电源管理设置

电源管理设置
电源管理设置

ACPI电源管理总结

S1,S2:待机。只关闭CPU。S1是完全加电;S2是如果CPU不活动就进入待机状态。 S3:挂起到内存,关闭硬盘,其它设备处于加电等待状态。 S4:休眠,内存写入硬盘后,关闭所有设备。 S5:关机;S0:开机 Windows XP的电源管理 高级电源管理(APM) 规范定义以下电源状态: ?就绪S1 ?待机S2 ?挂起S3 ?休眠S4 ?关闭S5 其中的三个状态既可应用于单个计算机组件,又可应用于整个计算机。挂起状态处于特殊的低能耗状态,它应用于整个计算机而非单个组件。 就绪S1 在就绪状态下,计算机或设备处于完全加电状态且随时可用。“就绪”的APM 定义只表示计算机或设备处于完全加电状态,但不区分活动和空闲情况。 待机S2 待机是指在节能的、依赖系统的中间状态。在中央处理器单元(CPU) 空闲且在指定的时间间隔内无设备活动时进入待机状态。计算机将在发生以下某个事件之后返回到就绪状态:?某个设备引发了硬件中断 ?访问了任何受控设备 当计算机处于待机状态时,会保存所有数据和操作参数。 挂起S3 挂起状态被定义为这样一种计算机状态:它是可用的最低能耗级别,能够保存操作数据和参数。挂起状态可由系统的基本输入输出系统(BIOS) 或BIOS 之上的软件来启动。如果系统BIOS 检测到需要立即响应(如电池进入极低的能源状态)的情况,它可在不发出通知的情况下将计算机置为挂起状态。如果计算机处于挂起状态,则在恢复正常活动之前不进行计算。直到由外部事件(如按按钮、计时器警报等)给出信号后,才会恢复活动。 休眠S4 Windows XP 对休眠提供内置的支持(操作系统控制的ACPI S4 休眠状态)。休眠会保存计算机的完整状态并关闭电源。计算机看上去处于关闭状态。这是可用的最低电源休眠状态,而且可以安全地关闭电源。 在从休眠状态恢复后,BIOS 执行正常的开机自检,然后读取已创建的用于保存计算机状态的休眠文件。计算机返回到进入休眠模式之前所处的最后状态。休眠模式可减少启动时间。

电源技术的进展与电源管理的应用

电源技术的进展与电源管理的应用 一、引言 电能是目前人类生产和生活中最重要的一种能源形式。合理、高效、精确和方便地利用电能仍然是人类所面临的重大问题。采用电力电子技术的电源装置给电能的利用带来了革命。在世界范围内,用电总量中经过电力电子装置变换和调节的比例已经成为衡量用电水平的重要指标,目前全球范围内该指标的平均数为40%,据美国国家电力科学研究院预测,到2010年将达到80%。这对电源技术提出了新的挑战。 上世纪80年代,提出了电源制造中电力电子集成概念,明确了集成化是电力电子技术未来发展的方向,是解决电力电子技术发展面临障碍的最有希望的出路。电源集成电路逐步成为功率半导体器件中的主导器件,把电源技术推向了电源管理的新时代。电源管理集成电路分成电压调整器和接口电路两方面。正是因为这么多的集成电路(IC)进入电源领域,人们才更多地以电源管理来称呼现阶段的电源技术。 二、电源技术的进展 电源技术是一种应用功率半导体器件,综合电力变换技术、现代电子技术、自动控制技术的多学科的边缘交叉技术。随着科学技术的发展,电源技术又与现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关。目前电源技术已逐步发展成为一门多学科互相渗透的综合性技术学科。它对现代通讯、电子仪器、计算化、工业自动化、电力工程、国防及某些高新技术提供高质量、高效率、高可靠性的电源起着关键的作用。 上世纪40年代晶体管问世,随后不到十年,晶闸管在晶体管渐趋成熟的基础上问世,从而揭开了电源技术长足发展序幕。半个世纪以来,电源技术的发展不断创新。 1、高频变换是电源技术发展的主流

电源技术的精髓是电能变换。利用电能变换技术,将市电或电池等一次电源变换成适合各种用电对象的二次电源。开关电源在电源技术中占有重要地位,从20kHz发展到高稳定度、大容量、小体积、开关频率达兆赫兹的高频开关电源,为高频变换提供了物质基础,促进了电源技术的发展。高频化带来的最直接的好处是降低原材料消耗,电源装置小型化,提高功率密度,加快系统的功态响应,进一步提高电源装置的效率,有效抑制环境噪声污染,并使电源进入更广泛的领域,特别是高新技术领域,进一步扩展了它的应用范围。 2、新理论、新技术的指导 单管降压、升压电路、谐振变换、移相谐振、软开关PWM、零过渡PWM等电路拓扑理论;计算机辅助设计(CAD)、功率因数校正、有源箍位、并联均流、同步整流、高频磁放大器、高速编程、遥感遥控、微机监控等新技术,指导厂电源技术的发展。 3、新器件、新材料的支撑 晶闸管(SCR)、可关断晶闸管(GTO)、大功率晶体管(GTR)、绝缘栅双极型晶体管 (IGBT)、功率场效应晶体管(MOSFET)、智能ICBT(IPM)、MOS 栅控晶闸管(MCT)、静电感应晶体管(SIT)、超快恢复二极管、无感电容器、无感电阻器、新型铁氧体、非晶和微晶软磁合金、纳米晶软磁合金等元器件,装备厂现代电源技术、促进电源产品升级换代。并正在研究开发砷化镓(GaAs)、半导体金刚石、碳化硅(SiC)半导体材料。 4、控制的智能化 控制电路、驱动电路、保护电路采用集成组件。数字信号处理器DSP 的采用,实现控制全数字化。控制手段用微处理器和单片机组成的软件控制方式,达到了较高的智能化程度,并且进一步提高电源装置的可靠性。 5、电源电路的模块化、集成化 单片电源和模块电源取代整机电源,功率集成技术简化了电源的结构,已经在通讯、电力获得广泛应用,并且派生出新的供电体制――分布式供电,使集中供电单一体制走向多元化。电路集成的进一步发展是

