功尽弃! 在接下来的常用电子仪器使用实验中,我们选择了对示波器的使用,我们通过了解示波器的原理,初步学会了示波器的使用方法。在试验中我们观察到了在不同频率、不同振幅下的各种波形,并且通过毫伏表得出了在不同情况下毫伏表的读数。 我们最后一个实验做的是一阶动态电路的研究,在这个实验中我们需要测定RL一阶电路的零输入响应,零状态响应以及全响应,学习电路时间常数的测量方法。因为动态网络的过渡过程是十分短暂的单次变化过程,如果我们选择用普通示波器过渡过程和测量有关的参数,我们就必须是这种单次变化的过程重复出现。因此我们利用信号发生器输出的

自动感应开关电路的设计

自动感应开关电路设计 摘要 随着现代通信技术的飞速发展,已经提出了更高的要求,通信电源的可靠性,重量,体积,效率等。相移和在直流/直流电压和电流全桥变换器结构简单的高功率应用中,输出功率大,效率高,易于实现软开关,具有一系列优点受到功率开关管,如小力,对它的研究具有非常重要的意义。首先,DC / DC升压转换器的电流触发电路,输入电路,反馈电路的控制芯片,详细的推挽式变压器,损耗问题进行了研究和分析的MOS场效应晶体管的焦点。其次,本文还简单介绍了在本实验所使用的设备的设备所必需的参数,建立了模型,用Protel Altium Designer 6.9仿真软件系统的稳定性进行了分析。最后的仿真结果,根据自己的实际电路,从而使调试一切正常,达到了预期的效果。 关键词:DC/DC电压变换器;推挽变压器;反馈电路控制芯片

Abstract With the rapid development of modern communication technology, higher requirements have been put forward, communication power supply reliability, weight, volume, efficiency etc.. The phase shift and the application in high power DC / DC voltage and current structure of full bridge converter is simple, high output power, high efficiency, easy to realize soft switching, has a series of advantages by the power switch, such as small capacity, it is very important to research on it. First of all, the current DC / DC converter trigger circuit, input circuit, feedback control circuit, push-pull transformer in detail, loss of focus of MOS field effect transistor research and analysis. Secondl. Secondly, the paper simply introduces the parameters required in the use of the experimental equipment, established the model for stability, Protel Altium Designer 6.9 simulation software system is analyzed in the paper. Finally the simulation results. Finally the simulation results, according to the actual circuit of their own, so that all the normal debugging, achieves the expected effect. Keywords: DC/DC boost converter; push-pull transformer; feedback circuit control chip

电工基础电路图讲解

电路图基础知识讲解 对一个没有电工基础,或者刚入门的从业者,都比较迷茫,都会有这么一个问题,看到电路图,无从下手,不知道该从哪边学起,下面简单介绍下一些基础知识,供大家参考。 首先,要了解各个元件的有什么功能,有什么特点。说白了就是要了解各个元件有什么作用。 其次,要了解各个元件间的组合有什么功能。 再者,要知道一些基本的电路,比如:基本的电压源与电流源之间的相互转换电路,基本的运算放大电路等等。 然后,就是可以适当的看一点复杂的电路图,慢慢了解各个电路间电流的走向。 以上所说的模拟电路,还有数字电路就是要多了解一些‘门’的运用,比如说:与非门,与或门等等。还有在一些复杂的电路图上会有集成芯片,所以,你还要了解给个芯片引脚的作用是什么,该怎么接,这些可以在网上或书上查到,再有,提到一点就是一些电路中的控制系统,有复杂的控制系统,也有简单的控制系统,我说一个简单的,比如说单片机的,你就要了解这个单片机有多少引脚,各个引脚的功能是什么,这个单片机要一什么铺助电路想连接,这样组成一个完整的电路。 想学会电路图就是要你多看,多去了解,多去接触,这样更容易学会。 一、电子电路图的意义 电路图是人们为了研究和工程的需要,用约定的符号绘制的一种表示电路结构的图形。通过电路图可以知道实际电路的情况。这样,我们在分析电路时,就不必把实物翻来覆去地琢磨,而只要拿着一张图纸就可以了;在设计电路时,也可以从容地在纸

上或电脑上进行,确认完善后再进行实际安装,通过调试、改进,直至成功;而现在,我们更可以应用先进的计算机软件来进行电路的辅助设计,甚至进行虚拟的电路实验,大大提高了工作效率。 二、电子电路图的分类 ( 一) 原理图 原理图就是用来体现电子电路的工作原理的一种电路图,又被叫做“电原理图”。这种图,由于它直接体现了电子电路的结构和工作原理,所以一般用在设计、分析电路中。分析电路时,通过识别图纸上所画的各种电路元件符号,以及它们之间的连接方式,就可以了解电路的实际工作时情况。图1 所示的就是一个收音机电路的原理图。 图一 ( 二) 方框图( 框图) 方框图是一种用方框和连线来表示电路工作原理和构成概况的电路图。从根本上说,这也是一种原理图,不过在这种图纸中,除了方框和连线,几乎就没有别的符号了。它和上面的原理图主要的区别就在于原理图上详细地绘制了电路的全部的元器

