排列组合问题的解决方法总结

合集下载

完整版)排列组合的二十种解法(最全的排列组合方法总结)

完整版)排列组合的二十种解法(最全的排列组合方法总结)

完整版)排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力。

3.学会应用数学思想和方法解决排列组合问题。

复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。

2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。

3.分类计数原理和分步计数原理区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。

解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。

2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

一、特殊元素和特殊位置优先策略:例1:由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。

先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3.由分步计数原理得C4×C3×A4^3=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素。

若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

排列组合解题方法和策略总结

排列组合解题方法和策略总结

排列组合解题方法和策略总结排列组合是数学中一个重要的概念,它涉及到从n个不同元素中取出m个元素(n>m)进行排列或组合的问题。

排列组合问题在日常生活和科学研究中有着广泛的应用,因此掌握排列组合的解题方法和策略非常重要。

以下是排列组合解题方法和策略的总结:1.明确问题要求:在解决排列组合问题时,首先要明确问题的要求,确定是排列问题还是组合问题,以及具体的限制条件。

2.确定元素范围:根据问题要求,确定所选取元素的范围,明确哪些元素可以选取,哪些元素不能选取。

3.列出所有可能的排列或组合:根据排列组合的公式,列出所有可能的排列或组合,确保不遗漏任何一种可能性。

4.分类讨论:对于一些复杂的问题,需要进行分类讨论。

根据问题的特点,将问题分成若干个子问题,分别求解子问题的排列组合情况。

5.排除法:在某些情况下,可以通过排除法求解问题。

根据问题的限制条件,排除一些不可能的情况,从而减少计算量。

6.递推关系:对于一些具有递推关系的问题,可以利用递推关系求解。

通过递推关系,逐步推导出最终的排列组合情况。

7.容斥原理:容斥原理是解决排列组合问题的一种重要方法。

通过容斥原理,可以将多个排列或组合的情况合并为一个,从而简化计算过程。

8.实际应用:排列组合问题在日常生活和科学研究中有着广泛的应用。

通过实际应用,可以加深对排列组合概念的理解,并掌握解题方法和策略。

解决排列组合问题需要掌握一定的方法和策略。

通过明确问题要求、确定元素范围、分类讨论、排除法、递推关系、容斥原理等方法和策略,可以有效地解决各种排列组合问题。

同时,通过实际应用,可以加深对排列组合概念的理解,提高解题能力。

排列组合在日常生活和科学研究中有着广泛的应用,以下是其中一些典型的应用场景:1.生日庆祝:在生日庆祝中,排列组合可以用来确定不同的庆祝活动安排。

例如,如果有5个朋友参加生日派对,可以使用排列组合确定他们坐在一张圆桌上的不同方式。

2.彩票购买:在购买彩票时,可以使用排列组合来计算不同号码的组合。

(完整word版)排列组合的二十种解法(最全的排列组合方法总结),推荐文档

(完整word版)排列组合的二十种解法(最全的排列组合方法总结),推荐文档

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合题型总结

排列组合题型总结

排列组合题型总结排列组合是数学中的一种常见的问题类型,它涉及到对一组元素进行不同排列或组合的情况计算。

在解决排列组合问题时,可以采用不同的方法和公式,以下是一些常见的排列组合题型及其解决方法的总结。

1. 排列问题:排列是从一组元素中抽取若干个元素按照一定的顺序组成不同的序列。

解决排列问题时,可以使用如下的排列公式。

公式:P(n, k) = n! / (n-k)!其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行排列,可以得到的排列数为:P(4, 2) = 4! / (4-2)! = 4*3 = 12。

2. 组合问题:组合是从一组元素中抽取若干个元素按照任意顺序组成的不同子集。

解决组合问题时,可以使用如下的组合公式。

公式:C(n, k) = n! / (k! * (n-k)!)其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行组合,可以得到的组合数为:C(4, 2) = 4! / (2! * (4-2)!) = 4*3 / 2 = 6。

