工程力学-实验应力分析
工程力学中的应力与应变分析方法探讨
![工程力学中的应力与应变分析方法探讨](https://img.taocdn.com/s3/m/b7000392b04e852458fb770bf78a6529657d3549.png)
工程力学中的应力与应变分析方法探讨在工程力学中,应力与应变是研究材料和结构力学性能的重要概念。
应力是指单位面积内的力的大小,而应变则是指材料的形变程度。
应力与应变的分析方法是工程力学中的核心内容之一,本文将对工程力学中的应力与应变分析方法进行探讨。
一、应力分析方法在工程力学中,常用的应力分析方法有静力学方法、接触力学方法和弹性力学方法。
静力学方法是通过平衡方程分析物体所受到的力,并计算得出应力分布情况;接触力学方法则是研究物体间的接触行为,通过接触区域的应力分布来分析力的传递情况;弹性力学方法则是应用弹性力学原理,通过杨氏模量和泊松比等参数计算得出应力分布情况。
静力学方法是应力分析中最基本的方法之一,它基于物体所受到的力的平衡条件进行分析。
静力学方法分为静力学平衡和弹性力学平衡两种情况。
静力学平衡是指物体在外力作用下不发生形变,通过将物体分解为若干个力的平衡条件方程来求解各个部位的应力;而弹性力学平衡则是物体在外力作用下发生形变,通过应力-应变关系来求解应力分布情况。
静力学方法在工程力学中应用广泛,可以分析各种载荷下的应力情况。
接触力学方法是研究物体与物体之间接触行为的力学方法,通过分析接触面的应力分布来推导出力的传递情况。
在实际工程应用中,接触力学方法广泛用于轴承、齿轮、摩擦等接触问题的分析与设计。
接触力学方法主要利用弹性力学和接触力学理论,通过建立接触面的几何模型和接触条件,求解接触区域的应力分布。
弹性力学方法是应力分析中最常用的方法之一,它基于弹性力学理论,通过材料的弹性参数计算得出应力分布。
弹性力学方法广泛应用于材料和结构强度分析中。
弹性力学方法主要使用线弹性理论,通过杨氏模量和泊松比等参数来描述材料的弹性性能,根据应力-应变关系计算得出应力分布情况。
二、应变分析方法在工程力学中,常用的应变分析方法有光栅衍射法、电测法和应变计法。
光栅衍射法是利用光学原理来测量物体表面的应变分布情况,通过测量光栅的位移来计算应变大小;电测法则是利用电阻应变片等设备来测量物体表面的应变分布情况;应变计法则是通过安装应变计来测量物体表面的应变分布情况。
工程力学中的应力-应变分析如何进行?
![工程力学中的应力-应变分析如何进行?](https://img.taocdn.com/s3/m/5559b9730166f5335a8102d276a20029bd64638c.png)
工程力学中的应力-应变分析如何进行?工程力学中的应力应变分析如何进行?在工程力学的领域中,应力应变分析是一项至关重要的工作。
它不仅帮助我们理解材料在受力时的行为,还为工程设计和结构安全性评估提供了关键的依据。
那么,应力应变分析究竟是如何进行的呢?要进行应力应变分析,首先得清楚什么是应力和应变。
简单来说,应力是材料内部单位面积上所承受的力,而应变则是材料在受力作用下发生的相对变形。
我们先来看应力。
应力可以分为正应力和切应力。
正应力是垂直于作用面的应力分量,比如一根杆子受到拉伸,其横截面上的应力就是正应力。
切应力则是平行于作用面的应力分量,像轴在扭转时,其横截面上就会产生切应力。
计算应力时,需要明确受力的情况和作用面的面积。
以简单的拉伸为例,如果一个杆子受到的拉力为 F,横截面积为 A,那么正应力就等于 F/A。
但实际情况往往复杂得多,可能涉及到不均匀的受力分布或者复杂的几何形状。
接下来谈谈应变。
应变分为线应变和角应变。
线应变表示长度的相对变化,比如杆子在拉伸时长度的增加量与原长的比值就是线应变。
角应变则反映了角度的变化,常见于物体的扭转或剪切变形。
为了准确测量应变,通常会使用各种应变测量仪器,比如电阻应变片。
这些仪器能够将微小的应变转化为电信号,从而实现测量和记录。
在实际的工程问题中,应力和应变之间存在着一定的关系,这就是材料的本构关系。
不同的材料具有不同的本构关系,比如线性弹性材料遵循胡克定律,即应力与应变成正比;而对于塑性材料,其应力应变关系则更加复杂。
要进行应力应变分析,第一步是确定结构的受力情况。
这包括外力的大小、方向和作用点,以及内部约束力的分布。
通过对结构进行力学建模,可以将复杂的实际结构简化为便于分析的力学模型。
然后,根据所选的力学模型,运用相应的力学原理和公式来计算应力和应变。
这可能涉及到材料力学中的拉伸、压缩、弯曲、扭转等各种基本变形的理论,以及结构力学中的静定和超静定结构的分析方法。
工程力学---应力状态分析
![工程力学---应力状态分析](https://img.taocdn.com/s3/m/0d4a8032f111f18583d05afd.png)
τα =
ห้องสมุดไป่ตู้
2
sin2α +τ xcos2α