电路学习心得

电分学习心得 通过近一学期的电分学习,不仅使我掌握电路分析的基本原理,还从中感悟到许多的学习心得,下面我就谈一下这一学期学电分的心得体会。首先,对于电分的学习,获取知识是必然的,但是在此过程中,,我们的科学思维能力,分析计算能力,实验研究能力和科学归纳能力也有了很大的提高,为我们接下学习像模电等其他电路之类的学科奠定了坚实的基础。电分刚开始学的时候或许有些生疏,因此会感觉有点困难,但当我们掌握其中的一定理并理解透彻之后,就发现其实电分还是十分简单的,它具有很强的规律性,而且在分析和做题上都上都有比较明确的步骤指导,只要我们能按老师课上所讲的那样去做,基本上所有的题都可迎刃而解。电分方法也固定唯一的,一个题并不一定只有一种分析方法,有时这种方法不会,我们可以采取其他方法。这样大大降低我们解题的难度。 然后就是关于我我们所学具体内容的问题,第一到第四章,主要讲了电路分析的基本方法,以及电路等效原理等,而后面的知识主要是建立在这四章的内容上的,可以说,学好前面这四章的内容是我们学习电路基础的关键所在。在这些基础的内容中又有很多是很容易被忽略的。所以,在学习过程中,我们认真对待这一部分内容,争取学的细致,学的透彻,避免存在知识上的漏洞或盲区。第七、八章,主要介绍了电容和电感两种电器元件及其一点动态电路的分析方法,包括零输入、零状态及完全响应,含有电容和电感的动态电路第一次接触感觉用微分方程去解挺复杂,但当我掌握三要素法就会发现,一切问题都变的那么简单,所以一阶动态电路对于我们来说都是小菜一碟了。还有十章以后内容,主要是和正弦电路有关的了,当我们采用相量分析方法的时候就避免了微分方程带给我们的种种不便,以前直流电路中所适用的定律完全拿过来直接用,只不过是在这里是变成了相量形式。但是有一点是特别重要的,就是在复数运算过程中一定保证正确性,否则,因为计算而导致最后结果出错那可真就是前功尽弃了。所以,对于复数计算有问题的同学在这方便可要多多注意咯。再谈一下对于老师讲课的一些感想:钟建老师的讲课方法我十分喜欢,讲课思路十分清晰,而且效率也特别高,虽然有些内容要求我们自学,但那些都是相对比较简单的,对于特别重要的知识点,钟建老师总是讲的特别透彻,再加上课上一些习题的训练,一堂课下来,基本上所有的知识点都可理解。我现在对电分知识的掌握,钟建老师是功不可没的。 最后关于课余时间电分学习的一些感想:学习电路,光上课听老师讲课那还不够的,大学的学习都是自主学习,没有老师的强迫,所以必须自己主动去学习,首先每次上完课后的练习,我觉得很有必要,因为每次上完课时都感觉听的很懂,看看书呢,也貌似都能理解,可是一到做题目就愣住了,要么是公式没有记住,要么是知识点不知道如何筛选,所以练习很重要,第二点,应该要反复回顾已经学过的内容,只有反复记忆的东西才能更深入,不然曾经学过的东西等到要用就全都忘记了,不懂得应该多问老师,不要得问题积累的解决不了才想到去问老师,那时候成效也就不见的有多大了。

一种简易的自动开关机电路设计

一种简易的自动开/关机电路设计 内容摘要:本文介绍了一种结构简单、使用方便可靠的开/关机电路。电路使用一个D触发器,配合软件上的处理实现单键开/关机、关机前重要数据自动保存及自动关机功能。 引言 节电是各种电池供电设备所需考虑的首要因素。为防止用户忘记关机,一些设备采用了自动关机电路。此外,许多设备中使用一个开/关按键控制开启或关断电源,即使微处理器(MPU)正在处理关键程序,按键按下时,系统也会关断,造成重要数据的丢失。本文仅使用一个D触发器设计了一种结构简单,使用方便可靠的开/关机电路。 电路设计 实际设计的自动开/关机电路如图1所示。其中U1A为双D触发器CD4013,外接电池电源由Vin输入。Q输出通过阻值为472W 的R5、103W的R4和NPN型三极管Q2反向驱动后,与开关电源芯片的开关引脚相连。以MAX1626为例,当SHDN为高时关闭电源,SHDN为低时打开系统电源。 复位式按键S1为系统电源开/关键。C1和R2组成RC网络,使得在S1按下后,保证R有12×104×10-3=120ms的延迟时间处于高电平。CD4013的D、CLK端接输入电源地,保证其处于低电平。置位引脚R一端通过103W的电阻接电源地,另一端通过三极管Q 3与MPU的I/O口相连。S1的右端与阻值为103W的R1相连,控制Q1开通。Q1的集电极与地之间接通稳压管,稳压管的输出与M PU的I/O口相连。 图1自动开/关机电路原理图

