数学建模离散问题建模方法和案例分析报告

合集下载

数学建模的常用方法上

数学建模的常用方法上

VS
积分方程建模是利用积分性质和积分方程研究实际问题的方法。
详细描述
积分方程建模是通过建立积分方程来描述实际问题中量的累积关系。积分方程能够反映自变量和因变量之间的整体关系,适用于研究具有累积效应的量之间的关系。例如,物理学中的波动、统计学中的概率分布等都可以通过积分方程建模来描述。
总结词
积分方程建模
02
CHAPTER
线性代数建模法
矩阵是数学建模中的重要工具,用于表示和操作线性关系。
矩阵建模主要用于解决线性关系的问题,如线性方程组、线性变换等。通过矩阵的运算,可以方便地描述和求解线性问题,简化计算过程。
矩阵建模
详细描述
总结词
总结词
向量是一维数组,用于表示具有方向和大小的量。
详细描述
向量建模常用于描述物理现象和工程问题,如力、速度、加速度等。通过向量的运算,可以方便地描述和求解与方向和大小有关的量。
详细描述
非线性规划建模是线性规划建模的扩展,用于解决目标函数或约束条件为非线性的优化问题。
非线性规划建模涉及的函数形式更为复杂,可能包含平方、立方、对数等非线性项。求解非线性规划问题的方法包括梯度法、牛顿法、拟牛顿法等,这些方法通过迭代的方式逐步逼近最优解。
总结词
详细描述
非线性规划建模
总结词
动态规划建模是一种数学方法,用于解决具有重叠子问题和最优子结构特性的优化问题。
数学建模的常用方法
目录
微积分建模法 线性代数建模法 概率论与数理统计建模法 离散数学建模法 优化建模法
01
CHAPTER
微积分建模法
总结词
导数建模是利用导数性质和函数变化率研究实际问题的方法。
详细描述
导数建模是通过分析函数在某一点的切线斜率或函数在某区间的变化率来描述实际问题中量的变化和相互关系。例如,经济学中的边际分析、物理学中的速度和加速度等都可以通过导数建模来描述。

数学建模基础实验报告(3篇)

数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。

通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。

二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。

表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。

1. 数据准备:将数据整理成表格形式,并输入到计算机中。

2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。

4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。

5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。

三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。

将数据输入到计算机中,为后续分析做准备。

2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。

3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。

具体步骤如下:(1)选择合适的统计软件,如MATLAB。

(2)输入数据,进行数据预处理。

(3)编写线性回归分析程序,计算回归系数。

(4)输出回归系数、截距等参数。

4. 模型检验对模型进行检验,包括残差分析、DW检验等。

(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。

(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。

5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。

四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。

2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。

数学建模离散问题建模方法和案例分析报告

数学建模离散问题建模方法和案例分析报告

1. 存在性问题案例---- 董事会会议安排
Mix Well For Fruitful Discussion (MCM1997-B)
一. 问题的提出 An Tostal 公司董事会由29名董事(其中9名在职)组成。
公司要召开为期一天的董事会会议。 上午分3节(sessions), 每节分成6组(groups) 下午4 节, 每节分成4组。
• 构造出购书方案总的效用函数:
wj xj
j
“尽最大可能满足学生希望”的目标就是:
max wj x j
j
综合起来,便得到原问题的数学模型:
max x j
j
min c j x j
j
max wj x j 这是一个多目标最j 优化问题。 根据本问题的特点,可以采用将次要目标改成 约束的方法,即将它改为:
required number of elementary computational steps is bounded by a polynomial in the size of the problem.
---- J.Edmonds & R.M.Karp (1960) • P --- NP --- NP-C
为让董事们充分发表意见,应如何安排各节各组的 董事名单?
二. 分析和建模 关于组合设计
1. Euler36军官问题和正交拉丁方
设 S {a1, a2,, an} 是一个n元集合。A是一个 n n 阶
矩阵,它的元素为S中的元素。如果S 中的每一个元素都 恰好在A的每一行中出现一次,同时在A的每一列中出现 一次, 那么就称A为S上的一个n阶拉丁方。
• (1,2,3), (4,5,6), (7,8,9);(1,4,7), (2,5,8), (3,6,9); (1,5,9), (2,6,7), (3,4,8);(1,6,8), (2,4,9), (3,5,7)。 组成一个9阶的Steiner三元系。

数学建模的一般步骤和案例

数学建模的一般步骤和案例

数学建模的一般步骤和案例数学建模是利用数学方法对实际问题进行描述、分析和求解的过程。

它是一个系统的、多学科的工作过程,可以帮助我们深入了解实际问题,并为问题提供合理的解决方案。

下面将介绍数学建模的一般步骤和一个具体的案例。

一般步骤:1.问题定义:明确研究的问题和要解决的目标。

确定研究的范围、限制和假设条件。

2.建立模型:根据问题的特点和要求,选择适当的数学工具和模型。

常用的数学模型包括数学规划模型、概率统计模型、图论模型等。

3.定义变量:标识出影响因素并对其进行量化。

根据问题的要求,设定需要研究的变量和参数,确定它们的取值范围和关系。

4.假设做法:根据问题背景和可行性,进行必要的简化和假设。

合理简化模型可以简化计算过程并提高求解效率。

5.求解问题:根据所建立的模型,运用数学方法求解问题。

常见的求解方法有解析解法、数值计算法、模拟仿真法等。

6.模型分析和评价:对求解结果进行分析和评价,看是否满足问题的要求。

对模型的合理性和有效性进行检验和验证,对模型的优化和改进提出建议。

7.结果解释和应用:将数学模型的结果解释给问题的决策者,提供相关的建议和策略。

将得到的结果用于实际问题的决策和规划。

案例:假设有一家电子商务公司,想要通过合理的物流网络规划来降低运输成本。

现在给定了各个城市之间的距离、货物的数量、运输的形式和时间要求等信息,要求建立一个模型来确定最佳的物流网络规划,使总运输成本最小。

1.问题定义:研究问题是找到最佳物流网络规划,使运输成本最小。

2.建立模型:选择网络流模型来描述物流网络。

假设各城市之间的运输成本是线性关系,并以各城市之间的距离作为约束条件。

3.定义变量:设定每条路径上的运输量为变量,并对各变量进行量化。

设定各城市之间的距离和运输成本为参数。

4.假设做法:假设各个城市之间的运输量满足需求,并忽略其他可能影响的因素。

5.求解问题:将问题转化为线性规划问题,并运用线性规划方法,如单纯形法等,求解最佳的物流网络规划。

MathematicalModeling理论建模及实际应用

MathematicalModeling理论建模及实际应用

MathematicalModeling理论建模及实际应用数学建模(Mathematical Modeling)是一种将实际问题转化为数学问题,并通过数学方法对问题进行分析和解决的方法。