3. 重复排列问题:重复排列是从一组元素中进行有放回地抽取若干个元素,按照一定的顺序组成的不同序列。

解决重复排列问题时,可以使用如下的重复排列公式。

公式:P'(n, k) = n^k其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行重复排列,可以得到的不同序列数为:P'(4, 2) = 4^2 = 16。

4. 重复组合问题:重复组合是从一组元素中进行有放回地抽取若干个元素,按照任意顺序组成的不同子集。

解决重复组合问题时,可以使用如下的重复组合公式。

公式:C'(n, k) = C(n+k-1, k)其中,n表示一组元素中的总个数,k表示抽取的个数。

示例:从4个元素中选取2个元素进行重复组合,可以得到的不同子集数为:C'(4, 2) = C(4+2-1, 2) = C(5, 2) = 5! / (2! * (5-2)!) = 5*4 / 2 = 10。

事业单位数量关系:事业单位中的排列组合问题

事业单位数量关系:事业单位中的排列组合问题

在近些年的事业单位考试中, 排列组合问题成为了数量中的“常客”, 突破这类题型, 能让考生在数量关系考题中取得好的成绩。

为了让各位考生熟悉此类题型, 我们在此对近些年事业单位考试中的排列组合问题加以整理和总结, 帮助考生掌握解此类题型。

一、排列组合问题解题基本步骤1.明确题干细节和问题要求2.根据要求提出解决办法3.根据采用的办法判断分类或分步, 分别相加和相乘二、实战演练【例1】2022年间, 甲、乙、丙、丁四个教研室共在学术期刊上发表文章2 8篇, 已知甲发表的文章数不到10篇且不少于乙。

乙发表的文章数不少于丙, 丙发表的文章数不少于丁, 丁发表的文章数是奇数。

问: 每个教研室发表的文章数有多少种不同的可能性?A.4B.6C.8D.10【答案】C。

解析: 根据题意, 丁≤丙≤乙≤甲<10, 丁+丙+乙+甲=28, 四个数相等时丁最大为7, 又丁的文章数是奇数, 则丁只可以取1.3.5.7, 甲可以取7、8、9。

①当甲=9时丁=1, 乙+丙=18, 则乙、丙只能为(9、9);丁=3, 乙+丙=16, 则乙、丙可以取(8、8)、(9、7);丁=5, 乙+丙=14, 则乙、丙可以取(7、7)、(8、6)、(9、5);丁=7, 乙+丙=12, 乙、丙没有符合的。

②当甲=8时丁=1, 乙+丙=19, 乙、丙没有符合的;丁=3, 乙+丙=17, 乙、丙没有符合的;丁=5, 乙+丙=15, 则乙、丙可以取(8、7);丁=7, 乙+丙=13, 乙、丙没有符合的。

③当甲=7时, 丁只有取7才能符合且乙=丙=7。

综上, 共有8种不同的可能性, 故答案选C。

【例2】一个密码由4位不相同的数字组成, 已知由这四个数字按次序组成的阿拉伯数字小于2000, 且第二位数比第四位数大7。

问:满足这一条件的密码一共有多少个?A.28B.36C.60D.120【答案】A。

解析: 因由这4个不同数字按次序组成的阿拉伯数字小于2000,则这个四位数的首位可能是1或者0。

排列组合常用方法总结(全)

排列组合常用方法总结(全)

解决排列组合问题常见策略学习指导1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。

组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的。

较复杂的排列组合问题一般是先分组,再排列。

必须完成所有的分组再排列,不能边分组边排列.排列组合问题的常见错误是重复和遗漏.弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧.集合是常用的工具之一.为了将抽象问题具体化,可以从特殊情形着手,通过画格子,画树图等帮助理解。

“正难则反”是处理问题常用的策略。

常用方法:一. 合理选择主元例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同的元素中任选3个元素放在3个位置上,共有种不同坐法。

例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。

二. “至少"型组合问题用隔板法对于“至少”型组合问题,先转化为“至少一个"型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。