设计原理 开/关机电路的核心器件是一个D型触发器,型号为CD4013。其真值表如表1所示。观察其真值表可已看出,无论CLK为何种状态,S为0时,输出Q为0;R为0时,输出Q为1;而当R、S均为1时,输出Q为1;当R和S均为0时,只要CLK不产生上升沿脉冲,输出Q会保持前一输出状态。本电路正是利用R、S均为零时的状态保持特性来实现开/关机功能的。 由于本电路处于开/关电源前端,在电池接入状态下,无论系统电源是否打开,都处于工作状态。CD4013的输入电压范围为3~15V,因此本电路可以保证在宽电压输入范围内稳定工作。 系统开机原理 当按下开机按钮S1时,S与高电平接通,S=1。查阅真值表可得,当R=1,S=1时,输出Q应稳定输出1,经过三极管反向后,电源控制引脚SHDN为低电平,打开系统电源。通常MPU进行初始化时会将I/O引脚置为高电平,由于RC网络的延迟作用,S1按下后可以保证S端约有120ms处于高电平(保证开机稳定条件:RC网络的延迟时间>系统上电复位并将POWER_CTL状态稳定为1的时间)。经过三极管Q3反向,此时S=1,R=0,Q端输出1,系统电源处于打开状态。 MPU延迟后读取STATE引脚的状态。如果此时STATE为低电平,则确认Q1导通,S1曾按下,确认用户开机程序正常运行。如果此时STATE为高电平,则表明Q1截止,开机信号为误动作,程序执行关机程序。 当RC网络的延迟时间过后,S端由1转为0,此时S=0,R=0,查阅真值表得出此时输出Q应该维持前一输出状态,即保持系统开通电源状态。 系统关机原理 作为节电产品,如果在规定时间内系统没有工作,系统会自动转入关机程序,在保存重要数据后,自动关闭系统。

经典电磁场理论发展简史..

电磁场理论发展史 ——著名实验和相关科学家 纲要: 一、定性研究 1、吉尔伯特的研究 2、富兰克林 二、定量研究 1、反平方定律的提出 2、电流磁效应的发现 3、电磁感应定律及楞次定律 4、麦克斯韦方程 5、电磁波的发现 三、小结 一、定性研究 1、吉尔伯特的研究 他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质: 1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生; 2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥); 3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体; 4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失; 5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究 富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。 富兰克林所做的第二项重要工作是统一了天电和地电。 二、定量研究 1、反平方定律的提出 1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。他请普利斯特利给予验证。 英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。 法国物理学家库仑(公元1736—1806),起先致力于扭转和摩擦方面的研究。由于发表了有关扭力的论文,于1781年当选为国家科学院院士。他从事研究毛发和金属丝的扭转弹性。1784年法国科学院发出船用罗盘最优结构的悬奖征文,库仑转而研究电力和磁力问题。 1785年库仑自制了一台精巧的扭秤,作了电的斥力实验,建立了著名的库仑定律:两电荷之间的作用力与其距离的平方成反比,和两者所带电量的乘积成正比。 公式:F=k*(q1*q2)/r^2 2、电流磁效应的发现 丹麦物理学家奥斯特(公元1777—1851)首次发现电流磁效应,揭开了电和磁两种现象的内在联系,从此开始了电磁学的真正研究。 1820年4月在一次关于电和磁的讲课快结束时,他抱着试试看的心情做了实验,在一根根细的铂丝导线的下面放一个用玻璃罩罩着的小磁针,用伽伐尼电池将铂丝通电,他发现磁针偏转,这现象虽然未引起听讲人的注意,却使他非常激

