泛素化蛋白修饰精品课件

合集下载

蛋白泛素化修饰

蛋白泛素化修饰

3分钟带您了解蛋白泛素化修饰人体细胞内蛋白质降解主要有两条途径:一种是在溶酶体内(一种具有“消化降解”功能的细胞器)通过ATP(体内直接供能分子)非依赖途径被降解,此途径主要降解外来的蛋白质,对蛋白质的选择性较差。

另一种是在蛋白酶体内,通过ATP依赖途径(需耗能),经过泛素化修饰后被降解。

此途径主要降解细胞内结构异常的蛋白质和短寿的蛋白质。

如果我告诉你真核生物80%~90%蛋白质的降解是由泛素-蛋白酶体降解途径(ubiquitin-pro-teasomepathway, UPP)介导的,而此途径是泛素化修饰蛋白最主要的去向,你是不是很好奇泛素化修饰到底是何方神圣?那小编就言简意赅、简明扼要的给大家介绍一下蛋白泛素化修饰。

泛素(Ub, ubiquitin)是一种普遍存在于真核细胞中的由76氨基酸残基组成的多肽。

一个或多个泛素分子能够在一系列酶的作用下共价连接至蛋白质底物上,形成泛素化修饰(ubiquitination)。

调控蛋白表达水平的重要机制,参与了几乎所有生命过程,是一种至关重要的翻译后修饰。

01在ATP供给能量的情况下,泛素激活酶E1将泛素分子活化。

02泛素激活酶E1将活化的泛素分子传递给泛素结合酶E2。

03泛素连接酶E3将结合E2的泛素连接到靶蛋白上。

图1. 泛素化修饰过程[1]泛素-蛋白酶体途径(UPP)20S催化核心与19S调节复合物结合形成26S蛋白酶体结构。

泛素标记的蛋白质与19S复合物结合,并在蛋白水解β亚基处降解。

19S亚单位与多泛素链结合,ATP展开蛋白质底物并将其转移到20S核心颗粒中。

蛋白质通过20S 中心,在那里被降解成25个氨基酸以下的小寡肽。

介导泛素非依赖性蛋白质降解。

图2. 蛋白酶体结构与蛋白质降解[1]泛素化修饰类型在泛素链中,泛素部分可通过其赖氨酸(Lys11、Lys27、Lys6、Lys29、Lys33、Lys63和Lys48)或N端蛋氨酸残基(Met1)结合。

备课素材:蛋白泛素化修饰 高中生物人教版必修1

备课素材:蛋白泛素化修饰  高中生物人教版必修1

蛋白泛素化修饰先看一道试题:泛素(Ub)是一种小分子蛋白质,大部分真核细胞都含有这种蛋白质。

泛素能与细胞中需要降解的蛋白质结合,这个过程被称为蛋白质泛素化,其过程如图1所示(E1、E2和B表示不同的酶分子,ATP脱去一个焦磷酸PPi形成AMP即腺苷—磷酸)。

泛素化蛋白被细胞内蛋白酶体识别,然后被水解。

泛素蛋白最后一个氨基酸是甘氨酸,这个氨基酸的羧基与需降解蛋白质多肽链内部R基团上的氨基脱水缩合。

泛素蛋白通过这种方式与需降解蛋白连接。

两个泛素蛋白之间的连接方式与这种方式相似,泛素蛋白第48个氨基酸是赖氨酸,这个氨基酸R基上的氨基与另一个泛素蛋白最后一位的甘氨酸的羧基脱水缩合,如此形成需降解蛋白与多个泛素的复合体(图2为甘氨酸和赖氨酸的化学结构式)。