例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法?解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有:(种)三。

注意合理分类元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。

再用分类计数原理求出总数。

例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。

解:比2015大的四位数可分成以下三类:第一类:3×××,4×××,5×××,共有:(个);第二类:21××,23××,24××,25××,共有:(个);第三类:203×,204×,205×,共有:(个)∴比2015大的四位数共有237个。

高中数学排列组合问题方法总结

高中数学排列组合问题方法总结

高中数学排列组合方法总结1. 分组(堆)问题分组(堆)问题的六个模型:①无序不等分;②无序等分;③无序局部等分;(④有序不等分;⑤有序等分;⑥有序局部等分.)处理问题的原则:①若干个不同的元素“等分”为m个堆,要将选取出每一个堆的组合数的乘积除以m!②若干个不同的元素局部“等分”有m个均等堆,要将选取出每一个堆的组合数的乘积除以m!③非均分堆问题,只要按比例取出分完再用乘法原理作积.④要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列.1. 分组(堆)问题例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程. 共有多少种不同的发包方式?解:要完成发包这件事,可以分为两个步骤:⑴将四项工程分为三“堆”,有种分法;⑵再将分好的三“堆”依次给三个工程队,有3!=6种给法.∴共有6×6=36种不同的发包方式.2.插空法:解决一些不相邻问题时,可以先排“一般”元素然后插入“特殊”元素,使问题得以解决.♀♀♀♀♀♀♀↑↑↑↑↑↑例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?解:分两步进行:第1步,把除甲乙外的一般人排列:第2步,将甲乙分别插入到不同的间隙或两端中(插孔):几个元素不能相邻时,先排一般元素,再让特殊元素插孔.3.捆绑法相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列.例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法?解:(1)分两步进行:♀♀♀♀♀♀甲乙第一步,把甲乙排列(捆绑):第二步,甲乙两个人的梱看作一个元素与其它的排队:几个元素必须相邻时,先捆绑成一个元素,再与其它的进行排列.4.消序法(留空法)几个元素顺序一定的排列问题,一般是先排列,再消去这几个元素的顺序.或者,先让其它元素选取位置排列,留下来的空位置自然就是顺序一定的了.例4. 5个人站成一排,甲总站在乙的右侧的有多少种站法?解法1:将5个人依次站成一排,有种站法,然后再消去甲乙之间的顺序数∴甲总站在乙的右侧的有站法总数为211421226C C CA =55A有=120种排法26A有=30种插入法120303600∴⨯共有=种排法22A有=2种捆法2120240∴⨯共有=种排法55A有=120种排法55A22A535522543AAA=⨯⨯=解法2:先让甲乙之外的三人从5个位置选出3个站好,有 种站法,留下的两个位置自然给甲乙有1种站法∴甲总站在乙的右侧的有站法总数为4.消序法(留空法)变式:如下图所示,有5横8竖构成的方格图,从A 到B 只能上行或右行共有多少条不同的路线?BABA解: 如图所示将一条路经抽象为如下的一个排法(5-1)+(8-1)=11格:也可以看作是1,2,3,4,5,6,7,①,②,③,④顺序一定的排列,有种排法. 其中必有四个↑和七个→组成!所以, 四个↑和七个→一个排序就对应一条路经,所以从A 到B 共有条不同的路径.5.剪截法(隔板法):n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪截成m 段.例5. 某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班至少一个名额,则不同的分配方案共有___种.解: 问题等价于把16个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.将16个小球串成一串,截为4段有种截断法,对应放到4个盒子里. 35A 33551A A ⨯=514(51)(81)11C C --+-=315455C =因此,不同的分配方案共有455种 .5.剪截法:n个相同小球放入m(m≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n个相同小球串成一串从间隙里选m-1个结点剪截成m段.变式:某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班的名额不少于该班的序号数,则不同的分配方案共有___种.解:问题等价于先给2班1个,3班2个,4班3个,再把余下的10个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.将10个小球串成一串,截为4段有种截断法,对应放到4个盒子里.因此,不同的分配方案共有84种 .6.错位法:编号为1至n的n个小球放入编号为1到 n的n个盒子里,每个盒子放一个小球.要求小球与盒子的编号都不同,这种排列称为错位排列.特别当n=2,3,4,5时的错位数各为1,2,9,44.例6. 编号为1至6的6个小球放入编号为1至6的6个盒子里,每个盒子放一个小球,其中恰有2个小球与盒子的编号相同的放法有____种.解:选取编号相同的两组球和盒子的方法有种,其余4组球与盒子需错位排列有9种放法.故所求方法有15×9=135种.7.剔除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法.排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例7. 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条.解:所有这样的直线共有条,其中不过原点的直线有条,∴所得的经过坐标原点的直线有210-180=30条.小结:①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法).3 984C=2 615C=37210A=1266180A A⨯=1.将3封不同的信投入4个不同的邮筒,则不同的投法的种数是()A.43B.34C.34AD.34CB2.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块地上,其中黄瓜必须种植,不同的种植方法共有( ) A.24种 B.18种 C.12种 D.6种B3. 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A.4448412C C C 种B.34448412C C C 种 C.3348412AC C 种D.334448412A C C C 种 A。

