高中数学中集合的概念与运算的解题归纳
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1 集合的概念与运算
一、知识导学
1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.
2.元素:集合中的每一个对象称为该集合的元素,简称元.
3.子集:如果集合A 的任意一个元素都是集合B 的元素(若A a ∉则B a ∈),则称 集合A 为集合B 的子集,记为A ⊆B 或B ⊇A ;如果A ⊆B ,并且A ≠B ,这时集合A 称为集合B 的真子集,记为A B 或B A.
4.集合的相等:如果集合A 、B 同时满足A ⊆B 、B ⊇A ,则A=B.
5.补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记 为 A C s .
6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常 记作U.
7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集, 记作A ⋂B.
8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并 集,记作A ⋃B.
9.空集:不含任何元素的集合称为空集,记作Φ.
10.有限集:含有有限个元素的集合称为有限集.
11.无限集:含有无限个元素的集合称为无限集.
12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).
13.常用数集的记法:自然数集记作N ,正整数集记作N +或N *,整数集记作Z ,有理数集记作Q ,实数集记作R .
二、疑难知识导析
1.符号⊆,,⊇,,=,表示集合与集合之间的关系,其中“⊆”包括“”和“=”两种情况,同样“⊇”包括“”和“=”两种情况.符号∈,∉表示元素与集合之间的关系.要注意两类不同符号的区别.
2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.
3.在集合运算中必须注意组成集合的元素应具备的性质.
4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式
中,B =Φ易漏掉的情况.
5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.
6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.
7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来.
8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.
9.含有n 个元素的集合的所有子集个数为:n 2,所有真子集个数为:n 2-1
三、经典例题导讲
[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )
A .(0,1),(1,2)
B .{(0,1),(1,2)}
C .{y|y=1,或y=2}
D .{y|y≥1}
错解:求M∩N 及解方程组⎩⎨⎧+=+=1
12x y x y 得⎩⎨⎧==10y x 或 ⎩⎨⎧==21y x ∴选B
错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,
M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.
正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.
∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .
注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x
2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.
[例2] 已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 错解:由x 2-3x +2=0得x =1或2.
当x =1时,a =2, 当x =2时,a=1.
错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A .
当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.
正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}
∴B=或{}
{}21或 ∴C={0,1,2}
[例3]已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有: ( )
A .m +n ∈A B. m +n ∈
B C.m +n ∈
C D. m +n 不属于A ,B ,C 中任意一个
错解:∵m ∈A ,∴m =2a ,a Z ∈,同理n =2a +1,a ∈Z, ∴m +n =4a +1,故选C
错因是上述解法缩小了m +n 的取值范围.
正解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z ,
∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B, 故选B.
[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B
A ,求实数p 的取值范围.
错解:由x 2-3x -10≤0得-2≤x≤5.
欲使B A ,只须335
1212≤≤-⇒⎩⎨⎧≤-+≤-p p p
∴ p 的取值范围是-3≤p≤3.
错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.
由B A 得:-2≤p+1且2p -1≤5.
由-3≤p≤3.
∴ 2≤p≤3
②当B=时,即p +1>2p -1p <2.
由①、②得:p≤3.
点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.
[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.
分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.
解:分两种情况进行讨论.
(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,
a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.
∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.
(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,
∵a≠0,∴2c 2-c -1=0,
即(c -1)(2c +1)=0,又c≠1,故c=-2
1. 点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. [例6] 设A 是实数集,满足若a∈A,则
a -11∈A ,1≠a 且1∉A. ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素.
⑵A 能否为单元素集合?请说明理由.
⑶若a∈A,证明:1-a
1∈A. ⑷求证:集合A 中至少含有三个不同的元素.
解:⑴2∈A ⇒ -1∈A ⇒
2
1∈A ⇒ 2∈A ∴ A 中至少还有两个元素:-1和2
1 ⑵如果A 为单元素集合,则a =a -11 即12
+-a a =0
该方程无实数解,故在实数范围内,A 不可能是单元素集
⑶a∈A ⇒ a -11∈A ⇒ a --1111∈A ⇒111---a a ∈A ,即1-a 1∈A ⑷由⑶知a∈A 时,a
-11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a
-11 ②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a
1 ③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a -11. 综上所述,集合A 中至少有三个不同的元素.
点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.
[例7] 设集合A={a |a =12+n ,n ∈N +},集合B={b |b =542
+-k k ,k ∈N +},试证:A B .
证明:任设a ∈A,
则a =12
+n =(n +2)2-4(n +2)+5 (n ∈N +), ∵ n∈N*,∴ n +2∈N*
∴ a∈B 故 ①
显然,1{}*2,1|N
n n a a A ∈+==∈,而由 B={b |b =542+-k k ,k ∈N +}={b |b =1)2(2+-k ,k ∈N +}知1∈B,于是A≠B
②
由①、② 得A B .
点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.
(2)判定两集合相等,主要是根据集合相等的定义.
四、典型习题导练
1.集合A={x|x 2-3x -10≤0,x ∈Z},B={x|2x 2
-x -6>0, x ∈ Z},则A ∩B 的非空真子集的个数为( )
A .16
B .14
C .15
D .32
2.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )
A .{2,-2 }
B .{-2,-5 }
C .{±2,±5 }
D .{5,-5}
3. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )
A .P
B .Q
C .
D .不知道
4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )
A .P∩Q=
B .P Q
C .P=Q
D .P Q
5.若集合M ={11|<x
x },N ={x |2x ≤x },则M N = ( ) A .}11|{<<-x x B .}10|{<<x x
C .}01|{<<-x x
D .∅
6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.
7.(06高考全国II 卷)设a R ∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,
{}|13,B x x A B φ=<<≠,求实数a 的取值范围。
8.已知集合A={}012|2=++b ax x x 和B={}
0|2=+-b ax x x 满足 I C A ∩B={}2,A ∩I C B={}4,I=R ,求实数a,b 的值.。