针对能量收集型无线远程传感网络的电源管理设计

www. EET https://www.360docs.net/doc/a116960908.html, 针对能量收集型无线远程传感网络的电源管理设计 John Bazinet ,产品线经理,电源产品 James Noon ,应用工程部门负责人,电源产品 凌力尔特公司 摘要: 随着极低功率传感器、微控制器和射频 (RF) 收发器的易用性和性能的不断提升,采用能量收集技术来专门供电或作为补充供电方式的无线传感器网络越来越接近现实。超低功率无线协议已开始逐步被业界所广泛接纳,而且相关的标准也在积极的制定之中。摆脱了交流电源或电池电源束缚的传感器网络为实现更大的灵活性、更低的维护成本、更高的安全性以及广泛的普及提供了可能性。仅仅几年之前还无法想象的应用如今凭借能量收集技术将有望成为现实。新涌现的电源管理产品能够将各种能量收集换能器 (TEG 、光伏、压电、电磁) 的使用不便、断断续续而且常常微乎其微的输出转换为适合当今电子产品的可用电平。然而,对于这些电源管理器件,需要一种新的规格拟订、分析和设计方法,以充分发挥各换能器元件以及最终由它们供电的传感器网络电子线路的功能。 无线传感器并不是新生事物。如欲通过运用能量收集技术而使其成为半自主型或全自主型器件,则需正确地选择和设计换能器和电源管理器件。图 1 示出了一个典型的无线远程传感器节点。迄今为止,在该系统中缺失的一环一直是电源管理解决方案。可提供功率的换能器使用起来常常极为不便——要么产生一个非常低压的低阻抗输出,要么产生一个非常高压的高阻抗输出。此系统中的各种单元可以进一步细分为功率发生器/调节器 (换能器和电源管理) 和功率耗用部件 (其他所有单元)。简而言之,如果能量收集系统的平均输出功率能力超过了远程传感器电子线路所需的平均功率,则有可能实现一个自主型系统。

电源管理系统及故障诊断

电源管理系统及故障诊断 现代汽车的电气装置及电控单元的增加,对电源系统提出了更严格的要求,越来越多的车辆上出现 了专门的电源管理系统。如凌志430、宝马、奥迪A6L、皇冠、通用林荫大道等多种车型均配备了监测 蓄电池和控制发电机的电源管理系统,下面以通用林荫道轿车和凌志430轿车为例,说明电源管理系统 的组成、工作原理及常见故障的排除。 1、电源管理系统的功能 电源管理系统一般是利用车上原有的电控网络装置,如发动机控制模块(ECM)、车身控制模块 (BCM)、仪表控制模块等,通过车载局域网,形成一个闭环控制系统。电源管理系统的主要功能如下。 (1)全面监测蓄电池各项参数——充电与放电的电流、端电压、电容量、电解液温度等。 (2)保证蓄电池至少具备能起动发动机的电容量,对用电负荷采取分级放电管理方式。 (3)实现最佳充电,提高整车的燃油经济性,如当蓄电池电压较低时调节发动机怠速转速,高效 控制发电机的输出电压。 (4)在延长蓄电池寿命的前提下,根据蓄电池充电状态和电解液的温度,控制合理的充电电流, 实现蓄电池的快速充电。 及时提醒驾驶人。 2、通用林荫大道轿车电源管理系统电路的分析 图1是简化了的通用林荫大道轿车电源管理系统的基本 电路原理图,配套的蓄电池电容量为80AH,冷起动时能提供 720A的强大电流,起动储备容量RC为133min。RC的概念 是在蓄电池充足状况下以25A的电流放电,到端电压下降为 10.5V时能持续的时间。 2.1发电机特点及其输出电压的调节 图1 通用“林荫大道”轿车电源管理系统的基本电路通用林荫大道车配装硅整流发电机,其三相交流发电机 采用三角形绕组,与传统发电机的星形绕组形式相比,相电压提升1.73倍,发电机的功率得以增大, 输出电流可高达155A,完全可满足电控装置及蓄电池的需要。采取专门的电源管理系统,最高发电机 电压可增至15.9V,极大地提高了电容量和蓄电池的充电效率。 发电机输出电压的调节,亦是通过磁场线圈的电流大小来控制的,电源管理系统根据蓄电池电容 量、蓄电池端电压等多项参数,合理调节充电电流的大小。其遵循下列状况进行电压调节。 (1)BCM测量蓄电池端电压、电解液温度、蓄电池现有容量及放电电流等信息,以确定蓄电池 充电电流的大小。BCM是多路传输局域网的一个装置,它检测出的数据与ECM通过Class-2串行数据 线进行通讯。 (2)发动机ECM控制一个5V的128Hz固定脉冲,进行脉宽调制信号的调制,即实现0—100% 磁场电流占空比调节,来实现对发电机磁场电流的调节,以实现对其输出电压的控制。 (3)正常情况下,维持对蓄电池的充电及向汽车整个电路系统供电,发电机的磁场电流占空比应 在5%—95%变化。而占空比的0—5%用95—100%,只用于对发电机及网络系统的检测使用。发电机 的输出电压与磁场电流占空比间的对应关系,如表1所示。 2.2电流传感器及其工作原理 电流传感器安装在蓄电池负极或正极上。 电流传感器完全与蓄电池的粗搭铁电缆装置于一体,紧贴在蓄电池的负极上,它是一个霍尔式传