上述关系建立在静力学基础上, 上述关系建立在静力学基础上,故所得结 论既适用于各向同性与线弹性情况, 论既适用于各向同性与线弹性情况,也适 用于各向异性、 用于各向异性、非线弹性与非弹性问题
单辉祖:工程力学 12
应力圆
应力圆原理
σα = σ x +σ y σ x −σ y
17
例 2-2 利用应力圆求截面 m-m 上的应力
解: :
σ m = −115 MPa
τ m = 35 MPa
18
单辉祖:工程力学
例 2-2 利用应力圆求截面 m-m 上的应力
解: 1. 画应力圆 : A点对应截面 x, B点对应截面 y 点对应截面 点对应截面 τ 2. 由应力圆求 σm 与 m 顺时针转60 由A点(截面 x )顺时针转 。至D点(截面 y ) 点 点
解: σ x = −100 MPa τ x = −60 MPa σ y = 50 MPa α = −30o :
σm =
σ x + σ y σ x −σ y
2 +
τm =
单辉祖:工程力学
σ x −σ y
2
2
cos2α −τ xsin2α = −114.5MPa
sin2α +τ xcos2α = 35.0MPa
(τ ydAsinα)sinα + (σ ydAsinα)cosα = 0
σα = σ xcos2α +σ ysin2α − (τ x +τ y )sinα cosα
τα = (σ x −σ y )sinα cosα +τ xcos2α −τ ysin2α
实验应力分析实验报告
![实验应力分析实验报告](https://img.taocdn.com/s3/m/932b180032687e21af45b307e87101f69e31fbfd.png)
实验应力分析实验报告1. 引言应力分析是工程领域中的重要研究方向之一。
通过对材料在外力作用下的应力变化进行分析,不仅可以深入理解材料的力学性质,还可以为工程设计和结构优化提供可靠的依据。
本实验旨在通过实际操作和数据分析,研究材料在不同外力下的应力分布和变化规律。
2. 实验目的本实验的主要目的是通过应力分析实验,探究材料在外力作用下的应力分布,并通过数据采集和处理,分析不同因素对应力的影响。
3. 实验装置和材料本实验所使用的装置和材料有:•应力传感器:用于测量材料受力时的应力变化。
•外力加载器:用于施加不同大小的力。
•试样:材料样本,用于承受外力并传导到应力传感器上。
4. 实验步骤4.1 准备工作1.检查实验装置和材料的完好性,并确保其能正常工作。
2.根据实验要求选择合适的试样,并进行必要的准备工作,如清洁和测量尺寸。
4.2 搭建实验装置1.将应力传感器连接到数据采集系统,并确保连接稳定可靠。
2.将外力加载器与应力传感器相连,确保其能够传递施加的力。
4.3 实验操作1.将试样安装在外力加载器上,并调整加载器的位置,使试样受力均匀。
2.根据实验设计,逐步加载外力,并记录下相应的应力数据。
3.根据需要,可以进行多组实验,以获得更全面的数据。
4.4 数据处理和分析1.对采集到的应力数据进行整理和清洗,确保数据的准确性和可靠性。
2.利用适当的数学方法和工具,分析数据并绘制应力-应变曲线。
3.根据实验结果,分析不同因素对应力的影响,如外力大小、试样尺寸等。
4.对实验结果进行讨论,并提出可能的改进方案。
5. 实验结果与讨论根据实验操作和数据处理,我们得到了一系列的应力-应变曲线,并通过分析得出以下结论:1.随着外力的增加,材料的应力呈线性增加趋势。
2.不同尺寸的试样在相同外力下的应力略有差异,但总体趋势相似。
3.应力分布在材料中的变化不均匀,存在一定的差异性。
通过以上结果和分析,我们可以进一步深入研究材料的力学性质,为工程设计和结构优化提供可靠的参考依据。
工程力学中的应力和应变分析
![工程力学中的应力和应变分析](https://img.taocdn.com/s3/m/e6bc965ffbd6195f312b3169a45177232f60e4df.png)
工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。
应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。
本文将就工程力学中的应力和应变进行详细分析。
一、应力分析应力是指物体单位面积上的内部分子间相互作用力。
根据作用平面的不同,可以分为法向应力和剪切应力两种。
1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。
根据物体受力状态的不同,可以分为拉应力和压应力两种。
- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。
拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。
- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。
压应力的计算公式与拉应力类似。