电子电路实训心得体会

电子课程设计心得体会 通过一周的电子设计,我学会了如何将书本上学到的知识应用与实践,学会了一些基本的电子电路的设计、仿真与焊接,虽然在这个过程中我遇到了很多麻烦,但是在解决这些问题的过程中我也提高了自身的专业素质,这次设计不仅增强了自己在专业方面的信心,鼓舞了自己,更是一次兴趣的培养。 这次电子实习,我所选的课题是“倒计时光控跑马灯”,当拿到选题时,我认为这个不是很难。但当认真的考虑时,我才发现一切并非我想的那么简单。无论一个多么简单的课题,他所牵涉的知识比较多的,比如我这个选题不仅仅包括许多模电器件和数电器件,它还包含许多以前我没有接触或熟知的器件。所以我在设计时也在不断的学习,了解每一个器件的结构、工作原理及其运用。经过与搭档的多次交流,我们才确定了最后的电路方案,然后在多次的电路仿真之中,我们又进行了更加完善的修改,以达到万无一失。 第三天的任务主要是焊接自己设计的电路板。开始,我们都充满了好奇,毕竟这是第一次走进实验室去焊接电路板。不过才过了一天,所有的好奇心都烟消云散,换而的是苦与累。我这时才知道焊电路板确实是一件苦差事。焊电路板要人非常的细心,并且要有一定的耐心,因为焊接示若稍不注意就会使电路短路或者焊错。经过一两天的坚苦奋斗,终于焊完的。但当我们去测试时却无法出现预期的结果。然后我没办法只得去慢慢检查,但也查不出个所以然来。我想实际的电路可能与仿真的电路会产生差错,毕竟仿真的是在虚拟的界面完成的。 所以在接下来的几天我都在慢慢调试和修改中度过,想想那几天过的真的好累,在一次次的失败中修正却还是得不到正确的结果。好几次都想放弃,但最后还是坚持下来。经过多次调试,最后还是得到正确的结果,那一刻,我感觉如释重负,感觉很有成就感。一个星期的电子实习已经过去,但是使我对电子设计有了更的了解,使我学了很多,具体如下:1. 基本掌握手工电烙铁的焊接技能够独立的完成简单电子产品的安装与焊接。熟悉电子产品装工艺的生产流程,了解电子产品的焊接、调试与维修方法;2. 熟悉了有关电子设计与仿真软件的使用,能够熟练使用普通万用表;3.熟悉常用电子器件的类别、型号、规格、性能及其使用范围,能够灵活的运用 4.增强自己解决问题的能力,利用网上和图书馆的资源,搜索查找得到需要的信息; 5.明白了团队合作的重要性,和搭档相互讨论, 学会了怎么更好解决问题。篇二:电子技术实训心得体会 电子技术实训心得体会 开学的第一周,我们迎来了新学期里的第一堂课--电子工艺实训课。对于新学期里的新课程、新知识,我有种迫不及待的感觉。 在这一学期里,我们首先接触的是对电子元件的初步认识,还有电路的结构和布局。而这一实训课里最重要的东西便是日常生活里所见到的电焊。在课堂上,老师指导了我们对电焊的使用,由于在焊接过程中,加热的电焊是比较具有危险性的,如果使用不当会对自己或别人造成伤害。所以我们必须严格按照相关规定及正确的使用方法去使用电焊,避免烙伤事故的发生。 当我们初步掌握了电子元件的焊接方法技巧之后,便可以开始尝试焊接一些电路板元件了。其中电子元件的布局是很重要的。因为它关联到电路连接的方便简洁。 短短的一周过去了,在这一周里,如果没有老师的指导,我们的实训将会有很大的败笔,实训课无法得以完成,其次,在这一次实训中,使我明白,与同伴的合作交流是很重要的。团队精神要劳记在心里。与同性分享成功的喜悦难道不是一种很美好的事么? 实训课已渐入尾声,通过这一次,我们又收获到了很多珍贵的知识,而这与老师的辛勤是离不开的。在此,我和全体同学对老师说一声谢谢!老师您辛苦了!篇三:电子电路实训报告

模拟电路实验心得

模 拟 电 路 实 验 心13级电信二班得杨晓奇 体20130922222 会

时间过得很快,转眼间一学期过去了,模拟电路实验这门课也接近了尾声。在这学期学习过程中,有欢笑,有汗水,有同学们的努力学习,更有王老师对我们的谆谆教诲,一次次的实验课上有批评,有表扬,却让我们学到了很多知识。那么就将本学期实验课体会总结如下:模拟电路实验这门课,主要是通过学习理论知识,然后在实际中动手操作各种电路实验,再通过结合理论知识,实验操作来验证,加深对所有内容的理解。所以,理论与实践相结合才能达到更好的效果。总而言之,实验的重点在于培养学生掌握电工仪表的使用,训练基本接线技能,正确使用电子仪器,学会调试电子线路,并培养学生的动手能力。 在这学期的模拟电子技术实验学习过程中我学到了很多东西,比如:动手能力、逻辑思维以及设计思想都得到了很大的提高。为了让我们对模拟电路实验的基本原理和实验方法能够熟练掌握和理解,我们这学期开设了模拟电路实验,实验内容主要是分为获得元器件原始数据,测试,验证,调试,总结经验公式,完成实验报告等。实验设备主要用到的有:双踪示波器,信号发生器,,数字万用表,实验电源,交流毫伏表,模拟电子技术试验箱等。进行介绍,包括它们的特点,分类以及作用,然后让我们将各个电子元件进行实际的实验与验证。在做完实验后,通过总结实验过程中所出现的问题,以及实际测得的结果与理论估算值比较,讨论分析做出相应的解决方案,整理实验数据,并完成实验报告。 刚开始做实验的时候,示波器不怎么会调,犯了很多错,还好王