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1. 开关电源控制电路原理分析 DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图1即为电压型控制的原理框图。 图1 电压型控制的原理框图 电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化。电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统。是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统。信号。从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值。电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电

双电源管理办法

屏南县供电有限公司双电源(自备电源)管理办法 (试行) 第一条本办法对双回路供电、客户自备电源的安装以及投入运行的管理进行规定,适用于营业、用电检查受理客户申请双回路供电、安装自备电源以及投入运行的管理。 第二条供电所营业窗口负责受理客户双回路供电、安装自备电源的申请,营销部负责客户双回路供电、安装自备电源投入运行的管理。 第三条供电营业窗口按客户负荷重要性、用电容量和供电可能性,受理下列客户的双回路供电申请: (一)中断供电将会造成人身伤亡;造成环境严重污染;造成重要设备损坏,连续性生产企业长期不能恢复;造成重大的政治和社会影响的单位。 (二)重要科研单位、军工企业、医疗单位,电气化生活小区。 第四条因受电网供电条件限制,暂不可能向上列客户提供双回路供电,客户可以自备发电机组作为备用电源。 第五条营业窗口受理双回路供电或者自备发电机组 申请后,应在规定时限内通知勘测人员或用电检查人员现场勘测,双回路供电应由营销部会同生技、调度共同审查,经公司领导审批后方可实施。 第六条客户的保安电源由客户自行解决。

第七条公司应就双回路供电、自备发电机组投入运行的安全事项与用电客户签订双电源(自备电源)协议书,明确责任。协议书、副本由供电企业和用电客户各执一份。 第八条双电源(自备电源)的切换装置和接线要求。 (一)常、备用电源切换操作装置,原则上应安装于同一变电室内; (二)高压双电源供电的,电源侧的刀闸应尽量采用机械联锁装置。 (三)供电可靠性有特殊要求的,可采用电气闭锁,保证在任何情况下,只有一路电源投放运行而无误并列的可能。 (四)低压双电源供电的,应在双电源进线端(包括零线),装设四极双投刀闸,由此转换电源。如双电源的进户点距离过远,四极双投刀闸前的电源进线,应采用电缆,防止误接用电设备而造成电源倒送。 (五)自备发电机作为备用电源的,不得同时使用电网电源和自备发电机电源。如发电机装设地点较远,应采用电缆布线,严禁在双投刀闸前接用任何电器设备。如是高压供电客户,因受发电机容量限制,只能供给一部分车间或保安设备的,其线路应与由电网供电的线路严格分开架设,不得同杆架设或混接。两电源间应装设双投刀闸,由此转换电源。 第九条双电源(自备电源)的运行要求

H3C S12500 高级电源管理技术白皮书

H3C S12500高级电源管理技术白皮书 关键词:绿色,节能,电源管理,可靠性 摘要:本文主要介绍了H3C S12500数据中心级核心交换机的高级电源管理技术,包括系统电源管理和单板电源管理。 缩略语: 缩略语英文全名中文解释 EMS Embedded Maintenance Subsystem 嵌入式维护子系统

目录 1 概述 (3) 1.1 产生背景 (3) 1.2 技术优点 (3) 2 H3C S12500系统电源管理 (4) 2.1 实时监控系统电源状态 (4) 2.2 更加灵活高效的电源冗余技术 (4) 2.3 功率不足和功率恢复时的电源管理 (5) 3 H3C S12500单板电源管理 (7) 3.1 防止系统启动冲击电源 (7) 3.2 灵活的单板上下电控制 (7)

1 概述 1.1 产生背景 z 常简单,无法查看电源的型号、额定功率、实时功率、实时 z 行灵活的上电、下电控制。在某些用户无法现场操 ,特别是新一代数据中心的建设过程中,对系统电源管理提出了更高的要求: )的高级电源管理技术,很好地解决了这些问题,大大提高了设备的易用性和可靠性。 1.2 技术优点 H3C S12500的绿色节能技术之一,主要包含如下功能: 。 余技术。 z 灵活的接口板上下电控制技术。 传统的路由交换机设备,在电源管理方面通常存在以下缺陷:z 一般只支持电源1+1备份。 对于电源状态的监控非电流、电压等参数。 z 对于系统功率不足或即将不足的情况无法及时产生告警,更无法采取预防措施。 对于接口板的供电,无法远程进作的情况下,将非常不方便。 在要求电信级可靠性及可维护性的应用场合z 对电源系统信息更加全面的监控。 z 对单板供电能更加灵活的进行远程的操作。 z 在系统功率不足的情况下需要能及时通知用户。 H3C S12500数据中心级核心交换机(以下简称H3C S12500高级电源管理技术是z 实时监控系统电源状态、单板电源状态z 更灵活、可靠的系统电源冗z 防止系统开机冲击电源。

