初中七年级数学用坐标表示平移(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.2.2 用坐标表示平移
基础过关作业
1.将点(-3,1)向右平移4个单位长度,再向上平移2个单位长度,可以得到对应点_______.2.三角形ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将三角形ABC•向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标为()
A.(5,0),(4,2),(6,-1) B.(-1,0),(-2,2),(0,-1)
C.(-1,2),(-2,4),(0,1) D.(5,2),(4,4),(6,1)
3.在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)•一个正数a,相应的新图形就是把原图形向________(或向_______)平移______个单位长度.
4.如图,菱形ABCD,四个顶点分别是A(-2,1),B(1,-3),C(4,-1),D(1,1).将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为多少?将它沿y轴正方向平移4个单位长度呢?分别画出平移后的图形.
5.如图,梯形A′B′C′D′可以由梯形ABCD经过怎样的平移得到?•对应点的坐标有什么变化?
综合创新作业
6.(综合题)如图,三角形ABC是由三角形A1B1C1平移后得到的,三角形ABC中任意一点P(x,y)经平移后对应点为P1(x-3,y-5),求A1、B1、C1的坐标.
7.如图,一个机器人从O点出发,向正
东方向走3米到达A1点,•再向正北
方向走6米到达A2点,再向正西方
向走9米到达A3点,再向正南方向
走12米到达A4点,再向正东方向走
15米到达A5•点,•按如此规律走下
去,•当机器人走到A6点时,•A6点
的坐标是________.
8.(创新题)在直角坐标系中,A(-3,
4),B(-1,-2),O为原点,求三角
形AOB的面积.
9.(易错题)把点A(3,2)向下平移4个单位长度,可以得到对应点A1_____,•再向左平移6个单位长度,可以得到对应点A2_______,则点A1与点A关于______对称,点A2与点A关于_______对称,点A2与点A1关于______对称.
培优作业
10.如图所示,在直角坐标系中,第一次将△OAB变换成△OA1B1,•第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(•8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).
(1)观察每次变换前后的三角形有何变化,找出规律,按些变换规律将△OA3B3变换成△OA4B4,则A4的坐标是_______,B4的坐标是_________.
(2)若按第(1)题的规律将△OAB进行了n次变换,得到△OA n B n,•比较每次变换中三角形顶点坐标有何变化,找出规律,请推测A n的坐标是_______,B n的坐标是_______.11.(开放题)如下左图,这是一个利用平面直角坐标系画出的某动物园地图,如果猴山和大象馆的坐标分别是(-5,3)和(-5,-3),虎豹园的地点是(4,2),•你能在此图上标出虎豹园的位置吗?
12.(2005年,广东茂名)如上右图,有一条小船,
(1)若把小船平移,使点A平移到点B,请你在图中画出平移后的小船;
(2)若该小船先从点A航行到达岸边L的点P处补给后,再航行到点B,•但要求航程最短,试在图中画出点P的位置.
数学世界
蜘蛛网与线路最短问题
爸爸出差前,留给小华一道题:
下图是某地区的交通网,其中小圈代表城镇,小圈间的连线代表道路,连线旁的a1表示该段道路的千米数,请你选择一条,从A到B的最短线路.
小华绞尽脑汁,想了一天还是没有眉目.吃过晚饭,他信步走进小树林,东瞅瞅,•西瞧瞧,一眼落到一张硕大的蜘蛛网上,这张蜘蛛网,多像那张交通图啊!,突然,一只小虫撞到网上,小虫奋力挣扎,于是便不断地拉紧连到网中心的最短的那根丝,•蜘蛛沿着那根丝,迅速出击,抓住了小虫,小华若有所悟,口里直嚷嚷:“有了!有了!•”很快地解出了这道题,你知道小华是用什么方法解决这道题的吗?
答案:
1.(1,3)
2.B 点拨:将A、B、C三点的横坐标都减去3,纵坐标都减去1得(-1,0),(-2,2),(0,-1),故选B.
3.右;左;a
4.解:将菱形沿x轴负方向平移3个单位长度,各个顶点的坐标变为
(-5,-1),(-2,-3),(1,-1),(-2,1).
将它沿y轴正方向平移4个单位长度,各个顶点的坐标变为
(-2,3),(1,1),(4,3),(1,5).图略.
5.解:梯形A′B′C′D′可以由梯形ABCD先向左平移7个单位,再向上平移7个单位得到.点A、B、C、D的横坐标都减去7,纵坐标都加7,可以得到点A′、B′、C′、D′的坐标.
A(1,-6)→A′(-6,1),B(6,-6)→B′(-1,1),C(5,-2)→C′(-2,5),D(3,-2)•→D′(-4,5).
6.解:由题意知,三角形A1B1C1是由三角形ABC先向左平移3个单位长度,再向下平移5个单位长度得到的.
因为A(4,3),B(3,1),C(1,2)
所以A1(1,-2),B1(0,-4),C1(-2,-3).
7.解:以点O为原点,正向方向为x轴正方向,
正北方向为y轴正方向,•建立如答图所示的平
面直角坐标系,题中机器人运动的过程,•实质
上是坐标系中点的平移过程,即A1(3,0)→
A2(3,6)→A3(-6,6)→A4(-6,-6)→A5
(9,-6)→A6(9,12).
因此,在以O点为坐标原点,正北方向为y
轴正方向的平面坐标系中,A6的坐标为(9,12).
8.解:如答图,作AC⊥y轴,BD⊥y轴,垂足分
别为C、D.
∵A(-3,4),B(-1,-2),
∴AC=3,BD=1,CD=6,OD=2
∴S△AOB=S梯形ABCD-(S△OAC+S△OBD)
=1
2
×(1+3)×6-(
1
2
×3×4+
1
2
×1×2)=5.
点拨:在平面直角坐标系中求几何图形的面积,通常采
取向x轴或y轴作垂线,•将几何图形割补的方法,同学们
想一想,这是为什么?
9.(3,-2);(-3,-2);x轴;原点;y轴
点拨:点(a,b)关于x轴的对称点是(a,-b),关于y轴的对称点是(-a,b),关于原点的对称点是(-a,-b).
10.(1)(16,3);(32,0)
点拨:A(1,3),A1(2,3),A2(4,3),A3(8,3),其纵坐标都为3,
而横坐标依次为20,21,22,23.因此,A4(24,3),即A4(16,3).
同理,B(2,0),B1(4,0),B2(8,0),B3(16,0),它们的纵坐标都是0,
而横坐标依次是21,22,23,24,因此得出B4(24+1,0),即B4(32,0).
(2)(2n,3);(2n+1,0)
11.如答图:
点拨:首先确定出平面直角坐标系的原点,x
轴、y轴的正方向.
12.解:(1)平移后的小船如答图所示.