被四个以上泛素标记的蛋白质会被蛋白酶体识别。

蛋白质会被蛋白酶体降解成短肽。

降解过程中,泛素也被水解下来,形成单个泛素蛋白,再用于另一个蛋白质分子的泛素化。

被泛素标记后,再被定向清除。

据此回答问题:(1)蛋白质泛素化过程是酶E1、E2、E3接力催化完成的。

其中______(填“E1”、“E2”或“E3”)酶具有多种类型,做出此判断的理由是______。

(2)绘图表示甘氨酸羧基与赖氨酸R基上的氨基脱水缩合后,所形成的物质的化学结构式______。

这一物质______(填“属于”或“不属于”)二肽。

(3)泛素降解途径在生物体生命活动过程中的意义是______(多选)。

A.降解细胞不需要的蛋白质B.调节细胞内蛋白质的种类和数量C.调整细胞功能D.利于细胞产生适应环境的定向变异解析:(1)蛋白质泛素化过程是酶E1、E2、E3接力催化完成的,由图可知,E3识别并结合带有泛素的E2和需降解蛋白,即E3需要识别各种空间结构不同的、需降解的蛋白质,所以与E1、E2相比,E3的空间结构应具有多样性。

(2)氨基酸生成二肽,就是两个氨基酸分子中与碳原子直接相连的氨基和羧基脱去一个水分子,故甘氨酸羧基与赖氨酸R基上的氨基脱水缩合后,所形成的物质不属于二肽,其化学结构式为。

泛素化蛋白修饰

泛素化蛋白修饰
gene silencing
Wang et al., NATURE |VOL 431 | 14 OCTOBER 2004
Histone Crosstalk between H2B Mono-ubiquitination and H3 Methylation Mediated by COMPASS
Lee et al., Cell 131, 1084–1096, 2007
泛素化蛋白修饰
Protein Modification by Ubiquitination
The Central Dogma (Revised)
DNA RNA
Protein
Breakdown Modification & Degradation
泛素-蛋白酶体通路
Ub
E1
Ub-E2
底物
ATP AMP+PPi
现的泛素是同一物质 。 1984年,Finley和Varshavsky等发现泛素在细胞周期中的重要性。 1987年,Goldberg和Rechsteiner两个小组几乎同时分离出分子量很大的 依赖于ATP并降解泛素化底物的蛋白水解酶。 1988年,Goldberg将这种蛋白水解酶命名为Proteasome(蛋白酶体)。 1997年,Yeh 等小组发现类泛素蛋白SUMO和NEDD8的功能。 2003年,美国FDA批准了用Velcade来治疗多发性骨髓瘤; Velcade 是
N ENGL J MED 2004, 350:187-188 24
泛素连接酶Mdm2和E6-AP与p53的降解和癌症
25
Ubiquitination and transcriptional regulation
Ubiquitination occurs on histones H1, H2A, H2B and H3. This modification on different histones plays distinct roles in regulation of chromatin structures, and hence gene expression

9蛋白质修饰(泛素化)

9蛋白质修饰(泛素化)

泛素化内稳态及信号一:背景1.细胞内蛋白酶解:80%-90%通过蛋白酶体降解,10%-20%通过自噬。

2.泛素:由70个左右的氨基酸组成,本身有7个赖氨酸可被泛素化。

细胞内广泛存在的一种蛋白。

占细胞总蛋白1-2%,真核生物中高度保守。

泛素内稳态取决于不断的改变。

泛素化和去泛素化是一个动态平衡过程。

3.细胞内泛素化-蛋白酶体系统(U P S)(1)E3连接酶亚家族:E3连接酶的功能影响细胞每个方面的活性,它的改变可以导致疾病。

(2)E3连接酶(大约600种)可以作为o n c o g e n e或者t u m o r s u p p r e s s o r(3)泛素信号:分类及功能功能:细胞凋亡、D N A转录和修复、分化和生长、免疫应答和炎症,细胞表面受体和离子通道,血管新生,核糖体生物合成等等泛素信号异常:肿瘤、病毒感染、神经退行性疾病、发育畸形、细菌感染等。