电源管理系统

电源管理系统要求: 一、运行环境: 海上石油钻井平台或母船 进线侧电源:3*380VAC 50Hz 出线侧电源:3*1000VAC 50Hz 二、系统需要实现的基本功能: 1、对进线侧输入电源进行冗余保护,可实现一路电源故障时,自动或手动切换到另一路电源;自动切换时间尽可能短; 2、出线侧电源由进线侧电源通过变压器升压获得,同时该变压器可用于对负载电机(约100KW)进行自耦降压启动,启动过程全程监控; 3、对出线侧负载进行正常的启动/停止、紧急停车等常规功能; 4、对进线侧和出线侧电源进行实时监控,监控内容包括:电压、电流、功耗、功率、相序、温度、计时、绝缘等; 5、电源管理系统在监测到第4条中的电压、电流等参数超过额定值时需要进行相应的声光报警或跳闸等执行动作; 6、关于整个电源管理系统的绝缘,由于负载设备通过出线侧电缆连接至海底工作,对绝缘的监测和安全控制是电源管理系统的重要环节,故要求: a、对上述绝缘参数进行实时、严密的监控和记录; b、依据相关海底电气绝缘标准,设置报警值、跳闸值,且监测到整个 电源管理系统及负载侧绝缘降低至相应的设定值时进行报警或跳闸 动作;

c、电源管理系统应有对上述绝缘的测试功能,可在电源管理系统、海 底设备和连接电缆合闸工作前进行绝缘测试,测试值低于报警值或 跳闸值时,整个电源管理系统不得启动; 7、人机界面采用触摸屏或其他数字仪表进行监测、操作及数据记录等; 8、整个系统设有相应的通讯端口,以便于对其进行远程监测和操作; 三、其他要求: 1、上述功能的实现必需达到稳定可靠,故障率低; 2、所有元器件的必须用进口国际知名品牌; 3、电源管理系统的其他设计参照符合使用环境的相关技术规范,上述内容中如有与相关国家和行业规范冲突之处,请及时沟通; 4、上述内容为基本要求,贵公司如有更优化、合理的建议,请及时沟通;

智能手机电源管理模块的设计

龙源期刊网 https://www.360docs.net/doc/a116960908.html, 智能手机电源管理模块的设计 作者:芦昱昊 来源:《电子技术与软件工程》2017年第04期 摘要随着国民生活质量的不断提高,电子产品更新换代的速度也越来越快。通讯产品中的电源动力系统一直是开发者关注的重点,也是用户选择智能手机的关键选项,因此对智能手机电源管理模块的设计分析是十分必要的。 【关键词】智能手机电源模块设计管理 手机行业的发展变化可谓是日新月异,近年来肉眼可见的黑白屏到彩色屏、仅有通话功能到目前的各种实用应用,都是智能手机功能进步的体现。然而这些复杂功能的实现都是需要稳定的电源系统作为支持的,因此开展电源模块的电压以及效率设计管理是为智能手机的良好发展前景奠定基础。 1 智能手机电源管理模块的设计原则 智能手机的设计过程是设计师明确消费者对设备要求下进行的,因此需要从体积、重量、续航时间上等多方面进行详细考虑。智能手机体积的缩小处理是针对系统集中功能和元件封装技术的体现,因此需要考虑到减小PCB板后产生的各种影响。在体积和重量都有限制的情况下,提高电池的容量和密度是最佳的创新选择,同时注重电源系统在工作状态下的转化频率,也是处理续航时间的主要方案。由此可知,电源管理模块的转化率和能耗是手机改革重点,手机厂家需要从电能转化的效率和电源的使用效率两方面提高设备的科技含量,制造出具备高性价比和满足消费者需求的优势产品。 2 智能手机电源管理模块的设计分析 2.1 PMU 市面上很多电子产品需要根据实际功能调节出不同电压的电源,也就意味着电池在供电的同时还需要根据芯片迅速转换电压,转换期间的功率损耗也应当保持在规定范围之内,同时该电源模块还需要维持电源的充电安全。这样的新型电源模块电路被称作是电源管理单元,英文缩写为PMU,是为提高电源转化效率和降低能耗的电源管理方案。PMU的构架分为集中式和分布式,但是二者共同存在的几率很小,设计者需要在系统划分之初决定好使用哪种方案。集中式是仅执行PMU附近的单一处理器进行电压调节和电源切换工作,而分布式系统则是作用于每一个电源子系统上。二者的选择重点是从智能手机应用的数量和响应速度的要求,同时还要考虑到电源模块管理过程中的间隔距离。通过比较来看,PMU分布式的方案较集中式的灵活一些,只需要在系统之间加入一根电源轨,作为所有外围的电源连接线,那么每一个外围电