2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。
剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。
二、应变分析应变是指物体由于外力的作用而产生的形变程度。
根据变形情况,可以分为线性弹性应变和非线性应变。
1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。
线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。
2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。
非线性应变的计算公式较为复杂,需要根据具体情况进行分析。
三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。
1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。
根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。
2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。
工程力学中的杆件和梁的应力分析
![工程力学中的杆件和梁的应力分析](https://img.taocdn.com/s3/m/4d891bc682d049649b6648d7c1c708a1284a0a8d.png)
工程力学中的杆件和梁的应力分析工程力学是工程学科的重要分支之一,它研究物体在受力作用下的力学性质。
在工程实践中,杆件和梁是常见的结构构件,其应力分析是工程设计和计算的基础。
本文将从杆件和梁的应力分析角度探讨工程力学中的相关知识。
一、杆件的应力分析杆件是一种细长的结构构件,承受轴向力的作用。
在杆件的静力学中,应力是一个重要参数,用于描述杆件内部受力的强度和稳定性。
杆件的应力可以分为正应力和切应力。
1. 正应力正应力是指垂直于杆件截面的作用力在该截面上的单位面积,通常用σ表示。
正应力的计算可以使用公式:σ = F / A其中,F为作用力的大小,A为截面积。
正应力可以分为拉应力和压应力两种情况。
当作用力沿着杆件的轴向,方向与截面的法线方向一致时,称为拉应力。
拉应力是正值,表示杆件受拉的状态。
当作用力沿着杆件的轴向,方向与截面的法线方向相反时,称为压应力。
压应力是负值,表示杆件受压的状态。
2. 切应力切应力是指杆件截面上作用力的切向力与该截面上的单位面积之比,通常用τ表示。
切应力的计算可以使用公式:τ = F / A其中,F为作用力的大小,A为截面积。
切应力主要存在于杆件的连接部分,例如螺纹连接、焊接连接等。
切应力会引起杆件的剪切变形和破坏,需要在设计过程中加以考虑。
二、梁的应力分析梁是一种用于承受弯曲力的结构构件,具有横截面的特点。
在梁的应力分析中,主要考虑的是弯矩和截面弯曲应力。
1. 弯矩弯矩是指作用在梁上的力对其产生的弯曲效应。
在工程实践中,梁通常是直线形状,因此弯矩在横截面上呈现出分布的特点。
弯矩可以通过力学平衡和弹性力学原理进行计算。
弯矩的大小与力的大小和作用点的位置有关,计算公式为:M = F * d其中,M为弯矩,F为作用力的大小,d为作用点到梁的某一端的距离。
2. 截面弯曲应力截面弯曲应力是指由于弯曲效应,在梁的横截面上产生的应力。
截面弯曲应力的大小与弯矩和横截面的几何形状有关,计算可以使用弯曲应力公式进行。
工程力学 第10章 应力状态分析
![工程力学 第10章 应力状态分析](https://img.taocdn.com/s3/m/49a39c0d6c85ec3a87c2c597.png)
(a) (b)
对于法线为 y′ 的方向面,也可以写出类似的关于σ y′和τy′x′ 的方程。于是,从这些方程 中消去 dA 后,得到关于相互垂直的、任意方向面上正应力和切应力的公式: σ x′=σ x cos2 θ+σ ysin 2 θ-τxycos θsin θ -τyx sin θcos θ σ y′=σ x sin 2 θ+σ ycos2 θ+τxycos θsin θ +τyx sin θcos θ τx′y′=σ xcos θsin θ-σ ysin θcos θ+τxycos2 θ-τyx sin 2 θ τy′x′=-σ xcos θsin θ+σ ysin θcos θ+τxysin 2 θ-τyx cos 2 θ (10-1) (10-2) (10-3) (10-4)
图 10-3 正负号规则
n θ角-从 x 正方向反时针转至 x′正方向者为正;反之为负。 n 正应力—拉为正;压为负。 n 切应力—使微元或其局部产生顺时针方向转动趋势者为正;反之为负。
图 10-3 中所示的θ角及正应力和切应力τxy 均为正;τyx 为负。
10-2-2 微元的局部平衡