老师很耐心的教导,后面掌握的还不错。而在实验中有时我们虽然熟练掌握了操作实验的方法,弄明白了一些理论上不是很容易理解的问题。但是在操作中也会遇到意想不到的问题,可以说这是很锻炼人的,每次在解决了问题后都会有很多收获,同时也明白团队的意义,只有和组员同心协力,才能最快的完成实验。在实验前,老师总会很耐心的告诉我们一些要注意的问题。比如,在连接电路前,要将电源断开,先测什么后测什么,实验中要注意些什么等等;待我们连接好电路,王老师都会先检查,给我们详细讲解后,再让我们测量。最后感谢王老师这一学期对我们的指导和教育,让我们学到了很多专业及其他的知识。我们以后将会把那些运用到生活学习中。

自动控温浇水电路的设计

沈阳航空航天大学 课程设计 (说明书) 自动控温浇水电路的设计 班级机电1301 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称模拟与数字电子技术课程设计 课程设计题目自动控温浇水电路的设计 课程设计的内容及要求: 一、设计说明与技术指标 自动控温浇水电路的设计,设计一款自动浇水控温电路,用于控制植物生长温度,当温度高于30C 0时停止浇水,温度低于15C 0时0时该电路自动浇水降温,温度降低到20C 加温。且该装置应具备停电报警功能技术指标如下: ①温度控制范围20C 0~30C0。; ②温度超过上限值时采用声音报警; ③温度上下限可以手动设定; 二、设计要求 1.在选择器件时,应考虑成本。 2.根据技术指标,通过分析计算确定电路和元器件参数。 3.画出电路原理图(元器件标准化,电路图规范化)。 三、实验要求 1.根据技术指标制定实验方案;验证所设计的电路,用软件仿真。 2.进行实验数据处理和分析。 四、推荐参考资料 1.阎石著. 数字电子技术基础[M].北京:高等教育出版社,2005年 2.童诗白、华成英主编者. 模拟电子技术基础[M]. 北京:高等教育出版社,2010年3.赵淑范、王宪伟主编.电子技术实验与课程设计[M].北京:清华大学出版社,2010年 4.孙肖子、邓建国主编.电子设计指南[M].北京:高等教育出版社,2010年 五、按照要求撰写课程设计报告

成绩评定表: 指导教师签字: 2016 年1 月17日

自动控温浇水电路的设计 摘要:本文是介绍一个自动控温浇水电路,它由电源、温度检测控制电路、报警电路、浇水装置以及加温装置组成,能够自动控制植物的生长温度,当植物的温度高于30C0时浇水装置自动浇水降温,温度降低到20C0时停止浇水,温度低于15C0时加温。此外该装置还具备温度高于30C0报警功能。 关键词:温度检测;自动浇水;加温;温度高于30C0或停电报警。 一、概述 随着科技时代的不断地发展,信息化、自动化已全面普及人们的生活,生活水平也不断地提高,人们都渴望方便、快捷,所以对自动化的要求也越来越高。模拟与数字电路规模的变大和运用范围的变广,数字系统的设计变得越来越复杂,自动控制电路设计的优越性也会越来越显突出。自动控温浇水电路是自动控制电路中比较典型的电路之一。它的主要功能是在无人直接参与下自动控制植物的生长温度,从而自动控制植物的生长。在我们的现实生活中,有相当多的电器设备都是自动化的,减少了繁琐的操作,使人门的工作变得越来越简单。随着自动控制应用越来越广泛,自动化电路的应用也变得广泛起来,例如工厂自动检测生产线,大棚种植,花卉基地等等。如今各行各业对自动控制器的依赖越来越多,不止在工厂里,小到生活用品,大到航空航天事业都可以看见它的影子。课设设计的自动控温浇水电路就是一种用来自动控制植物生长的电路。 二、方案论证 设计一款自动浇水控温电路,用于控制植物生长温度,当温度高于30C0时该电路自动浇水降温,温度降低到20C 0时加温。 0时停止浇水,温度低于15C 方案一: 方案一原理框图如图1所示。 图1 自动控温浇水电路的原理框图