它既是数学的一种应用,也是一种研究问题并解决问题的工具。

数学建模在各个领域都有广泛的应用,如物理学、经济学、生物学、环境科学等等。

本文将从理论建模和实际应用两个方面来介绍数学建模的基本概念、方法以及一些实际应用案例。

在数学建模中,理论建模是首要的一步。

理论建模是指对实际问题进行分析和抽象,从中提取出数学模型的基本要素和关系。

对于一个复杂的实际问题,我们需要通过对问题的认识和理解,找出其中的关键因素和变量,并确定它们之间的数学关系。

这些关系可以是线性的、非线性的、离散的或连续的,可以用代数方程、微分方程、差分方程或概率统计等形式来表示。

理论建模需要深入地了解问题的背景和相关领域的知识,同时还需要灵活运用数学方法和工具来描述问题和解决问题。

数学建模的方法主要包括定性分析、定量分析和验证分析。

定性分析是指通过观察和分析问题的特征和特性,对问题进行描述和理解,找出问题的关键因素和变量,并确定它们之间的关系。

定量分析是指通过运用数学方法和工具,对问题进行计算和求解,得出问题的数值结果和解决方案。

验证分析是指对数学模型的有效性和可靠性进行检验和验证,通过与实际数据进行对比和比较,评估模型的拟合程度和预测能力。

这些方法相互补充和支持,共同构建了一个完整的数学建模流程。

数学建模在实际应用中有着广泛的应用。

以物理学为例,物理学中的很多问题都可以通过数学建模来解决。

比如,天体物理学中的行星运动、星系演化等问题可以通过数学建模来描述行星和星系的位置、速度和质量等参数,进而研究它们的运动规律和相互作用。

在经济学中,数学建模可以用来描述和分析经济系统中的供需关系、利润最大化、成本最小化等问题,从而指导经济政策和决策。

在生物学中,数学建模可以用来描述生物种群的增长、遗传变异、物种竞争等问题,为生态保护和资源管理提供科学依据。

数学建模经典案例分析以葡萄酒质量评价为例

数学建模经典案例分析以葡萄酒质量评价为例

数学建模经典案例分析以葡萄酒质量评价为例一、本文概述本文旨在通过深入剖析数学建模在葡萄酒质量评价中的应用,展示数学建模的经典案例。

我们将首先简要介绍数学建模的基本概念及其在各个领域的应用,然后聚焦葡萄酒质量评价这一具体问题,阐述如何通过数学建模对其进行科学、客观的分析。

文章将详细分析数据的收集与处理、模型的建立与求解、模型的验证与优化等关键环节,并探讨不同数学模型在葡萄酒质量评价中的优缺点。

我们将总结数学建模在葡萄酒质量评价中的实际应用效果,展望其在未来葡萄酒产业中的发展前景。

通过阅读本文,读者将能够了解数学建模在葡萄酒质量评价中的重要作用,掌握相关数学建模方法和技术,为类似问题的解决提供有益的参考和借鉴。

本文也将促进数学建模在葡萄酒产业中的应用与发展,推动葡萄酒产业的科技进步和产业升级。

二、数学建模基础数学建模是一种将实际问题抽象化、量化的过程,通过数学工具和方法来求解问题的近似解。

在葡萄酒质量评价这一案例中,数学建模提供了从复杂的实际生产环境中提取关键信息,并建立预测模型的可能。

这需要我们具备一定的数学基础,如统计学、线性代数、微积分等,同时也需要理解并掌握数据处理的基本技术,如数据清洗、特征提取和选择等。

在葡萄酒质量评价问题中,我们首先需要收集大量的葡萄酒样本数据,这些数据可能包括葡萄品种、产地、气候、土壤、酿造工艺、化学成分等多个方面的信息。

然后,我们需要对这些数据进行预处理,如去除缺失值、异常值,进行数据标准化等,以提高模型的稳定性和准确性。

接下来,我们可以选择适合的模型进行训练。

在这个案例中,我们可以选择线性回归、决策树、随机森林、神经网络等模型进行尝试。

我们需要根据数据的特性和问题的需求,选择最合适的模型。

同时,我们还需要进行模型的训练和验证,通过调整模型的参数,提高模型的预测能力。

我们需要对模型进行评估和优化。

这可以通过交叉验证、ROC曲线、AUC值等评估指标来进行。

如果模型的预测能力不足,我们需要对模型进行优化,如改进模型的结构、增加更多的特征等。

数学建模 -的范例

数学建模 -的范例

针对问题三,本文首先对主要风险因子进行了灰色预测,计算出未来几年水资源总量、降水量、平均气温、生活用水量、工业用水量。

然后采用问题二中的BP神经网络预测每年的缺水量。

最后通过整合往年的数据,运用问题二中的熵值取权的模糊评价模型预测出未来几年内水资源短缺的风险等级。

由于考虑到降水量和地下储水相关系数高,我们依据历年的降水量估测出平水年,偏枯年,枯水年三种不同年份的水资源总量,并应用问题二的风险评价模型进行评估,得到三种不同年份水资源短缺风险等级依次为高,较高,较低。

最后我们分析了南水北调工程对北京市未来两年水资源短缺的风险等级影响,风险等级依次变为低,偏低,无。

针对问题四,我们从北京市水资源现状及分析、北京市严重缺水的原因探究、北京市水资源开发利用对策三个层面向相关行政主管部门提交建议报告,以求帮助其合理规避水资源短缺风险。

关键字:水资源短缺风险、灰色关联度分析、主成分分析,模糊综合评价、BP 神经网络、熵值取权一、问题重述1.1 问题背景水是生命之源,万物之本,是人类生存和发展不可或缺的物质,是地球上最普遍、最常见同时也是最珍贵的自然资源。

水是人类一切生产活动的基础,有水的地方欣欣向荣,水资源枯竭的地方则文明消失。

长期以来,我们注重经济社会发展,却忽略了水资源的承载能力,注重水资源开发利用,却没有同等重视节约和保护。

随着经济社会发展,1.2 问题重述水资源短缺危险泛指在特定的时空环境下,由于来水和用水的不确定性,室区域水资源系统发生供水短缺的可能性以及有此产生的损失。

近年来我国水资源短缺问题日趋严重,以北京市为例,北京是世界上水资源严重缺乏的大都市之一,属严重缺水地区。

虽然政府采取了一些列措施,如南水北调工程建设, 建立污水处理厂,产业结构调整等。

但是,气候变化和经济社会不断发展,水资源短缺风险始终存在。

如何对水资源风险的主要因子进行识别,对风险造成的危害等级进行划分,对不同风险因子采取相应的有效措施规避风险或减少其造成的危害,这对社会经济的稳定、可持续发展战略的实施具有重要的意义。