备用电源管理办法

凯宏矿业二选厂备用电源管理办法 负责人:刘立刚张亚年日常负责人:李童 一、概述 我公司二选厂装备了400V事故发电机二台,发电机额定功率为1200KW,由康明斯发动机(北京)有限公司出品,机组型号:DY1340A。输入/输出:10000V/400V。经升压变压器升压至10KV后接入高压供电系统。在市电中断供电的情况下,保证全厂及生活区用电。 二、管理规定 1、发电机房严禁非工作人员入内,严禁堆放杂物。应在机组和配电装置周围装设围栏并悬挂显著的标示牌。 2、管理人员和值班人员必须熟悉发电机的基本性能及操作,应由日常负责人进行例行性检查。 3、平时应检查电瓶电压,发电机的机油油位及冷却水水位是否正常,储备的柴油油量是否足够运行八小时。 4、发电机应每周空载试运行一次,每次10-15分钟。 5、柴油发电机组不可以低于25%的负荷运行超过30分钟,否则对柴油机的使用会造成不利的影响。 6、由电气负责人监督确定执行发电机保养工作,并保存完整的运行记录及保养记录。 7、保持发电机房的清洁,如有漏水、漏油现象应立即处理。 三、发电机启动的原则和流程 1、原则:当市电供电中断后,为保证车间生产系统安全、顺利停车,检修以及生活区用电,应立即启动发电机。 2、流程: ●接到上级通知停电或事故停电后,立刻检查电瓶电压、水温、机油 是否满足启动要求(电瓶电压一般在27-30V,水温15℃左右)并对发电机进行盘车不少于两圈,满足要求后启动发电机,但不可送电。 ●与35KV变电所联系停电后,记录高压总电量,分断所有负荷,包括 高压进线柜,并对高压进线柜电源侧进行验电、放电、装设接地线等安全技术措施。 ●做完安全技术措施后,确认无任何安全隐患时,对发电机变压器一 次侧与高压进线柜电源侧连接(电缆不可带力)。 ●连接完成后,检查进线柜内是否有遗漏工具或其它东西,确认无任 何异常时,通知35KV变电所人员做送电准备。 ●在35KV工作人员允许的情况下,发电机并机送电。待车间一切正常 后。通知35KV工作人员并合上35KV联络电源,方可对生活区送电。 四、发电机启动前应注意事项和规定 1、机组外观检查,查看机组有无漏油、漏水。周围有没有影响发电机组安全运行的杂物。

菜鸟进阶之六:BIOS设置技巧之AMI篇

AMI BIOS界面以及菜单内容讲解 AMI BIOS是全球有且仅有的两大主板BIOS品牌中的一家,为了便于后文的理解,我们首先来对AMI BIOS的大体界面以及菜单进行讲解。 AMI BIOS程序一般有6个大菜单,他们分别是Main、Advanced、Power、Boot、Tools以及Exit 6大菜单,但这并不固定,个别厂商推出的主板,或许会有一些较为特殊的功能,那么厂商可能会自己添加一些项目或菜单。目前,90%以上的AMI BIOS都拥有以上6大菜单。 “Main”菜单里一般来说都是调节一些很基本的项目,比如系统时间、界面语言、驱动器的识别等。 “Advanced”从字面意思上来看,有“高级”之意,也就是BIOS设置中一些高级调节选项。一般来说,CPU超频调节、内存调节、电压调节等选项都会在Advanced菜单下面。 “Power”从字面上的意思来看是电源的意思,非常好理解,关于电源的设置都会在这个菜单下面。比如说使用什么电源模式、高级电源管理、键盘/鼠标开机、网络开机等设置选项。 “Boot”的中文意思可以理解成“引导”,也就是引导电脑启动的一些设置。这里最常用的就是设置光驱/硬盘作为首引导设备,以及电脑引导过程中的一些基本设置。 “Tools”里一般都是主板厂商自己提供的一些工具软件,比如华硕主板的EZ Flash(主板BIOS刷写程序)。由于此菜单里的项目均为主板厂商自行加入的一些工具,不具备代表性,所以本文我们对这部分内容就不做重点讲述。 “Exit”中文意思为退出,其中主要设置一些退出BIOS的选项,譬如保存设置并退出、或者取消设置再退出等。 在BIOS设置中,我们经常会提到3个单词:Disabled、Enabled和Auto,其中Disabled中文意思为“关闭,禁用”,反之Enabled意为“启用,开启”,而Auto则表示自动的意思,也就是让BIOS自己来控制。 看完上面的这些介绍之后,大家在选择BIOS菜单的时候,就可以有目标的去操作了。比如我想要超频CPU,肯定是选择Advanced菜单;比如我想设置键盘开机,肯定是选择Power菜单。当然,本页的介绍主要是一个大体上的调节思路,从下一页开始笔者将具体的介绍BIOS里每个菜单中重要的设置项目。 Main菜单各项目简介及重点详解 首先,我们来看一下第一个菜单Main中的内容:

数字电源管理技术及应用详解

数字电源管理技术及应用详解 本文介绍了数字电源的基本特点、数字电源相比于模拟电源的优势和数字电源管理的主要内容,也介绍了数字电源管理技术的应用。 新一代集成电路需要3.3V,1.8V甚至更低的电源电压,单个器件需要多路电压供电,而且电流的需求很大,电压也必须以正确的时序加到器件上。为这些器件供电的电压必须在电路板上(最好在距离这些器件近的地方)产生,以使压降最小和电压稳定。高性能的DC/DC 转换器适用于宽范围输入,既可作为隔离式电源,也可作为非隔离负载点转换器。因此,大多数板载电源系统已经采用DC/DC转换模块作为供电主体。但是,若缺少了电源管理电路,则无法构建一个完整、健全的电源系统。电源管理的内容包括:电源系统监控、定序和跟踪、监视和失效保护。电源管理器件在输入端处理共模抑制、起动限制、起动和关闭的控制,甚至功率因数校正等功能。配置在输出端的电源管理器件控制启动定序和输出电压调节,并为过欠压、过流情况提供相应的失效保图1电源管理器件在隔离型AC/DC电源系统中的应用护。所有相关功能电路均要求与主电路隔离。 图1所示为在隔离型AC/DC变换器中电源管理器件的主要应用。 专用的数字电源管理器件比通常采用的模拟电路或微控制器、可编程逻辑器件等方法在成本、开发周期和可靠性方面具有较大优势。新一代的数字电源管理器件内部集成了能够满足实时监控需求的快速ADC,使它能比通用微控制器的片外ADC更快地反映失效。监测数据通过I2C或PMBus总线传输给电源主控制器,用以实现精准的调压设置、故障保护等功能。内部的时钟可实现故障记录。对于多路输出的电源系统,数字电源主控制器实时地通过总线接口从各输出端的管理器件内读出各路输出的监测数据,实现了电源系统的全面监视。一旦