蛋白质降解受到抑制后,正常细胞会出现生长抑制,而肿瘤细胞则出现凋亡。

二、泛素内稳态及应激1.细胞内泛素内稳态(老师上课说过这是可能的考点)泛素内稳态:泛素合成聚泛素链形成聚泛素链组装泛素降解泛素应激:泛素增加、泛素减少泛素减少:损害减数分裂、组织生长缺陷、突触发育及功能、胎儿肝脏发育细胞周期及耐逆性、增殖缺陷、扰乱造血系统、神经退化和代谢紊乱、细胞分化异常泛素增加:延迟衰老、改变基因表达、热击的应答方式、促进细胞增殖和应激耐受、改变蛋白酶体构成、激活自噬三、泛素信号和主要信号通路1、N-e n d r u l e通路泛素化蛋白酶体系统中最简单的规则:及蛋白质N端的特点决定蛋白质的半衰期,若N端为精氨酸或者赖氨酸的蛋白质寿命就很短。

最早期试验:牛血清白蛋白(B S A)N端为天冬氨酸,可以被A T E1(精氨酸t-R N A转移酶1)催化在N端加上精氨酸,进而被E3连接酶识别发生降解。

后来发现:机制是蛋白质N端带上谷氨酸和天冬氨酸可以在A T E1作用下被精氨酸化。

蛋白翻译后修饰-泛素化(1)

蛋白翻译后修饰-泛素化(1)

分子机制研究套路(二)蛋白翻译后修饰-泛素化课题:蛋白A调节蛋白B泛素化和降解的研究1.概念介绍:大多数蛋白均需进行翻译后修饰来扩增蛋白质组的数量,调节蛋白质的稳定性、分布和功能。

翻译后修饰包括磷酸化、泛素化、亚硝基化、氧化等等。

泛素化是在蛋白质翻译后,通过将泛素分子结合到靶蛋白上,形成多聚泛素链,带有多聚泛素链的靶蛋白可被26 S蛋白酶体识别、降解。

泛素是76个氨基酸的多肽片段,包含7个赖氨酸残基,允许同时发生聚泛素化反应。

在赖氨酸-48聚泛素化会导致其通过28S蛋白酶体降解。

然而赖氨酸-63可以改变细胞的功能,包括运输和DNA修复。

可见,单一的泛素化会依据其作用位点的不同而产生不同的结果。

它和泛素激活酶(E1)、泛素结合酶(E2)、泛素连接酶(E3)和蛋白酶体组成了泛素-蛋白酶体系统(Ubiquitin-Proteasome System,UPS)。

UPS是细胞内非溶酶体途径蛋白质降解通路,不仅降解变性、异常或起短暂作用的蛋白质,而且能降解转录因子、内膜蛋白和细胞周期蛋白等天然蛋白,对于维持蛋白质稳定状态、调节细胞程序性死亡和控制细胞周期等过程有重要的作用。

UPS还可作用于转录因子及体内的某些信号传导通路,并参与细胞凋亡、主要组织相容性复合体抗原递呈、细胞周期以及细胞内信号传导等多个细胞生理活动,对维持细胞正常生理功能具有重要意义。

2.示意图:图1 UPS的发生依赖于三种酶的参与。

E1通过硫酯键将E1酶半胱氨酸与泛素分子连接在一起,其能量来源于ATP水解作用;E2与泛素蛋白连接于激活的半胱氨酸位点;E3 负责将泛素化蛋白与靶蛋白结合在一起,3.研究思路:3.1 蛋白A降低蛋白B的表达量 (3)3.1.1 蛋白A介导蛋白B降解 (3)3.1.2 蛋白A降解蛋白B的特异性 (3)3.1.3 蛋白A介导蛋白B降解呈剂量依赖性 (3)3.1.4 蛋白A调节蛋白B稳定性 (4)3.2 蛋白A介导蛋白B降解位于蛋白酶体系统 (4)3.2.2 蛋白B降解位于蛋白酶体系统 (4)3.2.3 蛋白A介导蛋白B降解位于蛋白酶体系统 (5)3.3赖氨酸XXX位点为蛋白A介导蛋白B泛素化靶位点 (5)3.3.1 蛋白A介导蛋白B泛素化 (5)3.3.2赖氨酸XXX位点为蛋白A介导蛋白B泛素化靶位点 (5)3.4 蛋白A氨基端与羧基端在蛋白B降解中的作用 (6)3.4.1 蛋白A氨基端与蛋白B降解 (6)3.4.2 蛋白A羧基端与蛋白B降解 (6)3.4.3 蛋白A羧基端与蛋白B泛素化 (6)3.1 蛋白A降低蛋白B的表达量3.1.1 蛋白A介导蛋白B降解蛋白A是泛素蛋白酶体系统中的一个调节分子。