排列组合的二十种解法(最全的排列组合方法总结)(同名13661)

排列组合的二十种解法(最全的排列组合方法总结)(同名13661)

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习稳固1.分类计数原理(加法原理)完成一件事,有n 类方法,在第1类方法中有1m 种不同的方法,在第2类方法中有2m 种不同的方法,…,在第n 类方法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理〔乘法原理〕完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,假设两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

(完整版)☆排列组合解题技巧归纳总结(可编辑修改word版)

(完整版)☆排列组合解题技巧归纳总结(可编辑修改word版)

344 4 3 4A C 5 2 2 5 排列组合解题技巧归纳总结教学内容1. 分类计数原理(加法原理)完成一件事,有n 类办法,在第 1 类办法中有m 1 种不同的方法,在第 2 类办法中有m 2 种不同的方法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有:种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成 n 个步骤,做第 1 步有 m 1 种不同的方法,做第 2 步有 m 2 种不同的方法,…,做第n 步有m n 种不同的方法,那么完成这件事共有:种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例 1.由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C 1 然后排首位共有C 1 最后排其它位置共有 A 3由分步计数原理得C 1C 1A 3 = 288443练习题:7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里, 问有多少不同的种法? 二.相邻元素捆绑策略例 2. 7 人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合解题方法总结

排列组合解题方法总结

排列组合解题方法总结1. 前言在数学中,排列组合是一种重要的数学概念,它在各个领域都有着广泛的应用。

排列和组合问题通常涉及到从给定的元素集中选择特定数量的元素并进行排列或组合的方式。

本文将对排列和组合的解题方法进行总结和归纳,希望能帮助读者更好地理解和应用这些方法。

2. 排列问题排列是从给定的元素集中选择特定数量的元素进行排序的方式。

在解决排列问题时,我们常常使用以下两种常见的解题方法:2.1. 乘法法则乘法法则是一种直观且常用的解决排列问题的方法。

根据乘法法则,如果有n个元素要进行排列,第一个位置上有n种选择,第二个位置上有n-1种选择,以此类推,直到最后一个位置上只剩下1种选择。

因此,总的排列数为 n * (n-1) * … * 2 * 1,即 n!(阶乘)。

例如,如果有4个元素要进行排列,那么一共会有 4! = 4 * 3 * 2 * 1 = 24 种排列方式。

2.2. 公式法除了乘法法则,我们还可以使用公式来求解排列问题。

根据排列的定义,如果从n个元素中选择r个元素进行排列,并且排列顺序很重要,那么排列数可以由下面的公式给出:P(n, r) = n! / (n - r)!其中P(n, r)表示从n个元素中选择r个元素进行排列的方式数。