远程电源管理系统设计

远程电源管理系统设计 作者:吴能伟 来源:《现代电子技术》2013年第02期 摘要:在海军武器着靶试验中,为了保护实测数据和提高光电设备的可靠性,利用Atmegal61丰富的资源和接口,设计一套远程电源管理系统。该系统以锂电池组作为备用电源,依靠单片机处理远控中心发送的目标测量数据及控制命令,对固态继电器的工作状态进行控制。试验结果表明该系统能自主完成光电设备电源的远程管理,获取完整的目标实况景象,具有一定的现实意义。 关键词:AVR单片机;固态继电器;电源管理;串行通信 中图分类号:TN911?34;TP273 文献标识码:A 文章编号:1004?373X(2013) 02?0162?03 光电设备具有低成本、易布站、高精度的优点,逐步成为海军武器试验中获取空间目标飞行状态和轨迹的主力军[1]。随着精确制导、远程打击等高技术兵器武器的出现,要检验和鉴定此类目标的性能和威胁,不仅需要获取目标的空间坐标,同时要求测量目标着靶时的姿态信息。而目标着靶是一个瞬态过程,不易捕捉,因此常用高速光电设备在靶船上实时获取高质量的目标运动图像序列[2?3],经事后处理得到目标的运动参数。不难看出图像数据直接决定试验的成败,因此有必要对设备的工作状态及电源等情况进行远程监视和管理[4]。 该平台以AVR单片机为核心,利用2节串联的充电锂电池作为备用电源[5],依靠外围接口获取目标的实时信息(实测弹道数据、T0时刻等)。 在光电设备工作异常或落水时,控制固态继电器(Solid State Relay,SSR)实现系统的远程重启和关机[6],为获取及保护目标的实时图像数据提供有力保障,因而具有重要的现实意义。 AVR单片机所需的电源电压为2.7~5.5 V,为了简化电路设计,提高系统的可靠性,为AVR单片机设计外部基准电压为5 V,利用L7805防止电池出现过用现象。 2.2 主控电路 主控电路如图3所示,ATmegal61单片机有1个可编程的同步/异步串行接口USART,可以满足与远控中心的通信要求,2个具有比较模式的灵活定时/计数器,可以完成延时时间的计算,预留的8路10位ADC端口可以扩展其他功能。为了满足嵌入式的设计要求,选用易于安装在电路板的G6B?2014P?US固态继电器,实现两路直流电源的同步控制。而继电器的驱动需要控制系统具有大电流的输出能力,ULN2003是高压大电流达林顿晶体管系列产品,可以很好地满足要求[11]。

电池电源管理系统设计

电源招聘专家 我国是一个煤矿事故多发的国家,为进一步提高煤矿安全防护能力和应急救援水平,借鉴美国、澳大利亚、南非等国家成功的经验和做法,2010年,国家把建设煤矿井下避难硐室应用试点列入了煤矿安全改造项目重点支持方向。 为了满足井下复杂的运行环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,研发了基于MAX17830的矿用电池电源管理系统。 1 总体技术方案 根据煤矿井下的环境及井下避难硐室对电池电源运行稳定、安全可靠、大电流输出等关键要求,结合磷酸铁锂电池的特性,采用MAX17830作为矿用电池管理系统的采集与保护芯片。 本矿用电池电源管理系统由五部分组成,分别为显示模块、管理模块、执行机构、电池组、防爆壳。整个电池电源管理系统共设有4对接线口:24 V直流输出端口、24 V直流充电端口、485通信端口和CAN通信端口[1-2]。 本矿用电池电源管理系统的工作流程如图1所示。 2 电池电源管理系统硬件设计 2.1 器件选择及布局 本矿用电池电源管理系统设计所采用的主要器件如表1所示。 按照器件的功能及电池管理系统的特点,对器件进行布局设计,器件布局情况如图2所示。 2.2 核心电路解析 2.2.1 MAX17830介绍 MAX17830芯片由美国的美信半导体公司生产,包含12路电压检测通道、12路平衡电路控制引脚及2路NTC温度传感器。在本电池电源管理系统中使用了8路电压检测通道、8路平衡电路控制引脚和2路NTC温度传感器。MAX17830采集8个单体电池的电压并使用IIC通信协议与CPU通信,将采集的数据发送给CPU,接受CPU的控制[3-4]。 2.2.2 电池电压采集与过充保护电路 此电路围绕着MAX17830而设计,负责整个电池组单体电池的电压采集、过充保护、平衡管理等,其电路设计的原理图如3所示。 3 电池电源管理系统软件设计 3.1 软件基本功能 为了保证电池电源系统的稳定,设计电池电源管理系统软件的基本功能如下[5]: (1)动态信息的采样,对单体电压、单体温度、电池组电流、电池组电压进行采样;(2)电管理,根据系统动态参数对充电过程、放电过程、短路情况进行报警、主动保护多级管理措施; (3)热管理,电池单体高于或低于指定界限时电池电源管理系统将采取保护措施并报警;(4)均衡管理,充、放电过程中可对单体电池持续有效地提供高达70 mA的均衡电流,每块单体电池设有一路均衡电路; (5)数据管理,使用CAN/485通信协议可实时读取、调用系统存储的数据及管理系统工作状态。详实记录过流、过压、过温等报警信息,作为系统诊断的依据; (6)电量评估,长时间精准剩余电量估计,实验室SoC估计精度在97%以上(-40 ℃~