为确定平面应力状态中任意方向面(法线为 x′ ,方向角为 θ)上的应力,将微元从任意方 向面处截为两部分。考察其中任意部分,其受力如图 10-3b 所示,假定任意方向面上的正 应力σ x′和切应力τx′y′ 均为正方向。 于是,根据力的平衡方程 ∑ Fx′=0 和 ∑ F y′=0 , 可以写出:
图 10-4 不同坐标系中应力状态的表达形式
或者说从一种坐标系 Oxy 变换到另一坐标系 Ox′ y′ 。例如图 10-4a、b 中所示的两种微元, 若二者的应力满足式(10-1)-(10-4) ,则二者表示了同一点的应力状态。由于坐标系 Ox′ y′ 是任意的,因此,同一点的应力状态可以有无穷多种表达形式。在无穷多种表达形式 中有没有一种简单的、 但又能反映一点应力状态本质内涵的表达形式?为了回答这一问题需 要引入主应力的的概念。
工程力学中的应变与应力分析方法总结和应用研究
![工程力学中的应变与应力分析方法总结和应用研究](https://img.taocdn.com/s3/m/c1385763bdd126fff705cc1755270722192e59a9.png)
工程力学中的应变与应力分析方法总结和应用研究工程力学是一门研究物体在受力作用下的运动和变形规律的学科,应变与应力分析是工程力学中的重要内容。
本文将总结和探讨工程力学中的应变与应力分析方法,并探讨其在实际工程中的应用。
一、应变分析方法应变是物体在受力作用下发生的变形程度的度量。
应变分析方法主要有拉伸应变、剪切应变和体积应变等。
1. 拉伸应变:拉伸应变是指物体在受拉力作用下发生的变形程度。
拉伸应变的计算公式为ε = ΔL / L0,其中ΔL为物体在受拉力作用下的变形长度,L0为物体的初始长度。
拉伸应变的大小与物体的材料性质有关。
2. 剪切应变:剪切应变是指物体在受剪切力作用下发生的变形程度。
剪切应变的计算公式为γ = Δx / h,其中Δx为物体在受剪切力作用下的变形长度,h为物体的高度。
剪切应变的大小与物体的切变模量有关。
3. 体积应变:体积应变是指物体在受力作用下发生的体积变化程度。
体积应变的计算公式为εv = ΔV / V0,其中ΔV为物体在受力作用下的体积变化量,V0为物体的初始体积。
体积应变的大小与物体的体积模量有关。
二、应力分析方法应力是物体内部受力情况的描述,应力分析方法主要有拉应力、剪应力和体应力等。
1. 拉应力:拉应力是指物体在受拉力作用下单位面积上的受力情况。
拉应力的计算公式为σ = F / A,其中F为物体受到的拉力,A为物体的受力面积。
拉应力的大小与物体的弹性模量有关。
2. 剪应力:剪应力是指物体在受剪切力作用下单位面积上的受力情况。
剪应力的计算公式为τ = F / A,其中F为物体受到的剪切力,A为物体的受力面积。
剪应力的大小与物体的剪切模量有关。
3. 体应力:体应力是指物体内部各点上的应力情况。
体应力的计算公式为σ =F / A,其中F为物体受到的力,A为物体的横截面积。
体应力的大小与物体的杨氏模量有关。
三、应变与应力分析方法的应用研究应变与应力分析方法在实际工程中有着广泛的应用。
Preface
![Preface](https://img.taocdn.com/s3/m/701f792ce2bd960590c677f1.png)
缺点
力学试验技术
1)单点、单向测量,不能进行全域性测量 单点、单向测量, 2)得到的是平均应变 3〕在温度变化大、强磁场下,必须采取一定措施, 在温度变化大、强磁场下,必须采取一定措施, 保证精度
2、光测弹性法 、
力学试验技术
1816 Bruce发现置于偏振光场内的玻璃板在受力 Bruce发现置于偏振光场内的玻璃板在受力 后出现彩色条纹,且随载荷变化而变化。 后出现彩色条纹,且随载荷变化而变化。 1841 Newman和1853年Maxwell建立应力~光学 Newman和1853年Maxwell建立应力 建立应力~ 定律(主折射率与主应力成线性关系) 定律(主折射率与主应力成线性关系) 1906 用赛路铬作模型材料(酚醛树脂、环氧树脂) 用赛路铬作模型材料(酚醛树脂、环氧树脂) 1931 出版“光测弹性力学”一书 出版“光测弹性力学” 目前 使用酚醛树脂、环氧树脂作模型已是一种有效、 使用酚醛树脂、环氧树脂作模型已是一种有效、 成熟的试验方法
2
My σT = IZ
有限元计算
1.30
4
力学试验技术
1.25
ILS-Stress concentrator f
3
1.20 1.15 1.10 1.0mm)
2
Classical beam theory Outside at X=7mm Inside at X=7mm
应力、应变测量(接触、非接触测量)、三闭环 应力、应变测量(接触、非接触测量)、三闭环 )、 控制系统、 控制系统、高低温测量
基本力学实验装置
冲击加载系统
力学试验技术
冲击装置、 (冲击摆、SHPB冲击装置、落锤) 冲击摆、SHPB冲击装置 落锤)
力学试验技术
如何在工程力学中进行应力分析?