3. 组合问题组合是从给定的元素集中选择特定数量的元素并形成一个子集的方式。

在解决组合问题时,我们常常使用以下两种常见的解题方法:3.1. 公式法根据组合的定义,如果从n个元素中选择r个元素进行组合,并且组合顺序不重要,那么组合数可以由下面的公式给出:C(n, r) = n! / (r! * (n - r)!)其中C(n, r)表示从n个元素中选择r个元素进行组合的方式数。

3.2. 递推法递推法是一种通过递推关系来解决组合问题的方法。

根据组合的性质,我们可以得到以下递推关系式:C(n, r) = C(n-1, r-1) + C(n-1, r)通过逐步推导,可以从基础情况开始递推计算出组合数。

☆排列组合解题技巧归纳总结

☆排列组合解题技巧归纳总结

排列组合解题技巧归纳总结教学内容1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

排列组合题型方法总结

排列组合题型方法总结

排列组合题型方法总结排列组合是高中数学中的一个重要概念,是组合数学的一部分。

在实际问题中,排列组合经常用于解决具体的计数问题。

在本文中,我将总结一些常见的排列组合题型及解题方法。

一、排列题型排列是指将一组元素按照一定的顺序进行排列,其中每个元素只能使用一次。

在排列题中常见的有以下几个题型:1. 线性排列:将不同的元素排成一列,求出排列的总数。

解题方法:根据要求确定对应的元素个数,并使用乘法法则计算排列的总数。

2. 圆排列:将不同的元素排成一个圆,求出排列的总数。

解题方法:将圆转成线性排列问题,然后使用相应的公式计算总数。

3. 重复排列:将一组相同的元素排列,求出排列的总数。

解题方法:根据相同元素的个数和元素总数使用组合计数的方法求解。

4. 位置固定:将一组元素排列,其中有一些元素的位置是固定的,求出排列的总数。

解题方法:先将固定位置的元素排列,再将剩余的元素排列,最后将两部分排列的总数相乘。

二、组合题型组合是指从一组元素中选取一部分元素进行组合,其中元素的顺序不重要。

在组合题中常见的有以下几个题型:1. 选取固定元素数量:从一组元素中选取固定数量的元素,求出组合的总数。

解题方法:根据选取数量使用排列计数的方法求解,然后除以固定元素的排列数。

2. 选取至少/至多元素数量:从一组元素中选取至少或至多数量的元素,求出组合的总数。

解题方法:分别计算满足要求的最少元素数量和最多元素数量的组合数,再将两者相加。

3. 选取按顺序:从一组元素中按照一定的顺序选取元素,求出组合的总数。

解题方法:根据顺序确定每个元素的选取范围,然后使用乘法法则计算总数。

4. 选取排除元素:从一组元素中选取一部分元素,其中不能包含某些特定的元素,求出组合的总数。

解题方法:先计算从总元素中选取的组合数,再计算不包含特定元素的组合数,最后将两者相减。

三、应用题在实际问题中,排列组合常常用于解决具体的计数问题。

下面列举几个常见的排列组合应用题:1. 手环问题:将不同颜色的手环依次戴在手上,求出不同戴法的总数。

(完整版)☆排列组合解题技巧归纳总结

(完整版)☆排列组合解题技巧归纳总结

排列组合解题技巧归纳总结教学内容1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?443解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