网络远程电源开关集中控制使用方案

远程开关集中控制终端使用说明 深圳市精锐达网络技术有限公司版权所有 图1远程开关管理控制终端使用说明,版本bete1.2主控介面 一.菜单介绍: 一:文件:打开和关闭管理软件。 二.工具:管理网络控制卡内部一些IP地址,密码等参数。 三.操作:所有列表内控制开关功能,全选开,或全选关。 四.帮助:版权信息和版本信息。 二.设备列表: 1.选择:单张多选择网络控制器,供设置其参数。 2.设备称:设备名称,可随意更改,保存网络控制卡内部,命名过程可以设定便于记忆的网络控制器名称。 3.IP地址:网络控制卡内部IP地址,与外网控制卡连接时显示控制卡来源外网IP地址。 4.分组1:可修改便于记忆的控制卡使用区域或控制对象,可随意修改,保存网络控制卡内存中。 5.分组2:可修改便于记忆的控制卡使用区域或控制对象,可随意修改,保存网络控制卡内存中。 6.控制:对网络控制器继电器开关进行打开或关闭。 7.全开:对应的一张网络控制器进行全部打开。 8.全关:对应的一张网络控制器进行全部关闭。 9.状态:查看当前网络控制卡是否正常连接和正在工作状态。 三.工具: A.设备参数:

1.设备列表:设备参数中显示IP地址,可编辑单张或多张网络控制器信息参数,可点击拖选多张。选择多张时对多张控制卡内部信息参数编辑一样的参数。 2.设备信息:显示当前点击中IP地址对应的网络控制器的类型或型号。 3.设备参数:设备名称,组名1,组名2请参考(第二章) 4.设备广播周期:(重要)网络控制器自动向局域网内,在与控制卡同一C网内发出广播信号,查找局域网内管理软件,并主动进行连接与主动上报当前状态的所有信息,此时在局域网内会产生流量,出厂时设定为3秒、5秒、10秒不固定,控制器会主动第每隔3秒、5秒、10秒进行广播与控制软件取得连接上报数据等。使用数量在100台,300台,500台,建议设定时间为10秒、15秒、30秒,为比较合理。 5.侦听端口号(UDP):(重要)网络控制器自动向局域网内,UDP端口与发出广播信号,查找局域网内管理软件,出厂时设定为505端口号,可更改其它闲置合适的端口号。 5主机地址:(重要)可设定指定的IP地址或域名或花生壳等地址进行单独广播连接,跨网关或外部连接时使用。(出厂地址:https://www.360docs.net/doc/a116960908.html,),用户需要做跨网段连接控制时,必需对此项进行设定,如果没有对这项进行设定是不会进行跨网段连接的,它只能够在同一C网段中进行连接控制。 6.端口号:(重要)设定主机地址向指定IP地址或域名连接时端口号。(出厂时505端口与,可不需理会) 7.密码、重复密码:控制卡内部密码,管理探制软件与网络控制器连接时需要使用的密码,可以从这项进行修改新的密码,密码、重复密码需要一至,出厂密码为admin。(注意:修改密码时必需牢记,否则你需要在控制卡跳线取得出厂设置时用默认密码admin连接,如果数量多,则每张网络控制器都需要进行此操作,工程量增加)。 8.移除设备:单独对列表中选择的IP地址网络控制卡进行清除,清除后关闭对话框不影响主介面中连接状态。 9.读:对选择的单张网络控制器进行读取信息。 10.写:对选择的单张或多张网络控制卡在上列几种信息修改参数进行写入内存,勾选时写入有效。 11.重启设备:对设备列表中单张或多张网络控制器进行远程重启,重启不影响继电器开或关状态,只对内存中操作系统进行重启,可用作更新已修改的IP地址或名称等信息参数。 B.设备IP地址: 1.设备列表:显示所有主界面勾选后的网络控制器IP地址,列表中只可单选修改。 2.当前配置:显示当前选择的网络控制器IP地址属性。 3.新配置:显示将要修改后的IP地址网关等参数属性。