建模实验报告

建模实验报告

建模实验报告摘要:本实验主要针对建模方法进行研究与探索,分别采用了数学模型、统计模型和物理模型进行建模实验。

实验结果表明,不同的建模方法对于问题的解决和分析具有不同的优势和适用性,选择合适的建模方法能够有效提高问题的解决效率和精确度。

1.引言建模是指将实际问题转化为数学模型、统计模型或物理模型等形式的一种方法。

通过建模,我们可以抽象出实际问题中的关键因素和变量,进一步分析和解决问题。

本实验将重点研究数学模型、统计模型和物理模型的建模方法,并通过实验验证其有效性和适用性。

2.数学模型的建模方法数学模型是以数学的形式描述实际问题的模型。

在本实验中,我们采用了几种常见的数学建模方法,包括代数方程模型、微分方程模型和最优化模型。

2.1 代数方程模型代数方程模型是一种通过代数方程来描述问题的模型。

我们可以采用一系列代数方程来表示问题中的变量和关系,进而通过求解方程组来得到问题的解。

在实验中,我们以一个简单的线性方程组作为例子,通过代数方程模型计算方程组的解。

2.2 微分方程模型微分方程模型是一种通过微分方程来描述问题的模型。

微分方程可以描述问题中的变量和其变化率之间的关系。

在实验中,我们以一个经典的弹簧振动模型为例,通过微分方程模型求解系统的振动频率和振幅。

2.3 最优化模型最优化模型是一种通过寻找最优解来描述问题的模型。

最优化模型可以用于解决各种优化问题,如线性规划、整数规划等。

在实验中,我们以一个简单的线性规划问题为例,通过最优化模型求解问题的最优解。

3.统计模型的建模方法统计模型是一种通过统计理论和方法来描述问题的模型。

在本实验中,我们主要研究了回归分析和时间序列分析两种常见的统计建模方法。

3.1 回归分析回归分析是一种通过建立变量之间的回归关系来描述问题的模型。

在实验中,我们以一个销售数据的回归分析为例,通过建立销售额和广告投入之间的回归关系,预测未来的销售额。

3.2 时间序列分析时间序列分析是一种通过统计和数学方法来描述时间序列的模型。

数学建模案例分析--线性代数建模案例20例

数学建模案例分析--线性代数建模案例20例

线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。

案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。

根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。

【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。

数学教学中的数学建模案例

数学教学中的数学建模案例

数学教学中的数学建模案例数学建模是指运用数学原理与方法解决实际问题的过程。

在数学教学中,数学建模可以帮助学生将抽象的数学概念与实际问题相结合,提高他们解决问题的能力和应用数学的能力。

本文将介绍几个数学建模在数学教学中的典型案例。

案例一:用数学建模解决实际问题我们以一个实例开始,假设一个园区的供电系统需要进行优化和改造,以降低能耗和成本。

为了解决这个问题,我们可以通过数学建模来分析和优化供电系统。

首先,我们可以收集园区的用电数据,包括用电量、峰谷电价等信息。

然后,我们可以建立数学模型,使用线性规划等方法来优化供电系统的运行。

通过调整供电系统的负荷分配和电源配置,我们可以找到一种最优方案,以达到降低能耗和成本的目标。

在数学教学中,我们可以通过这个案例引导学生运用数学知识和方法解决实际问题。

学生可以根据实际场景,收集数据,建立数学模型,并利用计算机软件进行模拟和优化。

这样,学生不仅可以巩固数学知识,还可以提高他们的问题解决能力和创新思维。

案例二:用数学建模解决交通流问题交通流问题是城市规划中的一个重要问题。

如何合理安排信号灯的时序,以及交通流的优化调度,都是需要运用数学建模来解决的。

我们可以以某个路口的交通流问题为例。

假设某个路口存在交通拥堵问题,我们需要通过数学建模来优化车辆的行驶路径和交通信号。

首先,我们可以通过收集交通流数据,包括车辆数量、车速等信息。

然后,我们可以建立数学模型,使用图论等方法来分析交通网络的拓扑结构,考虑车辆的速度、密度等因素,并结合交通信号的控制,来优化交通流的调度和路口的通行效率。

在数学教学中,我们可以通过这个案例让学生了解到数学在交通规划中的应用。

学生可以通过收集数据、建立数学模型,运用图论等数学知识,来解决交通流问题。

通过这种实践性的学习,学生可以更好地理解数学的应用和实际问题的解决方法。

案例三:用数学建模解决金融风险问题金融风险管理是银行和其他金融机构需要处理的一个重要问题。

解题技巧如何利用数学建模解决实际问题

解题技巧如何利用数学建模解决实际问题

解题技巧如何利用数学建模解决实际问题数学建模是一种将实际问题转化为数学问题,并通过建立数学模型分析问题的方法。

它在解决实际问题中起着重要的作用。

本文将介绍一些解题技巧,以及如何利用数学建模来解决实际问题。

一、解题技巧1. 理清问题的关键在解决实际问题时,首先需要理清问题的关键点。

仔细阅读问题描述,找出问题中最重要的因素和需要解决的目标。

通过将问题抽象为一个数学模型,更好地理解问题的本质。

2. 将问题转化为数学语言一旦理清问题的关键,我们就可以将问题转化为数学语言。

通过对问题要素进行量化,将其转化为数学表达式或方程式。

这样,问题就可以通过数学模型进行分析和求解。

3. 利用已有的数学工具解决实际问题时,往往可以借助已有的数学工具。

例如,线性规划、最优化理论、微积分等。

熟练掌握这些数学工具,可以更高效地解决问题。

二、利用数学建模解决实际问题的步骤1. 问题理解和分析首先,我们需要仔细理解和分析实际问题。

了解问题的背景、目标和限制条件。

通过与问题相关的人员交流,获取更多的细节和信息。

2. 建立数学模型在理解和分析问题的基础上,我们可以开始建立数学模型。

根据问题的性质和要求,选择合适的数学方法和工具。

将问题转化为数学表达式或方程组。

3. 求解数学模型一旦建立了数学模型,我们就可以开始求解。

利用数学工具和计算机软件,对模型进行求解和优化。

根据求解结果,得出对实际问题的结论和解决方案。

4. 模型验证和应用完成数学模型的求解后,需要对模型进行验证。

将模型的结果与实际问题进行比对,看是否符合问题的要求。

如果模型的结果与实际情况相符,就可以将模型应用到实际问题中。

三、案例分析为了更好地理解利用数学建模解决实际问题的过程,我们以一个经典案例作为例子。

例:面包配送路线规划假设一个面包配送员需要在城市的多个区域间进行配送。

每个区域的面包需求量不同,而配送员需要尽量减少配送距离和时间。

我们可以利用数学建模来解决这个问题。

首先,我们需要理解问题的背景和要求。

数学建模论文报告

数学建模论文报告

数学建模论文报告 和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,以下是小编为大家整理分享的数学建模论文报告。