排列组合解题技巧归纳总结

排列组合解题技巧归纳总结

排列组合解题技巧归纳总结一、排列组合解题概述排列组合解题是一种常见的数学解题方法,它是从实际问题中抽象出的数学思路,即利用数学的思想研究问题的中可能的不同情况。

它是指将从某概念领域中抽出的元素,按一定规则进行排列组合,以求出符合要求的所有可能情况,并且再对这些可能情况进行比较选择。

二、关于排列组合解题的技巧1、熟悉必要的知识排列组合解题一般有四种情形,分别是无重复排列,有重复排列,无重复组合,有重复组合。

读者在学习排列组合解题技巧时要先熟练掌握这四种情形的基本概念。

2、理解问题为正确解决排列组合解题,必须结合问题本身,仔细阅读题干,弄清所求的具体内容,讨论其间的联系和规律,并把握到全局。

3、合理分类将题目中的个体或要素,按某种形式或方法进行分类,这样就可以有效地缩小解题范围,把问题转化成容易求解的形式。

4、计算概率排列组合解题究竟有多少种可能,有时可以利用数学概率公式,计算概率,从而辅助解题,快速缩小解题步骤,提高解题效率。

5、模拟实验在排列组合解题过程中,可以采用模拟实验的方法,通过模拟试验来找出具体的结果情况,以有效节约解题时间。

6、求解问题求解排列组合解题有三种方法:因式分解法、基本计算法和穷举法。

因式分解法是把问题分解为几个不同的小问题进行全面求解;基本计算法就是用一定的数学计算技巧,用必要的算式和穷举函数,来对复杂的问题进行求解;穷举法就是把所有可能的情况都列出来,逐一筛查出正确的结果。

三、总结排列组合的解题方法,是从实际问题中抽象出的数学思路,它可以帮助我们把复杂的问题转化为容易解答的数学计算。

其具体解题技巧也有很多,这就要求读者先有足够的数学知识,精确把握问题,合理地分类,根据题意来确定使用穷举法、因式分解法、基本计算法等,以最短时间最高效地解决问题。

排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全

排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全

排列组合问题的解题方法总结一、相邻问题 “捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。

例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解: 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有66A 种排法,其中女生内部也有33A 种排法,根据乘法原理,共有6363A A 种不同的排法. 练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A55种,甲、乙二人的排列有A22种,共有A22·A55=240种.二、不相邻问题 “插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。

例2: 学校组织老师学生一起看电影,同一排电影票12张。

8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解:先排学生共有88A 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有47A 种选法.根据乘法原理,共有的不同坐法为4878A A 种.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的 6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A =种.三、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。

☆排列组合解题技巧归纳总结

☆排列组合解题技巧归纳总结

共有
A
4 7
种方法,其余的
三个位置甲乙丙共有
1
种坐法,则共有
A
4 7
种方法。
思考:可以先让甲乙丙就坐吗?
(插入法)先排甲乙丙三个人,共有 1 种排法,再把其余 4 四人依次插入共有
方法
定序问题可以用倍缩
练习法题:,10 还人身可高转各不化相为等占,排位成前插后排,每排 5 人,要求从左至右身高逐渐增加,
排法.如果从 n 个不同元素中取出 m 个元素作圆形
练习排题:列6共颗颜有色不同的钻石,可穿成几种钻石圈 120
七.多排问题直排策略
例7.8 人排成前后两排,每排 4 人,其中甲乙在前排,丙在后排,共有多少排法
解:8 人排前后两排,相当于 8 人坐 8 把椅子,可以把椅子排成一排.个特殊
元素有
A
2 4
置.
先排末位共有 C31 然后排首位共有 C41 最后排其它位置共有 A43 由分步计数原理得 C41C31A43 288
C
1 4
A34
C 13
位置分析法和元素分析法是解决排列组合问题最
常用也是最基本的方法,若以元素分析为主,需先
安排特殊元素,再处理其它元素.若以位置分析为
练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两 端的花盆里,问有多少不同的种法?
法 78
六.环排问题线排策略
例 6. 8 人围桌而坐,共有多少种坐法?
解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人
A
4 4

从此位置把圆形展成直线其余 7 人共有(8-1)!种排法即 7 !
C
D
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学复习 解排列组合应用题的21种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