![如何在工程力学中进行应力分析?](https://img.taocdn.com/s3/m/4b9edf9f0d22590102020740be1e650e52eacfaa.png)
如何在工程力学中进行应力分析?在工程力学领域,应力分析是一项至关重要的任务。
它能够帮助工程师了解结构或材料在受到外力作用时内部的受力情况,从而评估其强度、稳定性和可靠性,为设计安全、高效的工程结构提供关键的依据。
那么,如何进行有效的应力分析呢?首先,我们需要明确应力的基本概念。
应力,简单来说,就是单位面积上所承受的内力。
当物体受到外力作用时,内部会产生抵抗这种外力的力,这种力在单位面积上的表现就是应力。
应力的单位通常是帕斯卡(Pa)或兆帕(MPa)。
在实际的工程力学中,进行应力分析的第一步是确定所研究对象的受力情况。
这包括对各种外力的分析,如集中力、分布力、力偶等。
例如,在桥梁设计中,需要考虑车辆的重量产生的集中力,以及风荷载产生的分布力。
为了准确地描述这些外力,我们通常会建立一个力学模型,将复杂的实际情况简化为易于分析的形式。
接下来,选择合适的分析方法是关键。
常见的应力分析方法有理论分析法、实验法和数值模拟法。
理论分析法基于力学的基本原理和公式进行推导和计算。
例如,对于简单形状和受力情况的结构,可以使用材料力学中的公式来计算应力。
比如,对于受拉伸或压缩的直杆,可以通过力除以横截面积来计算正应力;对于受扭转的圆轴,可以通过扭矩除以抗扭截面系数来计算切应力。
然而,这种方法通常只适用于简单的几何形状和受力情况,对于复杂的结构往往难以直接应用。
实验法是通过对实际结构或模型进行物理实验来测量应力。
常见的实验方法包括电测法、光测法等。
电测法是在结构表面粘贴电阻应变片,当结构受力产生变形时,应变片的电阻会发生变化,通过测量电阻的变化可以推算出应变,进而计算出应力。
光测法则利用光的干涉原理,如光弹性法,来观察结构内部的应力分布。
实验法能够直接获取实际结构的应力数据,但往往成本较高,且实验过程可能会对结构造成一定的破坏。
数值模拟法则是借助计算机软件对结构进行建模和分析。
常见的数值方法有有限元法、边界元法等。
有限元法将结构离散成有限个单元,通过求解每个单元的平衡方程,得到整个结构的应力和变形。
工程力学-应力状态与应力状态分析资料报告
![工程力学-应力状态与应力状态分析资料报告](https://img.taocdn.com/s3/m/bc5b1a98ed630b1c58eeb560.png)
8 应力状态与应变状态分析1、应力状态的概念,2、平面应力状态下的应力分析,3、主平面是切应力为零的平面,主应力是作用于主平面上的正应力。
(1)过一点总存在三对相互垂直的主平面,对应三个主应力,主应力排列规定按代数值由大到小为:321σσσ≥≥最大切应力为132max σστ-=(2)任斜截面上的应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=(3) 主应力的大小22minmax )2(2xyyx yx τσσσσσ+-±+=主平面的方位yx xytg σστα--=2204、主应变122122x y x y xy xyx y()()tg εεεεεεγγϕεε⎡=+±-+⎣=-5、广义胡克定律)]([1z y x x E σσμσε+-=)]([1x z y y E σσμσε+-=)]([1y x z z E σσμσε+-=G zxzx τγ=G yzyz τγ=,G xyxy τγ=6、应力圆与单元体之间的对应关系可总结为“点面对应、转向相同、夹角两倍。
”8.1 试画出下图8.1(a)所示简支梁A 点处的原始单元体。
图8.1[解](1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。
再取A 点偏上和偏下的一对与xz 平行的平面。
截取出的单元体如图8.1(d)所示。