欢迎阅读。

数学建模论文报告1 1高等数学教学中数学建模思想应用的优势 1.1有助于调动学生学习的兴趣 在高等数学教学中,如果缺乏正确的认识与定位,就会致使学生学习动机不明确,学习积极性较低,在实际解题中,无法有效拓展思路,缺乏自主解决问题的能力。

在高等数学教学中应用数学建模思想,可以让学生对高等数学进行重新的认识与定位,准确掌握有关概念、定理知识,并且将其应用在实际工作当中。

与纯理论教学相较而言,在高等数学教学中应用数学建模思想,可以更好的调动学生学习的兴趣与积极性,让学生可以自主学习相关知识,进而提高课堂教学质量。

2.2有助于提高学生的数学素质随着科学技术水平的不断提高,社会对人才的要求越来越高,大学生不仅要了解专业知识,还要具有分析、解决问题的能力,同时还要具备一定的组织管理能力、实际操作能力等,这样才可以更好的满足工作需求。

高等数学具有严密的逻辑性、较强的抽象性,符合时代发展的需求,满足了社会发展对新型人才的需求。

在高等数学教学中应用数学建模思想,不仅可以提高学生的数学素质,还可以增强学生的综合素质。

同时,在高等数学教学中,应用数学建模思想,可以加强学生理论和实践的结合,通过数学模型的构建,可以培养学生的数学运用能力与实践能力,进而提高学生的综合素质。

1.3有助于培养学生的创新能力 和传统高等数学纯理论教学不同,数学建模思想在高等数学教学中应用的时候,更加重视实际问题的解决,通过数学模型的构建,解决实际问题,有助于培养学生的创新精神,在实际运用中提高学生的创新能力。

数学建模活动需要学生参与实际问题的分析与解决,完成数学模型的求解。

在实际教学中,学生具有充足的思考空间,为提高学生的创新意识奠定了坚实的基础,同时,充分发挥了学生的自身优势,挖掘了学生学习的潜能,有效解决了实际问题。

数学建模专题汇总离散模型

数学建模专题汇总离散模型

数学建模专题汇总离散模型精⼼整理离散模型§1离散回归模型⼀、离散变量如果我们⽤0,1,2,3,4,…说明企业每年的专利申请数,申请数是⼀个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。

但离散变量0和1可以⽤来说明企业每年是否申请专利的事项,类似表⽰状态的变量才在本章的讨论中。

在专利申请数的问题中,,虚拟因l 的因变量i y YES 则(/)1(1/)0(0/)i i i i i i E y p y p y =?=+?=x x x =(1/)i i p y x =。

根据经典线性回归,我们知道其总体回归⽅程是条件期望建⽴的,这使我们想象可以构造线性概率模型描述两个响应⽔平的线性概率回归模型可推知,根据统计数据得到的回归结果并不⼀定能够保证回归模型的因变量拟合值界于[0,1]。

如果通过回归模型式得到的因变量拟合值完全偏离0或l 两个数值,则描述两项选择的回归模型的实际⽤途就受到很⼤的限制。

为避免出现回归模型的因变量预测值偏离0或1的情形,需要限制因变量的取值范围并对回归模型式进⾏必要的修正。

由于要对其进⾏修正,那么其模型就会改变,模型改变会导致似然函数改变,这就是我们下⾯要讨论的。

现在我们讨论的模型与判别分析的⽬的是⼀样的,但有区别。

§2⼆元离散选择模型⼀、效⽤函数为了使得⼆元选择问题的有进⼀步研究可能,⾸先建⽴⼀个效⽤函数。

在讨论家庭是否购房的问题中,可将家庭购买住房的决策⽤数字1表⽰,⽽将家庭不购买住房的决策⽤数字0表⽰。

⽤1i U 表⽰第i 个⼈选择买房的效⽤,0i U 表⽰第i 个⼈选择不买房的效⽤。

其效⽤均为随机变量,于是有10i i U U 将故p 型。

数形式。

采⽤累积标准正态概率分布函数的模型称作Probit 模型,或概率单位模型,⽤正态分布的累积概率作为Probit 模型的预测概率。

另外logistic 函数也能满⾜这样的要求,采⽤logistic 函数的模型称作logit 模型,或对数单位模型。

离散事件系统的建模与仿真强烈推荐.ppt

离散事件系统的建模与仿真强烈推荐.ppt

0.0
8
11.2 排队服务系统的数学建模
排队服务系统的模型分类和表示
分类:按照排队系统的三大组成要素(到达 时间分布X、服务时间分布Y、服务台数目 Z),进行分类。
表示:X/Y/Z。D/M/1
M--负指数分布 D--定长分布 Ek--K阶爱尔朗分布 GI--独立的随机分布
0.0
9
11.2 排队服务系统的数学建模
00空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢空议由乙方提供他人呢