【通俗易懂】从电路到电磁场

直流电长期以来,我们了解电路是从回路开始的,以直流稳恒回路为例,电池把化学能转换成电能,电能通过导线传递到负载上,如下图: 电池中,化学能把电子从一极移向另一极,缺少电子一极为正极,获得电子一极为负极,两端形成了电势差(Vdc),也就存在了电场,方向从正极指向负极,化学能要驱动电子克服这个电场从正极移动到负极,电池内部的电流移动跟电场方向相反。 传统对于电子的理解是带负电荷量为e的一个实体,往往指起本身,但是,这个理解是不够准确的,电子除了本身,还应该包括它激发的负电场,电子与电子等作用,根本上是它们各自激发的电场与电场的作用。举个例子一块砖头从天空加速掉下来,是这块砖头激发的引力场与地球的引力场之间的作用导致砖头掉下来的,电子也是这个概念。所以对电子的认知,以前都是基于它的实体认知,现在更多的可以基于它激发的电场来认知,两者是等价的,但基于电场的认知,有助于理解高频、电磁场。 当用导线连接电池与负载构成一个电路回路,假设为理想导线,内阻为0,则导线跟所连接的正负极等电势,于是在导线之间也形成了电场,负载两端也有这个电势差(Vdc),所以负载内部也有电场。 很多人可能对于导线之间的电场无法理解,因为以前很少有提到的,所以往往无视,这是重点指出的。我们换一种思维想这个问题,把正负极之间的两根导线看作是一个电容,这个电容两端接在电源上,那么就很好理解了,这个电容被充电了,正负两端就集聚了正负电荷,两极之间就充满了电场,红色矩阵表示正极导线,绿色矩阵表示负极导线,里面的颜色表示内部的电荷分布,要靠近两电极边缘,这样保证导体整个形成等势体,理想导体内部是没有电场的,因为是等 势体

麦克斯韦电磁场理论的建立及意义

麦克斯韦电磁场理论的建立及意义 班级:物理系09本三班姓名:范日耀 摘要:文章通过对法拉第力线思想和W.汤姆孙的类比研究的阐述来引出麦克斯韦的电磁场理论。麦克斯韦经过三个艰难的过程建立了电磁场理论,为壮伟的物理大厦添砖加瓦,做出了巨大贡献。 关键字:法拉第力线思想W.汤姆孙类比研究麦克斯韦电磁场理论 一、引言 二、内容 1、前人的研究 (1)法拉第的力线思想 法拉第从广泛的实验研究中构想出描绘电磁作用的“力线”图像。他认为电荷和磁极周围的空间充满了力线,靠力线(包括电力线和磁力线)将电荷(或磁极)联系在一起。力线就像是从电荷(或磁极)发出、又落到电荷(或磁极)的一根根皮筋一样,具有在长度方向力图收缩,在侧向力图扩张的趋势。他以丰富的想象力阐述电磁作用的本质。 法拉第研究了电介质对电力作用的影响,认识到这一影响表明电力不可能是超距作用,而是通过电介质状态的变化;即使没有电介质,空间也会产生某种变化,布满了力线。后来,法拉第又进一步研究了磁介质,解释了顺磁性和反磁性。电磁感应现象则解释为磁铁周围存在某种“电应力状态”,当导线在其附近运动时,收到应力作用而有电荷做定向运动;回路中产生电动势则是由于穿过回路的磁力线数目发生了变化。 法拉第的力线思想实际上就是场的观念,这是近距理论的核心内容。 (2)W.汤姆孙的类比研究 在法拉第力线思想的激励下,W.汤姆孙对电磁作用的规律也进行过有益的研究。他从法国科学家傅里叶的热传导理论得到启示。傅里叶在1824年发表《热的分析理论》一书,详细的研究了在介质中热流的传播问题,建立了热传导方程。这本书W.汤姆孙对有很深的影响。 1842年,W.汤姆孙发表了第一篇关于热和电的数学论文,题为:《论热在均匀固体中的均匀运动及其与电的数学理论的联系》,他论述了热在均匀固体中的传导和法拉第电应力在均匀介质中传递这两种现象之间的相似性。他指出电的等势面对应于热的等温面,而电荷对应与热源。利用傅里叶的热分析法,他把法拉第的力线思想和拉普拉斯、泊松等人已经建立的完整的静电理论结合在一起,初步形成了电磁作用的统一理论。 1847年,W.汤姆孙进一步研究了电磁现象与弹性现象的相似性,在题为《论电力、磁力和伽伐尼力的力学表征》一文中,以不可压缩流体的流线连续性为基础,论述了电磁现象和流体力学现象的共性。1851年,他给除了磁场的定义,1856年,根据磁致旋光效应提出了磁具有旋转的特性,这样就为进一步借用流体力学中关于涡旋运动的理论,做好了准备。 W.汤姆孙运用类比方法,把法拉第的力线思想转变为定量的表述,为麦克斯韦的工作提供了十分有益的经验。 2、麦克斯韦建立电磁场理论 (1)电磁场理论建立的第一步 麦克斯韦在电磁理论方面的工作可以和牛顿在力学理论方面的工作相媲美。他和牛顿一样,是“站在巨人的肩上”,看得更深更远,作出了伟大的历史综合;他和牛顿一样,其丰硕的成果是一步一步提炼出来的。