WIN7电源管理功能全解析

很多用过和正在使用Windows Vista系统的朋友都知道,相比此前微软的操作系统,这一版本的电源管理功能更加强大,用户可根据实际需要,设置电源使用模式,让移动计算机用户在使用电池续航的情况下,依然能最大限度发挥功效。延长使用时间,保护电池寿命。而相比Vista版本,Windows 7操作系统的电源管理功能同样强大,不但继承了Vista系统的特色,还在细节上更加贴近用户的使用需求。并方便用户更快、更好的设置和调整电源属性。 本文基于Windows 7 beta版 + 中文语言包,翻译内容可能和英文原版略有差异,但步骤和选项相同。 1.全新设计的电池使用方案 为给使用电池续航的笔记本用户进一步节约能耗,在Windows 7系统中,为用户提供了包括已平衡、节能程序等多个电源使用计划和方案,同时,相比Windows Vista系统,还可快速通过电源查看选项,调整当前屏幕亮度和查看电池状态(如电源连接状态、充电状态、续航状态等)。 在默认情况下,Windows 7系统为用户提供的是已平衡使用方案。这一方案可使系统在使用电池续航的情况下,2分钟内自动灰阶显示器(通过降低亮度解决耗电)、5分钟后自动关闭显示、并在15分钟后自动将计算机进入休眠状态。同时,用户还可直接在电源选项中,对在使用电池模式和接通电源模式下,默认的屏幕亮度进行调整。 同时,节能程序计划和高性能计划的灰阶显示器、关闭显示器、进入睡眠状态设置,则分别会为用户提供如如下使用方案。 此外,用户若希望对电源使用方案,和相应功能进行详细设置,还可在Windows 7操作系统的控制面板选项中,进入电源设置选项,并通过自定义电源设置,对相应功能详细进行调整。 2.自定电源使用方案。 考虑到不同环境下,用户的实际使用需求,在Windows 7操作系统中,用户还可通过控制面板中电源选项,创建新的电源使用方案。在详细的功能设置列表中,过呢据实际需求对其进行调整。 在功能列表中,用户可分别对电池使用模式、硬盘耗电模式、无线适配器设置、睡眠时间、电源按钮和笔记本合盖后的状态进行调整。同时在创建过程中若出现失误,还可通过还原计划默认值选项进行恢复。 同时,在电源选项中。,用户也可对电源按钮进行定制,例如关机按钮、休眠按钮和关闭笔记本盖子后的状态。还可设置唤醒密码,为系统提供安全保护(唤醒密码默认为系统帐户密码)。

常见各网卡高级设置和说明

常见各网卡高级设置和说明 1.双击右下角的两个小电视(上网就一闪闪的那个),也可以右键点网上邻居点属性再双击本地连接 2.点属性 3.点配置 在电源管理中:允许计算机关闭这个设备以节约电源关掉! 在高级里面:不同网卡如下 先说几个比较关键的: 1,Flow Control =流量控制网卡默认设置 网卡自动限制你的网络流量,比如说平时很流畅,打海山,一A怪就掉线,为什么?流量大。。。。 2,Checksum Offload 数据包校验网卡默认设置 网卡的自动校验而导致一旦有一点问题,后续的包便全部不处理而出现假掉线,而服务器忙得话,出错的几率就大 3,大量传送减负网卡默认设置 大量传送减负是用网卡硬件分割TCP数据包,但其实只有关闭它才可以发挥网卡的真正性能,cpu占用率会提升,但不明显。网络处理速度会快一些。 NF网卡高级设置

Checksum Offload 数据包校验建议关闭 Flow Control 流量控制一定要关闭 IEEE802.1P Support IEEE802.1P支持建议关闭 Jumbo Frame Payload Size 默认是1500 这个是千兆网络一个新的设置,在下文详细叙述。 Low Power State Link Speed 网卡节能建议关闭 Network Address MAC的修改默认为不存在一般不必改动 Optimize For CPU/Throughput 为CPU占用优化或为吞吐量进行优化,设置为CPU的话,网卡的速度被限制,但CPU占用会很低,假如改为Throughput的话,网卡的性能才能完全发挥,但CPU的占用也会上升不少。 Segmentation Offload 建议关闭 Speed/Duplex Settings Full Autonegotiation(全自适应,一般不用修改) VLAN Id 默认是1 不用改 VLAN Support VLAN支持一般关闭 Wake on Magic packet 魔术数据包唤醒建议关闭 Wake on pattern 建议关闭 WakeOnLAN From PowerOff 建议关闭 8168/8111c网卡高级设置 在网卡高级选项里 JUMBO FRAME 改成无 802.1Q/1P VLAN Tagging 改成关闭 Flow Control 改成关闭 Jumbo Frame 改成关闭 Offload Checksum 改成关闭 Offload TCP_LargeSemnd 改成关闭

电源管理模块

电源管理模块 手指康复机器人的数字电路部分需要直流电源供电,故电源管理模块首先采用的开关电源将220v 的交流电转换为直流电压,再利用低压线性稳压器为各个子模块供电。 为了避免模拟信号与数字信号地相互干扰,将交流电压转换为两个独立的直流电源,再分别为模拟电路和数字电路的电源供电。电源管理系统拓扑结构如下: 具体实现如下: ① +12V 转+8V 采用的是LM7808,这是一块三端集成的稳压电路,能够准确的降压到+8V 。电路两端的电容作用都为滤波,用来平滑电压与提高抗干扰能力。其中输出端并联220uF/25V 的电解电容,它自谐频率小,可以起到储能滤波的功能,消除低频干扰。但是由于大电容的电解电容自身存在一定的电感,对于高频信号以及脉冲干扰信号无法有效滤除,故并联一个或几个容值比较小的陶瓷电容,以达到滤除高频干扰信号的作用。 220V 交流电 12V 直流电源 LM2596S5 24V 直流电源 MRF 7808 NE555 LM117-3.3 7414 7474 ARM 外围电路 AD REF TLV5620 LT3080 LM358 WD5-24S5 直流电机电源 HCPL2630 TLP185 3.3 12 5 8 -8 24 5

②+12V转-8V采用NE555芯片,这是一款将模拟功能和逻辑功能很好的结合在一起的芯片,应用的范围十分广泛。 其内部结构如上,当NE555的第三脚输出高电平,通过D1向C1充电,电压可达11V。当NE555输出为低电平时,D1被C2反偏截止。C2向C3转移电荷,重复多次后C3电压达8V,相对地线则输出视为-8V ③+12V转+5V采用的是开关型集成稳压芯片LM2596,它内含固定频率振荡器,以及基准稳压器,并具备完善的保护电路、热关断电路、电流限制等。

相关文档
最新文档