数学建模报告

数学建模报告

数学建模报告
数学建模报告是指一份关于数学建模过程、结果和结论的完整的、系统的、有条理的描述和分析的报告。

它通常包括以下几个部分:
1. 问题陈述:明确描述建模的问题,包括问题的背景、目标、限制和要求等。

2. 假设和符号定义:明确假设条件,并定义所有相关的符号和术语,包括量的定义、单位和量纲等。

3. 模型建立:详细描述建立数学模型的过程。

包括确定问题的模型类型(离散模型、连续模型、静态模型、动态模型等)、选择合适的数学方法和技巧、设定合适的方程和约束条件等。

4. 模型求解:具体描述模型的求解过程,包括使用的计算方法、算法和软件工具等。

5. 模型分析和结果:对模型的解进行定性和定量分析,包括求解结果的可行性、有效性和合理性等。

还可以进行灵敏度分析、稳定性分析等。

6. 结果评价和讨论:对模型的结果进行评价和讨论,包括与实际问题的关联性、可操作性等。

7. 模型的优缺点:对模型的优点和不足进行总结和分析。

8. 结论和建议:对模型的解结果进行总结和提出建议,包括对问题的解决方案、改进措施等。

9. 参考文献:列出所有参考文献的详细信息,包括书籍、期刊论文、互联网资源等。

数学建模报告的撰写应该清晰明了,逻辑严谨,数据准确可信,有助于读者理解模型的目的和结果,能够为实际问题的解决提供有利的信息和建议。

数学建模与数值分析

数学建模与数值分析

数值计算的基本概念
如线性代数、微积分、微分方程等在数值分析中的应用。
数值计算中的数学基础
如直接法、迭代法、数值积分与微分等。
数值计算方法的分类
数值计算基础
误差的来源
包括舍入误差、截断误差、初始误差等。
误差的传播
如何通过计算公式和步骤将一个小的误差放大,导致结果的不准确。
误差的控制
如何通过选择合适的数值方法和算法,以及合理的参数设置,来减小误差。
详细描述
经济问题建模
总结词
描述工程问题建模的过程和重要性。
详细描述
工程问题建模是数学建模在工程领域的应用,它通过建立数学模型来描述和分析各种工程问题。这些模型可以涉及物理、化学、生物、机械、电子等多个工程学科。工程问题建模有助于提高设计效率,优化设计方案,预测和解决潜在问题,降低工程风险。
工程问题建模
数学建模与数值分析
目录
数学建模基础 数值分析原理 数学软件应用 建模与实际问题的结合 案例分析与实践 总结与展望
01
CHAPTER
数学建模基础
数学建模是运用数学语言描述实际现象的过程,通过抽象、简化、假设等手段,将实际问题转化为数学问题。
数学建模通常包括明确问题、收集数据、建立模型、求解模型、验证与改进等步骤。
Python概述
Python是一种解释型、高级编程语言,广泛应用于数据科学、机器学习等领域。
数学建模
使用Python进行数学建模,如线性回归、逻辑回归、决策树等。
数据处理
使用Python进行数据处理,如数据清洗、数据转换等。
可视化
使用Python进行数据可视化,如Matplotlib、Seaborn等库。
跨学科融合

2024《高中生数学建模能力培养的策略》结题报告

2024《高中生数学建模能力培养的策略》结题报告

2024《高中生数学建模能力培养的策略》结题报告一、研究分析(一)概念界定《高中数学课程标准》中提出“数学建模是运用数学思想方法和知识解决实际问题的过程”。

从广义来说认为一切数学概念,数学理论体系,方程和算法都有可能称为数学模型,甚至数学的各个分支也都可以认为是数学模型。

若从狭义来说理解数学模型则是解决一类实际生活问题所使用的一种数学的框架,但它又不同于一般的模型,它是用数学语言模拟现实的一种模型,即把实际问题中的主要特征,主要关系抽象成数学问题,近似地反映事物的变化。

(二)现状分析在现行的中学教材中有很多内容蕴含的数学建模的思想,是培养学生数学建模的能力的极好的素材。

如函数模型,数列模型,线性规划模型,概率模型等等。

但没有系统的,以数学建模的思路系统教材。

二、研究设计(一)研究内容:(1)高中生的数学建模意识和建模能力的抽样调查;(2)影响高中生数学建模能力的主要因素分析;(3)高中数学建模案例研讨;(4)高中生数学建模能力的培养策略,从教师,学生,教材三方面对学生数学建模能力的培养提出改进措施。

(二)研究对象本校一至三年级学生及部分兄弟学校学生三、课题实施(一)《新课程标准》对常见高中数学模型的要求(二)学生建模能力不高的成因分析通过调查发现,学生在高中数学学习中,数学建模能力是一块不容忽视的短板。

究其原因是多方面的:1、教师的重视程度不够教师的思想不够解放,对于新课标的把握还不够准确,都导致教师按照传统教学模式强化知识点的教学,而忽视了学生能力的培养。

2、学生的畏难情绪严重多年的教师忽视,教学忽视,学生忽视导致学生在数学建模方面几乎是空白,因此一旦遇到这类问题,文字多,信息量大,学生第一反应就是回避,即便面对也已在心中设置了巨大的屏障。

因此学生怕读问题,无法正确分析问题,找不到问题的切入口,一片茫然就成了常见现象。

3、学生的建模能力不强正因为教学中长期无视这部分内容,学生的数学建模能力没有得到应有的循序渐进的发展,因此在模型认定方面,数量关系分析方面学生的能力急待提高。

数学建模基本要素

数学建模基本要素

问题定义不清
总结词
数据是数学建模的基础,数据不足或不准确会导致模型无法准确反映实际情况。
详细描述
在数学建模过程中,需要收集大量相关数据作为输入。如果数据量不足或数据质量不高,会导致模型精度下降,甚至得出错误的结论。解决这个问题的方法是尽可能多地收集高质量的数据,同时采用合适的数据处理方法对数据进行清洗和预处理,提高数据的质量和准确性。
详细描述
05
CHAPTER
数学建模的常见问题与解决方案
总结词
问题定义不清是数学建模中常见的问题,它可能导致模型建立偏离实际需求。
详细描述
在数学建模过程中,首先需要对问题进行清晰、准确的定义。如果问题定义模糊或过于宽泛,会导致建模过程中出现偏差,甚至得出错误的结论。解决这个问题的方法是仔细分析问题,明确问题的边界和约束条件,确保模型能够准确反映实际需求。
通过代数方程和不等式来描述和解决问题的方法。
详细描述
代数法是数学建模中最基本的方法之一,它通过建立代数方程或不等式来描述和解决各种实际问题。例如,在解决几何问题时,可以通过代数法找到未知数,进而求出问题的解。
代数法
利用微积分的基本概念和定理来建模的方法。
总结词
微积分法是数学建模中常用的一种方法,它利用微积分的基本概念和定理来描述和解决实际问题。例如,在经济学中,可以通过微积分法建立需求和供给函数,进而求出市场的均衡价格。
详细描述
变量选择需要考虑与问题相关的各种因素,并确定哪些因素对模型输出有显著影响。参数设定则需要根据已知数据和经验进行合理估计,以确保模型的有效性和准确性。
变量选择与参数设定
总结词
假设条件是数学建模中不可或缺的一部分,它们限制了模型的可能解的范围,有助于简化模型并提高预测精度。

数学建模实习报告[定稿]

数学建模实习报告[定稿]

数学建模实习报告[定稿]第一篇:数学建模实习报告[定稿]数学建模实习报告一、实习目的数学建模主要是将显示对象的信息加以翻译、归纳的产物。

通过对数学模型的假设、求解、验证,得到数学上的解答,在经过翻译回到现实对象,给出分析、决策的结果。

数学建模对我们并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。

例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案......这些问题和建模都有着很大的联系。

通过数学建模培训,就会知道解决问题的原理。

学习更多的数学方面的知识及其应用,数学建模的过程可以培养我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高,它还可以让我了解多种数学软件以及如何运用数学软件对模型求解。

二、实习内容(一)实习单位简介西安财经学院统计学院数学建模组是以信息与计算科学系主任王培勋教授为组长的指导教师组,每年都组队参加高教社杯全国大学生数学建模竞赛,并取得了优异的成绩。