(2)分析单元体各面上的应力:A 点偏右横截面的正应力和切应力如图8.1(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为:zM y I σ=b I QS z z *=τ由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。
工程力学中的应变与应力分析
![工程力学中的应变与应力分析](https://img.taocdn.com/s3/m/cb648a4b4b7302768e9951e79b89680203d86b88.png)
工程力学中的应变与应力分析工程力学是研究物体静力学和动力学的一门学科,它在工程设计和结构力学分析中起着重要的作用。
在工程力学中,应变与应力是两个基本概念,也是进行结构分析和材料力学计算的关键参数。
本文将从应变和应力的定义、计算公式、应变与应力的关系等方面进行介绍与分析。
一、应变的概念与计算应变是物体在受到力的作用下,发生形变的程度的度量。
应变可分为线性应变和切变应变两种。
1. 线性应变线性应变是指物体在受力作用下,其形变呈现线性关系。
常见的线性应变有拉伸应变和压缩应变。
拉伸应变是指物体在拉伸力作用下的伸长变化程度,压缩应变是指物体在压缩力作用下的压缩变化程度。
线性应变的计算公式如下:ε = ΔL / L其中,ε表示线性应变,ΔL表示长度变化量,L表示物体的初始长度。
2. 切变应变切变应变是指物体在受到剪切力作用下,产生的剪切变形程度。
切变应变的计算公式如下:γ = θ * r其中,γ表示切变应变,θ表示切变角度,r表示物体上两点间的距离。
二、应力的概念与计算应力是物体内部受力作用下单位面积上的力的大小。
常见的应力有拉应力、压应力和剪应力等。
应力的计算公式如下:1. 拉应力和压应力拉应力是指垂直于物体横截面的拉力作用下,单位面积上的力的大小,压应力是指垂直于物体横截面的压力作用下,单位面积上的力的大小。
拉应力和压应力的计算公式如下:σ = F / A其中,σ表示应力,F表示作用力的大小,A表示物体的横截面积。
2. 剪应力剪应力是指平行于物体横截面的剪切力作用下,单位面积上的力的大小。
剪应力的计算公式如下:τ = F / A其中,τ表示剪应力,F表示作用力的大小,A表示物体的横截面积。
三、应变与应力的关系应变与应力有着密切的关系,可以通过应变与应力的计算公式来解析他们之间的关系。
1. 杨氏模量杨氏模量是一种材料的特性参数,它是应力与应变之间的比值。
杨氏模量的计算公式如下:E = σ / ε其中,E表示杨氏模量,σ表示应力,ε表示应变。
工程力学中的应力和应变的分析
![工程力学中的应力和应变的分析](https://img.taocdn.com/s3/m/6bd3fae8dc3383c4bb4cf7ec4afe04a1b071b0a9.png)
工程力学中的应力和应变的分析工程力学是研究物体在外力作用下受力与变形规律的学科。
在工程力学中,应力和应变是两个重要的概念,用于描述物体受到外力作用后的力学响应和变形情况。
本文将对工程力学中的应力和应变进行深入的分析和探讨。
一、应力的概念和分类应力是描述物体单位面积内的内力或外力的物理量,用σ表示。
在力的作用下,物体的形状、大小和方向都会发生变化,而应力则用来描述物体内部各点受力状态的大小和方向。
应力可以分为正应力和剪应力两种类型。
1. 正应力:正应力是指垂直于物体截面的力在该截面上的作用效果。
正应力可分为拉应力和压应力两种情况。
拉应力是指垂直于物体截面的力使得截面上的物质向外扩张,压应力则是指垂直于物体截面的力使得截面上的物质向内收缩。
2. 剪应力:剪应力是指与物体截面平行的力在该截面上的作用效果。
剪应力是由于物体受到外部力的平行作用而引起的变形。
剪应力会使得物体的截面发生平行于力的方向的切变变形。
二、应变的概念和分类应变是描述物体相对于原始形状发生变形时各点之间相对位置的改变程度的物理量,用ε表示。
应变描述了物体受到外力作用后的变形程度和特征。
应变可分为线性应变和剪切应变两种类型。
1. 线性应变:线性应变是一种改变物体长度的应变形式,也称为伸长应变。