蛋白质分子的化学修饰课件

蛋白质分子的化学修饰课件
磷酸酶
催化去磷酸化反应的酶,将蛋白 质上的磷酸基团去除。
蛋白质磷酸化修饰 磷酸化修饰的种类
调节蛋白质活性
磷酸化修饰可改变蛋白质 的构象或活性位点,从而 调节其功能。
参与信号转导
磷酸化修饰在细胞信号转 导过程中起着关键作用, 可影响细胞生长、分化、 代谢等过程。
蛋白质稳定性
磷酸化修饰可影响蛋白质 的稳定性,通过调节蛋白 质降解途径来影响细胞内 蛋白质水平。
2023
PART 04
蛋白质甲基化修饰
REPORTING
甲基化修饰的种类
赖氨酸甲基化
赖氨酸残基的ε-氨基上加上甲基 基团,包括单甲基化、二甲基化
和三甲基化。
蛋氨酸甲基化
蛋氨酸残基的α-氨基上加上甲基基 团,通常为N-甲基化。
精氨酸甲基化
精氨酸残基的胍基上加上甲基基团 ,包括N-甲基化和N,N-二甲基化。
2023
PART 03
蛋白质糖基化修饰
REPORTING
糖基化修饰的种类
O-糖基化
糖基磷脂化
发生在蛋白质的丝氨酸或苏氨酸的羟 基上,由糖苷酶催化。
将糖基连接到脂质分子上,形成糖脂 。
N-糖基化
发生在蛋白质的氨基上,由糖苷酶催 化。
糖基化修饰的酶类
糖基转移酶
催化糖基从供体转移到受体上。
糖苷酶
催化糖苷键的断裂,释放出糖基 。
泛素化
泛素化是指将泛素分子加到蛋 白质的特定位点上,可以调节 蛋白质的降解和功能。
甲基化
甲基化是指将甲基基团加到蛋 白质的特定位点上,可以调节 蛋白质的构象和与其他蛋白质
的相互作用。
蛋白质分子化学修饰的功能
调节蛋白质活性
调节蛋白质稳定性

组蛋白的泛素化与去泛素化.ppt

组蛋白的泛素化与去泛素化.ppt

除了单泛素化,H2A/H2AX在DNA损伤时可发生K63位的多泛素化
负责H2A/H2B泛素化与去泛素化的酶
H2A-specific
Common to H2A/H2B H2B-specific
ቤተ መጻሕፍቲ ባይዱ
Histone ubiquitinase
One E1(activating),
mutiple E2(conjugating),
substrate-specific E3(ligase)
E3主要有两大类: HECT(homologous to the E6-AP carboxyl terminus) 结构域家族,通过与泛素形成催 化作用所必需的硫酯键发挥作用 RING(really interesting new gene)结构域 家族,为E2和底物提供居留位点从而使 E2 催化泛素转移到底物上
FACT:facilitates chromatin transcription 二聚体,包括SPT16和SSRP1,能从核小体中置 换出H2A/H2B二聚体,进而促使染色体介导的转 录延伸抑制得到释放
Molecular Cell, MG Rosenfeld, 1(29), 2008
H2B
✓H2B monoubiquitylation and deubiquitylation can directly modulate the chromatin state by altering nucleosome stability, promoting partial nucleosome disassembly and reassembly, and regulating chromatin higher-order structure. ✓modulate chromatin indirectly through the binding or repulsion of specific readers, which call into action a plethora of proteins and protein complexes with diverse biochemical activities. ✓The direct and indirect mechanisms are not mutually exclusive E.g.relaxation of higher-order chromatin structure is expected to facilitate the access of H2Bub1 readers