今年我院数学建模参赛队员的选拔是经过学生自愿报名、考试选拔、集中培训等环节来进行的。

30 名最后入选的学生,组建了10个队,经过一个暑假的培训,基本全部掌握了数学软件的计算机程序设计方法,掌握了常用的数学建模方法。

在三天三夜的竞赛过程中,各参赛小组学员勇于拼搏,力争创新,在规定的七十二小时内顺利完成了答卷。

(二)实习内容数学建模是运用数学思想、方法和知识解决实际问题的过程,它为我们学生提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发我们学习数学的兴趣,发展我们的创新意识和实践能力。

数学建模与数学实验开创了大学生把数学理论和专业知识有机结合的新途径,是培养学生分析问题、解决问题和使用计算机进行科学计算的有效方法,是培养学生创新能力和实践能力的有效手段。

【精选】数学建模案例分析

【精选】数学建模案例分析

数学建模案例分析模型1 蠓虫分类问题背景 两种蠓虫和已由生物学家W.L.Grogon 和W.W.Wirth (1981)根据Af Apf 它们的触角长度、翅膀长度加以区分. 现测得只和只的触长、翅膀长的数据6Apf 9Af 如下:Apf()1.14,1.78()1.18,1.96()1.20,1.86()1.26,2.00()1.28,2.00()1.30,1.96Af()1.24,1.72()1.36,1.74()1.38,1.64()1.38,1.82()1.38,1.90()1.40,1.70()1.49,1.82()1.54,1.82()1.56,2.08问题 ⑴如何根据以上数据,制定一种方法正确区分两种蠓虫?⑵将你的方法用于触长、翅长分别为的个样本()()()1.24,1.80,1.28,1.84,1.40,2.043进行识别.如何考虑?该问题属于统计模型范畴!(属于黑洞问题)1.首先对已有数据进行分析.(测试)画出相应的散点图什么启发?从图中可以看出,两类蠓虫有明显的差别.问题是该如何识别.法1 用最小二乘法得到回归线:结果不理想.法2 用斜率的平均值构造直线结果?图中不同类别的蠓虫的区别还是比较明显的.如何做进一步的识别?用此方法对给定的三个蠓虫进行识别,若点在直线的上方,则判定为Apf,否则定为Af.由此建立识别函数dist.m. 对给定的样本进行识别,如果样本点在直线上方,则将该蠓虫识别为Apf(标示为1),否则识别为Af(标示为0).clear,clcApf1=[1.14,1.18,1.20 1.26 1.28 1.30];Apf2=[1.78 1.96 1.86 2.00 2.00 1.96];Af1=[1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56]; Af2=[1.72 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08]; x=[Apf1,Af1];y=[Apf2,Af2];n=length(x);k=sum(y./x)/n;A=[1.24,1.80;1.28,1.84;1.40,2.04];n=size(A,1);p=[];for i=1:nd=A(i,2)-k*A(i,1);if d>0p=[p,1];elsep=[p,0];endenddisp(p)结果为1 1 1即:三个新样本的判定结果均为Apf!这样的判定是否有效?(模型解释)为解释判别法的有效性,引入交叉误判率.交叉误判率是每次剔除一个样品,利用其余的训练样本建立判别准则,根据建立的判别准则对删除的样品进行判定,以其误判的比例作为误判率. 具体过程如下:①从总体为的训练样本开始,剔除其中每一个样品,剩余的个样品与中的1G 1m -2G 全部样品建立判别函数;②用建立的判别函数对剔除的样品进行判别;③重复上述步骤,直到中的全部样品依次被剔除、判别,其误判的总数记为;1G 12m ④对的样品重复步骤①②③,直到中的样品全部被剔除、判别,其误判的个数2G 2G 记为21,m 交叉误判率的估计值为1221ˆ.m m pm n+=+程序为clear,clcApf1=[1.14,1.18,1.20 1.26 1.28 1.30];Apf2=[1.78 1.96 1.86 2.00 2.00 1.96];Af1=[1.24 1.36 1.38 1.38 1.38 1.40 1.48 1.54 1.56]; Af2=[1.72 1.74 1.64 1.82 1.90 1.70 1.82 1.82 2.08]; x=[Apf1,Af1];y=[Apf2,Af2];m1=length(Apf1);m2=length(Af1);n=length(x);k=sum(y./x)/n;A=[x',y'];p1=[];p2=[];for i=1:m1b=A(i,:);B=A;B(i,:)=[];b1=B(:,1);b2=B(:,2);k=sum(b2./b1)/(n-1);d=b(2)-k*b(1);if d>0p1=[p1,1];elsep1=[p1,0];endendfor i=m1+1:nb=A(i,:);B=A;B(i,:)=[];b1=B(:,1);b2=B(:,2);k=sum(b2./b1)/(n-1);d=b(2)-k*b(1);if d>0p2=[p2,1];elsep2=[p2,0];endenddisp(p1),disp(p2)结果为1 1 1 1 1 10 0 0 0 0 0 0 0 0结论:在这样的判定法则下,交叉误判率为零,说明方法还是有效的.模型2 饮酒驾车问题一、问题背景据报道,2003年全国道路交通死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例.针对这种严重的道路交通情况,国际质量监督检查检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准,新标准规定:车辆驾驶人员血液中的酒精含量大于或等于毫克/百毫升、小于毫克/百毫升为饮酒驾车;2080血液中的酒精含量大于或等于毫克/百毫升为醉酒驾车.大李在中午点喝了一瓶啤酒,8012下午点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为保险起见他6呆到凌晨点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,2为什么喝同样多的酒,两次检查结果却会不一样?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李的情况做出解释;2.在喝了瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情3况下回答:⑴酒是自很短时间内喝的;⑵酒是在较长一段时间(比如小时)内喝的.23.怎样估计血液中的酒精含量在什么时间内最高?4.根据你的模型论证;如果天天喝酒,是否还能开车?5.根据你的论证并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车的忠告.参考数据⑴人的体液占人的体重左右,其中血液只占体重的7%左右.而药物(包括65%70%:酒精)在血液中的含量与在体液中的含量大致相同.⑵体重在的某人在短时间内喝下瓶啤酒后,隔一定时间测量他的血液中酒精含70kg 2量(毫克/百毫升),得到数据如下:时间/小时0.250.50.751 1.252 2.53 3.544.55酒精含量306875828277686858515041时间/小时678910111213141516酒精含量3835282518151210774(酒精含量单位:毫克/百毫升)二、问题分析显然,该问题是微分方程模型.饮酒后,酒精先从肠胃吸收进入血液与体液中,然后从血液与体液向外排泄.由此建立二室模型:大李在喝酒以后,酒精先从吸收室(肠胃)进入中心室(血液也体液),然后从中心室向体外排除.设在时刻时,吸收室的酒精含量为,中心室的酒精含量为,酒精t ()1x t ()2x t 从吸收室进入中心室的速率系数为,分别表示在时刻时两室的酒精含量1k ()()12,y t y t t (毫克/百毫升),为中心室的酒精向外排泄的速率系数.在适度饮酒没有酒精中毒的条2k 件下,都是常量,与饮酒量无关.12,k k假定中心室的容积(百毫升)是常量,在时刻时中心室的酒精含量为,而吸V 0t =0收室的酒精含量为,酒精从吸收室进入中心室的速率与吸收室的酒精含量成正比;大02g 李第二次喝一瓶啤酒是在第一次检查后的两小时后.三、建模与解模1.模型建立由已知条件得到吸收室酒精含量应满足的微分方程为,()111d d x k x t t=-做学相应的初始条件是;而中心室酒精含量应满足的微分方程为()1002x g =()()21122d d x k x t k x t t=-相应的初始条件为.()20x t =由此建立问题的数学模型:()()()()()11121122102,,02,00.x k x t x k x t k x t x g x ⎧=-⎪=-⎨⎪==⎩2.解模调用MatLab 下的求解函数,输入下面语句syms x1 x2 k1 k2 g0[x1,x2]=dsolve('Dx1=-k1*x1','Dx2=k1*x1-k2*x2','x1(0)=2*g0','x2(0)=0');x=simple([x1,x2]);该微分方程组的解为()()()12110012122e ,2e e .k t k t k t x t g g k x t k k ---⎧=⎪⎨=-⎪-⎩中心室的酒精含量(百毫升)()()()()21210122e e e e V k t k t k t k t g k y t k k k ----=---:其中,上式即为短时间内喝完两瓶啤酒后中心室酒精含量率所对应()()0112122V g k k k k k k =≠-的数学模型.为得到模型中的未知参数,采用非线性拟合方法.编写求解程序:k0=[2,1,80];fun=inline('k(3)*(exp(-k(2)*t)-exp(-k(1)*t))','k','t');[k,r]=nlinfit(t,x,fun,k0);disp(k)hold onx1=k(3)*(exp(-k(2)*t)-exp(-k(1)*t));plot(t,x1)此时相应的值为k 2.00790.1855 114.4325图形为图形表明,拟合效果不错.再画出相应的残差图:残差分析表明模型比较理想.将计算结果代入表达式,得到在时刻时中心室酒精含量(百毫升)的函数表达式t .()()0.1855 2.00792114.4325e e t t y t --=- 模型应用若大李仅喝一瓶酒,此时,因此相应的模型为12k k '=()()0.1855 2.0079257.2163e e t t y t --=-再将代入得6t =()()0.18556 2.0079626114.4325e e 18.799320y -⨯-⨯=-≈<即大李此时符合驾车标准.假设大李在晚上点迅速喝完一瓶啤酒,以和分别代表在时刻时吸收室及8()1z t ()2z t t 中心室的含酒量(代表晚上点),则,由此得到微分方程:0t =8()()10108z g x =+一)题()()()()()()()()()1112112210122d ,d d ,d 08,08.z t k z t t z t k z t k z t tz g x z x ⎧=-⎪⎪⎪⎪=-⎨⎪=+⎪⎪=⎪⎩而由前面计算结果知:.将其代入到前面微分方()()()12188801102128e ,8e e k k k g k x g x k k ---==--程的初值问题中,则有()()()()()()()()1211112112281008801212d ,d d ,d 0e ,0e e .k k k z t k z t t z t k z t k z t t z g g g k z k k ---⎧=-⎪⎪⎪=-⎪⎨⎪=+⎪⎪=-⎪-⎩在MatLab 下,编写相应的求解程序:clear,clcsyms z1 z2 k1 k2 g0[z1,z2]=dsolve('Dz1=-k1*z1','Dz2=k1*z1-k2*z2', ...,'z1(0)=g0*(1+exp(-8*k1))','z2(0)=(k1*g0/(k1-k2))*(exp(-8*k2)-exp(-8*k1))');z=simple([z1,z2]);此时问题的解为()()()1122118108802121e e ,1e e 1e e .k k t k k t k k tz g g z k k ------⎧=+⎪⎨⎡⎤=+-+⎪⎣⎦-⎩记,()()()()()2211221188880121e e 1e e 1e e 1e e V k k t k k t k k t k k tg z k k k --------⎡⎤⎡⎤'=+-++-+⎣⎦⎣⎦-:最后代入得到在时刻时大李中心室的酒精含量函数122.0079,0.1855,57.2163k k k '===t .()()1.48400.185516.0632 2.007957.21631e e 1e e t tz ----⎡⎤=+-+⎣⎦取,即有6t = z=57.2163*((1+exp(-1.4840))*exp(-0.1855*6)-(1+exp(-16.0632))*exp(-2.0079*6))返回值23.0618即此时中心室的酒精含量率大于规定标准,属于饮酒驾车.用同样的方法可以讨论其它问题,在此不一一叙述.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.
3