线性应变正比于物体所受力的大小,并与物体原始长度之比成正比。
线性应变的表达式为ε = ΔL / L0,其中ΔL为线段在力作用下伸长的长度,L0为线段的原始长度。
2. 剪切应变:剪切应变是一种改变物体形状的应变形式,也称为变形应变。
剪切应变是与物体所受剪力大小成正比,与物体的长度无关。
剪切应变的表达式为γ = Δx / h,其中Δx为剪切前后平行于力方向的线段之间的位移,h为物体在该方向上的高度。
三、应力和应变之间的关系应力和应变之间存在一定的关系,通常可以通过弹性模量来表示。
弹性模量是描述物体材料抵抗形变能力的物理量,用E表示。
主要用于刻画物体在受力作用后,恢复原始形状的能力。
应变与应力分析在工程力学中的应用
![应变与应力分析在工程力学中的应用](https://img.taocdn.com/s3/m/b60584af0875f46527d3240c844769eae009a385.png)
应变与应力分析在工程力学中的应用工程力学是研究物体在力的作用下,变形和运动规律的基础学科。
在工程实践中,应变与应力分析是非常重要的技术工具。
应变和应力是描述物体受力后变形程度和内部分布的物理量。
本文将探讨应变与应力分析在工程力学中的应用。
一、应变的分析应变是物体在受力作用下产生的变形程度的度量。
通常通过应变张量来描述。
在工程力学中,应变分析主要用于以下几个方面。
1. 结构变形分析在设计和建造建筑、桥梁、车辆等工程结构时,需要对各个部件的变形情况进行分析。
应变分析可以帮助工程师了解结构在受力后的变形情况,从而指导结构的设计和材料的选用。
结构变形分析需要考虑各种载荷作用下的应变分布,并合理控制结构的变形,以确保结构的稳定性和安全性。
2. 弹性形变分析在工程实践中,想要了解物体在受力后的弹性形变情况,应变分析是一种常用的方法。
弹性形变分析可以帮助工程师确定物体在受力作用下的形状变化和应变分布情况,从而指导材料的选用和工艺的设计。
例如,在汽车制造中,通过对汽车车身的应变分析,可以判断材料的强度和刚度是否满足设计要求,以确保汽车的安全性和舒适性。
二、应力的分析应力是物体内部受力状态的描述。
应力分析是工程力学中的关键技术,广泛应用于以下几个方面。
1. 结构强度分析在设计和建造大型工程结构时,如建筑物、桥梁、钢结构等,需要对结构的强度进行分析。
应力分析可以帮助工程师确定结构在受力后的应力分布情况,从而评估结构的强度和稳定性。
结构强度分析需要考虑不同载荷作用下的应力分布,并确保结构的应力不超过材料的强度极限,以保证结构的安全性。
2. 疲劳强度分析在机械、航空航天等领域,往往要面对长时间的交变加载。
而材料在交变加载下容易发生疲劳破坏。
应力分析可以帮助工程师了解材料在交变加载下的应力分布情况,从而评估材料的疲劳性能。
疲劳强度分析需要考虑材料的疲劳寿命和疲劳极限,以设计出更可靠的工程结构。
综上所述,应变与应力分析在工程力学中有着广泛的应用。
应力应变测量实验报告
![应力应变测量实验报告](https://img.taocdn.com/s3/m/5e3be966182e453610661ed9ad51f01dc2815731.png)
应力应变测量实验报告简介应力应变测量是工程力学中非常重要的实验项目之一。
通过测量材料受力后的应变情况,可以分析材料的性能和强度。
本实验旨在通过一系列步骤,探索应力应变测量的基本原理和方法。
实验步骤1. 准备工作首先,准备实验所需的材料和设备。
这包括测试样品、应变计和测量设备等。
确保所有设备都处于正常工作状态,并进行必要的校准和调整。
2. 安装应变计将应变计粘贴在待测试材料的表面。
在此过程中,确保应变计与材料表面充分接触,并且没有空隙存在。
确保粘贴的位置符合测量要求,并且应变计的方向正确。
3. 连接测量设备将测量设备与应变计连接起来。
这可能包括数据采集系统和电阻应变计的连接。
确保连接稳固可靠,并检查信号传输是否正常。
4. 施加载荷通过施加适当的载荷来引导材料产生应变。
这可以通过外力施加或设备操作实现。