泛素化对蛋白质的调节 PPT

泛素化对蛋白质的调节 PPT

这些小肽随后被细胞质中的蛋白酶降 解为氨基酸。在哺乳动物细胞内,UPS系统是 一个层次非常鲜明体系:细胞内只表达一种 泛素激活酶E1把泛素转移到大约50种泛素结 合酶 E2上, 每种E2都可以与许多E3泛素连 接酶相互作用,而E3泛素连接酶在细胞内大 约有 1 000个,它们负责特异性地结合底物 使其发生泛素化从而能被蛋白酶体降解。
在细胞内, UPS 能够快速地降解那些不正常的蛋 白质和一些短暂的控制一系列基本细胞生命活动 的调节蛋白。UPS 降解蛋白质是一个复杂的和受 到严密调控的, 并且是高度特异性的降解细胞内 许多蛋白质的过程。细胞是如何选择并以高度特 异的方式来降解蛋白质的呢?它是通过给需要降 解的蛋白质加上许多小的标签—泛素来标记需被 降解的蛋白随后这些蛋白被泛素蛋白酶体降解。
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
靶蛋白的泛素化降解涉及以下 3 个连续的 过程:(1)泛素的活化,这个过程需要以 ATP 作为能量, 泛素 C 端的羧基连接到泛素活 化酶 E1 的巯基, 最终形成一个泛素和泛素 活化酶 E1 之间的硫酯键; (2)泛素活化酶 E1 将活化后的泛素通过交酯化过程传递给 泛素结合酶 E2; (3)泛素连接酶 E3 将结合 E2 的泛素连接到靶蛋白上。
泛素化对蛋白质的调节
泛素化修饰主要作用: 1.参与蛋白质降解 2.直接影响蛋白质的活性和定位
蛋白质降解: 泛素化修饰最早被发现的功能是标记靶蛋白, 使 之被蛋白酶体识别并降解, 整个过程涉及泛素分 子、底物蛋白和多种酶系统。 1.泛素-蛋白酶体系统(UPS):泛素激活酶 (E1)、泛素结合酶(E2)、泛素连接酶(E3)、 去泛素化酶、蛋白酶体,它们共同构成了泛素-蛋 白酶体系统(UPS)。
DNA 修复:

《酶蛋白的化学修饰》课件

《酶蛋白的化学修饰》课件

泛素特异性蛋白 酶:负责切割泛 素链,使泛素化 修饰解除
泛素化修饰的调 控酶:负责调控 泛素化修饰的进 程和程度
泛素化修饰的识 别酶:负责识别 泛素化修饰的蛋 白,并启动相应 的生物学过程
泛素化修饰的作用机制
泛素化修饰是一种蛋白质翻译后修饰方式,通过泛素连接酶将泛素分子连 接到蛋白质上 泛素化修饰可以改变蛋白质的稳定性、活性、定位和相互作用
脱SUMO化酶:负责将 SUMO蛋白从目标蛋白 上移除
SUMO化修饰的作用机制
SUMO蛋白的合成:在细胞核内合成,然后转运到细胞质中
SUMO化修饰的启动:SUMO蛋白与目标蛋白结合,形成SUMO化修饰复合物
SUMO化修饰的调控:通过磷酸化、泛素化等机制调控SUMO化修饰的活性
SUMO化修饰的功能:参与细胞周期调控、信号传导、基因表达调控等生物学过 程
乙酰化修饰的作用机制
乙酰化修饰是一种 常见的酶蛋白修饰 方式,通过添加乙 酰基团来改变酶蛋 白的活性和功能。
乙酰化修饰通常发 生在酶蛋白的特定 氨基酸残基上,如 赖氨酸、精氨酸等。
乙酰化修饰可以改 变酶蛋白的构象, 从而影响其活性和 功能。
乙酰化修饰还可以 影响酶蛋白的稳定 性和降解速度。
乙酰化修饰的调节
泛素化修饰可以调节细胞周期、信号传导、基因表达等重要生物学过程
泛素化修饰的异常与多种疾病有关,如癌症、神经退行性疾病等
泛素化修饰的调节
泛素化修饰的调控机制 泛素化修饰的调控蛋白 泛素化修饰的调控信号通路 泛素化修饰的调控作用
07
酶蛋白的SUMO化修饰
SUMO化修饰的定义
SUMO化修饰是一种蛋白质翻译后修饰方式 SUMO蛋白是一种小泛素样修饰蛋白 SUMO化修饰可以影响蛋白质的稳定性、定位和功能 SUMO化修饰在细胞信号传导、细胞周期调控和应激反应中发挥重要作用