电路实验总结

电路实验总结 总结的对象是什么?总结的对象是过去做过的工作或完成的某项任务,进行总结时,要通过调查研究,努力掌握全面情况和了解整个工作过程,只有这样,才能进行全面总结,避免以偏概全。 电路实验总结一:一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到现在的略懂一二。 在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。但是后来就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多情况下是在实验出现象以后在去想理论。在实验这门课中给我最大的感受就是,一定要先弄清楚原理,在做实验,这样又快又好。 在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。比如说测量三相电,有很多种情况,有中线,无中线,三角形接线法还是Y形接线法,在这个实验中,如果选择恰当的顺序就可以减少很多接线,做实验应该要有良好的习惯,应该在做实验之前想好这个实验要求什么,有几个步骤,应该怎么安排才最合理,其实这也映射到做事情,不管做什么事情,应该都要想想目的和过程,

这样才能高效的完成。电原实验开始的几周上课时间不是很固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自己的时间,我应该从这件事情中吸取教训,合理安排自己的时间,完成应该完成的学习任务。这学期做的一些实验都需要严谨的态度。在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要特别仔细。 在最后的综合实验中,我更是受益匪浅。完整的做出了一个红外测量角度的仪器,虽然不是特别准确。我和我组员分工合作,各自完成自己的模块。我负责的是单片机,和数码显示电路。这两块都是比较简单的,但是数码显示特别需要细致,由于我自己是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。 总结:电路原理实验最后给我留下的是:严谨的学习态度。做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。 电路实验总结二:电路实验,作为一门实实在在的实验学科,是电路知识的基础和依据。它可以帮助我们进一步理解巩固电路学的知识,激发我们对电路的学习兴趣。在

自动增益控制电路的设计与实现

自动增益控制电路的设计与实现 实验报告 北京邮电大学 信息与通信工程学院

一:课题名称 自动增益控制电路的设计与实现 二:摘要及关键词 1、摘要: 在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况;另外,在其他应用中,如监控系统中的多个相同传感器返回的信号中,频谱结构和动态范围大体相似,而最大波幅却相差甚多的现象。很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。 本实验在介绍了AGC电路的基础上,采用了一种相对简单而有效实现预通道AGC的方法,电路中使用了一个短路双极晶体管直接进行小信号控制的方法。 2、关键词: 驱动缓冲可变衰减自动增益控制电压跟随器反馈 三:设计任务要求 1、基本要求: 1)设计实现一个AGC电路,设计指标以及给定条件为: 输入信号0.5~50mVrms; 输出信号:0.5~1.5Vrms; 信号带宽:100~5KHz; 2)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘 制完整的电路原理图(SCH)及印制电路板图(PCB) 2、提高要求: 1)设计一种采用其他方式的AGC电路; 2)采用麦克风作为输入,8Ω喇叭作为输出的完整音频系统。 3、探究要求: 1)如何设计具有更宽输入电压范围的AGC电路; 2)测试AGC电路中的总谐波失真(THD)及如何有效的降低THD。四:设计思路及总体结构框架 1、设计思路 ①该实验电路中使用了一个短路双极晶体管直接进行小信号控制 的方法,从而相对简单而有效实现预通道AGC的功能。如下图,可变分 压器由一个固定电阻R1和一个可变电阻构成,控制信号的交流振幅。 可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改 变Q1电阻,可从一个由电压源和大阻值电阻R2组成的直流源直接向短 路晶体管注入电流。为防止R2影响电路的交流电压传输特性。R2的阻 值必须远大于R1.

电磁场简答题

简答题: 1、请说明在空心金属波导内能否存在TEM 波(结论及原因)。(10%) 解: 不能。(3分) 若存在TEM 波,z H 0=,则磁场在横截面内闭合,沿磁场闭合路径积分必不等于零(2分),由广义安培环路定律,该闭合路径必然包含电流(3分),而空心波导中心无导体,只能存在纵向位移电流,即z E 0≠(2分)。故TEM 波无法存在 1、 体电流密度J 的定义是什么?单位是什么?s J 与J 是什么关系?流过某一曲面的电流 I 与J 有什么关系?说明在σ有限的导电媒质表面传导电流0s J = (A/m 2) 当在σ有限时,导电媒质表面传导电流 2、 试写出下列物理量的单位:电场强度、电位移矢量、磁感应强度、磁场强度;介电常数、 磁导率、电导率。 答:电场强度的单位 N/C(牛顿/库仑) 或 V/m(伏特/米) 电位移矢量的单位 C/m 2(库仑/米2) 磁感应强度的单位 T(特斯拉) 或 Wb/m 2(韦伯/米2) 磁场强度的单位 安培/米 (A/m ) 介电常数的单位 F/m (法/米) 磁导率的单位 H/m (亨/米) 电导率的单位 S/m (西门子/米) 3、 分别写出高斯定理和安培环路定理的数学表达式。并说明在什么条件下可由高斯定理求0d lim d n n S i i S S ?→⊥⊥?==?J e e d S I =? J S 0lim S h h →=J J 00lim lim 0S h h h h σ→→===J J E