例11.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?解析:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有44A 种方法;所以共有143472A A =种. 12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理. 例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是A 、36种B 、120种C 、720种D 、1440种解析:前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C .(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?解析:看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法. 13.“至少”“至多”问题用间接排除法或分类法:抽取两类混合元素不能分步抽. 例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有A 、140种B 、80种C 、70种D 、35种解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有33394570C C C --=种,选.C 解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有2112545470C C C C +=台,选C . 14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.例14.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?解析:“先取”四个球中二个为一组,另二组各一个球的方法有24C 种,“再排”在四个盒中每次排3个有34A 种,故共有2344144C A =种. (2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?解析:先取男女运动员各2名,有2254C C 种,这四名运动员混和双打练习有22A 中排法,故共有222542120C C A =种. 15.部分合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求.例15.(1)以正方体的顶点为顶点的四面体共有A 、70种B 、64种C 、58种D 、52种解析:正方体8个顶点从中每次取四点,理论上可构成48C 四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有481258C -=个.(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有A 、150种B 、147种C 、144种D 、141种解析:10个点中任取4个点共有410C 种,其中四点共面的有三种情况:①在四面体的四个面上,每面内四点共面的情况为46C ,四个面共有464C 个;②过空间四边形各边中点的平行四边形共3个;③过棱上三点与对棱中点的三角形共6个.所以四点不共面的情况的种数是44106436141C C ---=种. 16.圆排问题线排法:把n 个不同元素放在圆周n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列n 个普通排列:12323411,,,;,,,,,;,,,n n n n a a a a a a a a a a a -在圆排列中只算一种,因为旋转后可以重合,故认为相同,n 个元素的圆排列数有!n n种.因此可将某个元素固定展成线排,其它的1n -元素全排列.例16.5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法? 解析:首先可让5位姐姐站成一圈,属圆排列有44A 种,然后在让插入其间,每位均可插入其姐姐的左边和右边,有2种方式,故不同的安排方式5242768⨯=种不同站法.说明:从n 个不同元素中取出m 个元素作圆形排列共有1m n A m种不同排法. 17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地n 个不同元素排在m 个不同位置的排列数有n m 种方法.例17.把6名实习生分配到7个车间实习共有多少种不同方法?解析:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.18.复杂排列组合问题构造模型法:例18.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种? 解析:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯35C 种方法,所以满足条件的关灯方案有10种.说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题容易解决.19.元素个数较少的排列组合问题可以考虑枚举法:例19.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?解析:从5个球中取出2个与盒子对号有25C 种,还剩下3个球与3个盒子序号不能对应,利用枚举法分析,如果剩下3,4,5号球与3,4,5号盒子时,3号球不能装入3号盒子,当3号球装入4号盒子时,4,5号球只有1种装法,3号球装入5号盒子时,4,5号球也只有1种装法,所以剩下三球只有2种装法,因此总共装法数为25220C =种.20.复杂的排列组合问题也可用分解与合成法:例20.(1)30030能被多少个不同偶数整除?解析:先把30030分解成质因数的形式:30030=2×3×5×7×11×13;依题意偶因数2必取,3,5,7,11,13这5个因数中任取若干个组成成积,所有的偶因数为01234555555532C C C C C C +++++=个.(2)正方体8个顶点可连成多少队异面直线?解析:因为四面体中仅有3对异面直线,可将问题分解成正方体的8个顶点可构成多少个不同的四面体,从正方体8个顶点中任取四个顶点构成的四面体有481258C -=个,所以8个顶点可连成的异面直线有3×58=174对.21.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.例21.(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点最多有多少个? 解析:因为圆的一个内接四边形的两条对角线相交于圆内一点,一个圆的内接四边形就对应着两条弦相交于圆内的一个交点,于是问题就转化为圆周上的10个点可以确定多少个不同的四边形,显然有410C 个,所以圆周上有10点,以这些点为端点的弦相交于圆内的交点有410C 个.(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从A 到B 的最短路径有多少种?解析:可将图中矩形的一边叫一小段,从A 到B 最短路线必须走7小段,其中:向东4段,向北3段;而且前一段的尾接后一段的首,所以只要确定向东走过4段的走法,便能确定路径,因此不同走法有47C 种.AB。

相关文档
最新文档