泛素化蛋白修饰

泛素化蛋白修饰

K48 polyubiquitylation
K63 polyubiquitylation 调节蛋白质的活性和定位
Monoubiquitylation
调节蛋白质内吞,修饰和转录
Multiple monoubiquitylation 12
E3的种类
a. RING finger domain(SCF复合体,APC, MDM2, Parkin, 和c-Cb1) b. U-box domain(CHIP) c. HECT domain(能与底物形成硫酯键) d. N-End Rule
Cps35 Is Required for Translating Histone Crosstalk between H2B Monoubiquitination and H3 Methylation by COMPASS
Nrdp1 是一促进ErbB3及BRUCE泛素化
9
泛素化(ubiquitination)即蛋白质被泛素 (ubiquitin,由76个氨基酸组成的多肽)共价 修饰的过程,在几乎所有的真核细胞活动中起 着关键作用。泛素 –蛋白酶体(proteasome)通 路则是真核细胞内最主要的蛋白质降解途径。 泛素化调控的细胞活动至少包括: 细胞周期(Cell cycle progression) 细胞凋亡(Apoptosis) 转录调控(Transcriptional regulation) DNA修复(DNA repair) 免疫应答(Immune response) 蛋白质降解及质量控制(Protein degradation and quality control )
泛素-蛋白酶体通路
Ub E1 Ub-E2 底物
ATP -E1 Ub
E3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现的泛素是同一物质 。 1984年,Finley和Varshavsky等发现泛素在细胞周期中的重要性。 1987年,Goldberg和Rechsteiner两个小组几乎同时分离出分子量很大的
依赖于ATP并降解泛素化底物的蛋白水解酶。 1988年,Goldberg将这种蛋白水解酶命名为Proteasome(蛋白酶体)。 1997年,Yeh 等小组发现类泛素蛋白SUMO和NEDD8的功能。 2003年,美国FDA批准了用Velcade来治疗多发性骨髓瘤; Velcade 是
2008
20 泛素-蛋白酶体通路的组成及重要性 2. 泛素化与泛素化酶 3. 去泛素化酶 4. 泛素化异常与人类重大疾病的发生 5. 蛋白酶体构成 6. 蛋白酶体抑制剂与药物 7. 调节蛋白酶体活性的新机制 8. 类泛素蛋白(SUMO, NEDD8, ISG15,
APG8, APG12, PUP等)
Multiple monoubiquitylation 12
E3的种类
a. RING finger domain(SCF复合体,APC, MDM2, Parkin, 和c-Cb1)
b. U-box domain(CHIP) c. HECT domain(能与底物形成硫酯键) d. N-End Rule
在Goldberg发明的蛋白酶体抑制剂MG132的基础上研发而成的。 2004年,Ciechanover,Hershko和Rose因发现泛素介导的蛋白质降解共
同获得诺贝尔化学奖。 2008年,Darwin等在细菌中发现类泛素化修饰。
7
Figure 8-34 Ubiquitin (泛素)
泛素由76个氨基酸残基组成,其中包括7个赖氨酸残基(K), 其C末端可与 底物的赖氨酸残基形成异肽键,从而引起底物泛素化。泛素的K11、K29 、K48和K63均能参与形成泛素与泛素间的异肽键 (Isopeptide bond)。
10
E1与ATP结合后,催化泛素羧基末端 腺嘌呤化,同时释放无机焦磷酸( PPi)。E1活化位点的半胱氨酸硫醇 激活泛素腺嘌呤核苷酸中间产物上的 羧基,形成一个泛素硫酯键。