n 2

2. 2(n 1)
• 1847年,Kirkman证明了: STS(n)存在当且仅当 n 6k 1 或者 6k 3 。
Steiner三元系的图形表示:
3. Steiner三元系的推广—平衡不完全区组设计
• Steiner三元系还可以向两个方向推广: 1) 将“三元子集”推广到k元子集;
• 根据组合学中的容斥原理便可得到结果:

6!35!3 4!3!络的最小Steiner树 (MCM1991-B)
一.问题的提出
• 9个通讯站位于以下坐标点处:
a (0,15) b (5,20) c (16,24) d (20,20) e (33,25) f (23,11) g (35,7) h (25,0) i (10,3)
• 构造出购书方案总的效用函数:
wj xj
j
“尽最大可能满足学生希望”的目标就是:
max wj x j
j
综合起来,便得到原问题的数学模型:
max x j
j
min c j x j
j
max wj x j 这是一个多目标最j 优化问题。 根据本问题的特点,可以采用将次要目标改成 约束的方法,即将它改为:
• 一.问题的提出
• 截断切割是指将物体沿某个切割平面切成两部分。
• 从一个长方体内加工出一个已知尺寸、位置预定的 长方体(两个长方体对应的平面相互平行),通常要经 过6次切割。
• 假定切割费用与切割时扫过的面积成正比,则需要 考虑的不同切割方案的总数是多少?