出给定电荷分布的电场?为什么? 答:高斯定理 d d S V V ρ=??D S 安培环路定理 d d c S =??H l J S 在电荷和介质分布都具有对称性(平面对称、球对称和无限长轴对称)时,才可由高斯定理求出给定电荷分布的电场。只有在此条件下,才可能方便计算出适应对称性的闭合面上的电位移的通量,再由与面内的总电量的关系计算出电位移,再由本构关系计算出电场强度。 4、 极化强度的定义是什么?极化电荷体密度P ρ与P 是什么关系?电位移矢量D 是如何 定义的?若已知介电常数和电场强度,如何计算P 和D ?两种不同介质分界面上的极化电荷面密度与介质分界面两侧的1P 、2P 有什么关系? 答: ε=D E 5、 试从产生的原因、存在的区域及引起的效应比较传导电流与位移电流。 答: 产生的方式:传导电流与自由电荷定向运动有关,位移电流可以与电荷运动无关(由变化的电场),或只与束缚电荷的定向运动有关。 存在的区域:传导电流存在于电导率不为零的媒质中,位移电流不存在于电导率无限大的媒质中。 引起的效应:都有磁效应,位移电流在高频时有热效应。 1.平面电磁波在媒质分界面上的反射特性和透射特性与哪些因素有关? 答:与界面两侧媒质的电磁特性参数(2分)、入射波的极化特性和入射角有关(3分)。 1. 试说明为什么单导体波导不能传播TEM 波。 答:对TEM 波,有E z =0和H z =0 由 d d d c S S t ?=+????D H l J S S 和 d d c S t ?=-???B E l S 对于横向的任意闭合回路C 有 0=lim i i V V ?→?∑p P P ρ=-?P 0ε=+D E P 21SP n n P P ρ=-

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用 摘要:电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。 关键词:电磁学电磁场理论现代科技 对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。 库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,.泊松、.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。 直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电

模拟电路实验心得体会

模拟电路实验心得体会 篇一:电路实验心得体会 电路实验心得体会一:电路实验心得体会 本周主要进行电工实验设计和指导,经过一周时间,我们在辅导老师和辛勤帮助指导之下,完成了这次的实验任务,本次实验设计一共进行了四项,在进行实验之前,一定要把课本先复习掌握一下,以方便实验的经行和设计。我分别设计了对戴维南定理的验证试验,基本放大电路的实验,逻辑电路四人表决器的设计实验和六进制电路的设计实验,首先,在进行戴维南定理实验设计的时候,经过自己的资料查找和反复设计,排除实验过程中遇到的一些困难,最终圆满的完成了实验任务及要求,在进行放大电路设计时就遇到了一定困难,也许是由于这些实验是电工教学中下册内容,在知识方面掌握还是不够,所以遇到了较多困难,通过老师指导和同学的帮助,一步一步进行改进和设计,在设计过程中也学到了许多放大电路的知识,更加深入的体会到有关放大电路的基本原理。设计6进制的时候要了解芯片的作用,懂得该芯片的原理,最后设计的就是逻辑电路实验,每个实验的设计都经历许多的挫折,产生许多的问题,我们在出现的问题上对实验设计进行一步步的修改,这样还帮助我们弄懂了很多的问题。

实验过程中,从发现问题到解决问题,无不让我们更加明白和学习到电工知识的不足,让我们更加深入透彻的学习掌握这些知识,我认为,这次的实验不仅仅更加深入的学习到了电工知识,还培养了自己独立思考,动手操作的能力,并且我们学习到了很多学习的方法,这些都是今后宝贵的财富。通过电工实验设计,从理论到实际,虽然更多的是幸苦,但是学完之后,会发现我们收获的真的很多,所以这些付出都是值得的。 本次实验我们还利用了ewb软件绘图,这是一项分有作用的软件,我们电工学学习此软件对今后学习帮助分重大,所以这也是一项重大的收获。本次实验花了我较多时间,但是又由于实验周与考试安排较近,所以做的又有一定的匆忙性,实验设计上的缺陷还是很明显的,所以经过了老师和同学的批评指正,分感激大家的帮助,我想这次的实验设计所收获的点点滴滴,今后一定能对我们起到重要的帮助! 电路实验心得体会二:电路实验心得体会 一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到现在的略懂一二。 在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。但是后来就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多情况下是在实验出现象以后在去想理论。

相关文档
最新文档