E2激活的重要条件是位于UBC结构 域的一个保守半胱氨酸催化位点与泛 素羧基端形成一个硫酯键。
E3催化被E2活化的泛素C-端甘氨酸 与底物或下一个泛素的赖氨酸间形成 泛素异肽键 (Isopeptide bond)。
泛素化蛋白修饰
Protein Modification by Ubiquitination
北京协和医学院研究生课程:细胞信息与调控
The Central Dogma (Revised)
DNA RNA
Protein
Breakdown Modification & Degradation
泛素-蛋白酶体通路
泛素化(ubiquitination)即蛋白质被泛素 (ubiquitin,由76个氨基酸组成的多肽)共价 修饰的过程,在几乎所有的真核细胞活动中起 着关键作用。泛素 –蛋白酶体(proteasome)通 路则是真核细胞内最主要的蛋白质降解途径。 泛素化调控的细胞活动至少包括:
细胞周期(Cell cycle progression) 细胞凋亡(Apoptosis) 转录调控(Transcriptional regulation) DNA修复(DNA repair) 免疫应答(Immune response) 蛋白质降解及质量控制(Protein
degradation and quality control ) 2
The Nobel Prize in Chemistry 2004 for the discovery of ubiquitin-mediated proteolysis
Aaron Ciechanover Avram Hershko
Ub
E1
Ub-E2
底物
ATP AMP+PPi
-E1 Ub
E3 E2
蛋白酶体
Ub: 泛素 (Ubiquitin),一高度保守的,由76个氨基酸组成的多肽。 E1: 泛素激活酶 (Ubiquitin-activating enzyme),人类仅有2种E1。 E2: 泛素载体蛋白 (Ubiquitin-carrier protein), 人类约有 30 种E2s。 E3: 泛素-蛋白连接酶 (Ubiquitin-protein ligase), 人类有500多种E3s 。 9
11
泛素化模式(Ubiquitination Modes)
K48 polyubiquitylation
靶蛋白必须经多聚泛素(多于4个泛 素分子)修饰才能被蛋白酶体识别 与降解。
K63 polyubiquitylation 调节蛋白质的活性和定位
Monoubiquitylation
调节蛋白质内吞,修饰和转录
阿龙.西查诺瓦
阿夫拉姆.赫希科
Irwin Rose
欧文.罗斯
3
近年与泛素-蛋白酶体相关的PubMed论 文数在持续增长
篇数 5000
4500
4000
3500
Ub/Proteasome
3000
2500
Cyclin
2000
Histone
1500
miRNA
1000
500
0 2004
2005
2006
2007
Bond)结合。 1977年,Goldberg证明人类细胞中存在一可溶的,直接依赖于能量的非溶
酶体类蛋白酶 。 1978年,Ciechanover 和 Hershko发现了APF-1是Goldberg系统中蛋白酶
系的必要成分,结果发表在BBRC。 1980年,Ciechanover,Hershko和Rose等人证明了APF-1与当时已被发
5
参考书
《泛素介导的蛋白质降解》
Ubiquitin-Mediated Proteolysis 主编:邱小波 王琛 王琳芳
陈竺和诺贝尔奖得主 Aaron Ciechanover 作序
中国协和医科大学出版社, 2008年
蛋白质泛素化研究简史
1975年,Goldstein误将泛素(Ubiquitin)当作胸腺激素而发现。 1977年,Goldknopf和Busch认定组蛋白2A与泛素以异肽键(Isopeptide
相关文档
最新文档