(其它要求和其它问题略)
• 二. 分析和结果
离散问题建模方法 及案例分析
上海海事大学 丁颂康
skding@
一. 离散数学的研究对象
• 离散数学是“研究离散变量相互关 系和结构的数学理论的总称。包括集 合论、数论、有限群论、组合数学、 图论、数理逻辑、可行计算理论等。”
-----《辞海》
• 离散数学研究的对象是有限集合。 该集合的大小又是与某些参数的组合数 有关。因此,也常常被称为组合结构。
假设A和B都是n阶拉丁方,A (aij ), B (bij ) 。如果 n2 个有序对 (aij , bij ) 各不相同。则称该两个拉丁方正 交。
• 正交拉丁方的存在性
• 1782年,Euler猜测,当 n 2(mod4) 时,n阶正交拉丁 方都不存在。
其中,2阶的不存在性是显然的。6阶的不存在性是 Tarry在1900年证明的。也就是说,36军官问题确实没 有解。 • 直到1960年, Euler的猜想最终被推翻。Shrikhande, Bose, Parker证明了:除了2和6两种特殊情况, n阶正交 拉丁方都存在。
• 一. 问题的提出

某学校图书馆准备添置一些新书。为了满足广大学
生的需求, 图书馆对具有代表性的300位同学中进行了
调查。要求被调查的学生在科技图书、中国小说、外国
文学、教辅读物等十大类书籍中选出自己的最喜欢的三
种并排出顺序。(调查结果略)
假定这十种图书每册的平均价格为(元/册) 图书种类 1 2 3 4 5 6 7 8 9 10 平均价格 22 20 24 18 18 16 20 12 15 14
记作B(k,λ; n)。
• 平衡不完全区组设计的存在性:
• 容易见到, B(k,λ; n)存在的必要条件是:
1)
; k(k 1) n(n 1)
2)
(k 1) (n 1) 。
• 有人证明了,除了少数情况,以上条件也是充分的。
回到原问题:由于董事会人数的关系,任意两位董事分在同组 的次数不可能做到完全平衡。只能力求平衡。以九名在职董事为 例 ,可以安排如下:
2) 将“唯一的”推广到大家重复λ次。
• 于是就有了平衡不完全区组设计的概念: • 设S是一个n元集合,B是由S的一些k元子集(或称k元 组) 组成的集合。如果S中的任意一对不同的元素,都
恰好同时包含在B的λ个 k 元子集中,则称(S, B)组成 一个区组长度为k, 相遇数为λ的平衡不完全区组设计。
为让董事们充分发表意见,应如何安排各节各组的 董事名单?
二. 分析和建模 关于组合设计
1. Euler36军官问题和正交拉丁方
设 S {a1, a2,, an} 是一个n元集合。A是一个 n n 阶
矩阵,它的元素为S中的元素。如果S 中的每一个元素都 恰好在A的每一行中出现一次,同时在A的每一列中出现 一次, 那么就称A为S上的一个n阶拉丁方。
则进货总量和经费总量分别为:
xj
j
cjxj
j
• 于是对于藏书量和经费的目标可分别表示为:
max x j
j
min c j x j
j
• 关于效用函数:
首先根据学生的喜好程度的排序,定义一个权值: 这里可以将学生偏爱的三类以及其它类的图书分别赋值
7, 5, 3, 1,记第j类图书的权为 wj ;
注:3,4两条性质说明,就连通的意义而言,树具有极小性.
• 子图—生成子图—生成树 • 最小生成树 • 最小生成树的Kruskal算法和管梅谷算法
—避圈和破圈
• 三角形中到三个顶点距离之和最小的点 — Steiner点
• 推广— Steiner树 • 直角距离
最优性问题案例二---- 图书馆购书策略
组别
1
2
3
4
5
6
上午第一节 15
29
48
36
7
--
上午第二节 39
68
1
--
24 57
上午第三节
4
--
27
18
35 69
组别
1
2
3
4
下午第一节 123 49 58 67
下午第二节 19 456 37 28
下午第三节 25 34 789 16
下午第四节 26 38 59 147
2.计数问题案例---- 截断切割(CMCM1997-B)
• 尽最大可能满足学生希望: 这是一种所谓消费者的偏好问题,经济学中采用效
用函数的方法处理。---就是定义一个递增(有时也可 能是递减)的函数来表示消费者对不同商品的喜好程 度,来度量原来不能度量的东西,把偏序改为全序。
• 设:第j类图书的平均单价为c j ,进货量为 x j ,
( j 1,2,10)
• 要设计一个连接这9个通讯站的局部网络,使总费 用最省. (假定连线费用与距离成正比).
二.问题的分析和建模
最小连接问题:
树—连通无圈图.

树的性质:
1.任意两点间存在唯一的路;
2.边数等于点数减1;
3.任意去掉一条边,树就变得不连通;
4.任意去掉一个非悬挂点,树就变得不连通;
5.任意添加一条边,就可得到唯一的圈.
1. 存在性问题案例---- 董事会会议安排
Mix Well For Fruitful Discussion (MCM1997-B)
一. 问题的提出 An Tostal 公司董事会由29名董事(其中9名在职)组成。
公司要召开为期一天的董事会会议。 上午分3节(sessions), 每节分成6组(groups) 下午4 节, 每节分成4组。
max wj x j
j
subject to c j x j c j xj X j
谢谢
2011.7
知识回顾 Knowledge Review
• 讨论的问题类型很多,主要有: • 安排(arrangement)、分类(grouping)、
排序(ordering)、选择(selection)等。
• 变量的“离散性” —对象通常是以个体形式
出现……
• 问题的“离散性” — 二分问题、七桥问题、
八后问题、二十问问题……
• 方法的“离散性” — 由问题的离散性带来
---- J.Edmonds & R.M.Karp (1960) • P --- NP --- NP-C
二. 离散问题建模方法
根据许多数学家的描述,离散问题通常 以以下三种形式出现:
“ Does the arrangement exist? ” “ How many arrangements are there? ” “ What is a best arrangement? ” 这就是存在性问题、计数问题和最优性 问题。
• 2. Steiner三元系 设S是一个n元集合,B是由S的一些三元子集组成的 集合。如果S中的任意一对不同的元素,都恰好同时包
含在B的唯一的一个三元子集中, 则称( S, B )组成一个
n 阶的Steiner三元系, 记作STS(n)。 • 例如:
• (1,2,3), (1,4,5), (1,6,7), (2,4,6), (2,5,7), (3,4,7), (3,5,6) 组成一个7阶的Steiner三元系。
• (1,2,3), (4,5,6), (7,8,9);(1,4,7), (2,5,8), (3,6,9); (1,5,9), (2,6,7), (3,4,8);(1,6,8), (2,4,9), (3,5,7)。 组成一个9阶的Steiner三元系。
• Steiner三元系的存在性:

容易见到:
• 首先考虑到一共需要切割6次。按照排列,不同方 案应该有 6! 720 种。
• 然而,因为如果两次相继的加工是切割一对相互 平行的平面,那么交换其顺序对整个切割费用将不 产生任何影响。
• 这种相互平行的平面一共有3对。其中的1对在加 工顺序中相邻的共5!种,有某2 对相邻的共4!种, 3 对都相邻的有3!种。
请你帮图书馆出个主意,应该按照怎样的比例添置
相关文档
最新文档