确保施加的载荷稳定,并记录下施加的载荷数值。
5. 记录测量数据随着载荷的施加,测量设备会记录下应变计的反应。
将这些数据记录下来,并确保其准确无误。
可能需要进行多次测量以获得可靠的数据。
6. 计算应力和应变根据测量数据,计算出样品的应力和应变值。
应力可以通过施加的载荷除以样品的截面积得到。
应变可以通过应变计测量值除以应变计的灵敏度得到。
7. 分析结果通过分析应力应变数据,我们可以得到材料的力学性质和行为。
这可能包括材料的弹性模量、屈服强度、断裂强度等。
根据实验目的,进行相应的数据处理和图表绘制。
8. 讨论和结论基于实验结果,进行讨论和分析。
讨论实验中的误差来源和改进措施。
最后,得出结论,并根据实验结果提出进一步研究的建议。
结束语应力应变测量实验是工程力学领域中的重要实验之一。
通过本实验,我们可以深入了解材料的性能和强度,并为工程实践提供基础数据。
在实施实验时,确保严格按照步骤进行,并注意实验中的安全问题。
通过合理的数据处理和分析,可以得到准确可靠的实验结果。
工程力学中的应力分析与应力集中问题
![工程力学中的应力分析与应力集中问题](https://img.taocdn.com/s3/m/d5eb0f79590216fc700abb68a98271fe910eafff.png)
工程力学中的应力分析与应力集中问题工程力学是一门研究物体力学性质及其相互作用的学科,它广泛应用于各个工程领域。
在工程设计和实践中,经常需要进行应力分析,以评估和优化结构的强度和稳定性。
同时,应力集中问题也是工程力学中的一个重要内容,它涉及到结构中应力的不均匀分布和集中现象,对结构的安全性和可靠性有着重要影响。
应力分析是指通过力学方法对结构或构件内部应力的大小、方向和分布进行计算和分析的过程。
应力分析的基本原理是应力沿任意截面为零,从而根据受力情况和几何形状,可以求解出结构内部的应力分布。
在应力分析中,常用的方法有静力学方法、能量方法和变分原理等。
静力学方法是最常用的一种方法,它基于平衡方程和材料的应力-应变关系,通过数学建模和求解方程组来得到应力分布。
能量方法和变分原理则是利用能量储存和最小能量原理进行应力分析。
在应力分析中,应力的计算可以通过手工计算和有限元分析两种方法进行。
手工计算是基于理论公式和近似方法推导,适用于简单的结构和荷载情况。
有限元分析则是通过将结构离散为有限个单元,利用数值计算方法求解结构的应力分布。
有限元分析具有广泛的适用性和较高的精度,可以处理复杂的结构和荷载情况。
除了应力分析,应力集中问题是工程力学中的一个研究重点。
应力集中是指结构中应力分布不均匀和应力值异常集中的现象。
应力集中可能导致结构的破坏和失效,因此对于应力集中的分析和控制至关重要。
常见的应力集中现象包括孔洞周围的应力集中和零件连接处的应力集中等。
为了分析和解决应力集中问题,工程师常常采取以下几种方法:1. 减小应力集中的影响:通过改变结构的几何形状,例如增加圆角或过渡半径,来减小应力集中的程度。
这种方法可以在设计初期进行,以减小结构的应力集中程度。
2. 使用合适的材料:选择适当的材料可以改变结构的应力集中状况。
有些材料具有较高的韧性和延展性,可以有效减小应力集中引起的破坏风险。
3. 增加结构的刚度:通过增加结构的刚度,可以使应力更均匀地分布在整个结构中,从而减小应力集中的程度。
工程力学之应力状态分析和强度计算
![工程力学之应力状态分析和强度计算](https://img.taocdn.com/s3/m/fc2ecd4791c69ec3d5bbfd0a79563c1ec5dad784.png)
工程力学之应力状态分析和强度计算工程力学是研究物体受力和变形规律的学科,其基础之一就是应力状态分析和强度计算。
应力状态分析主要是通过计算和评估物体内部的应力分布情况,强度计算则是根据应力状态来确定物体的强度和稳定性。
应力状态分析是力学中的一个重要步骤,它不仅可以用来评估物体的受力情况,还可以为工程设计提供依据。
在进行应力状态分析时,首先需要确定物体所受的外力,然后利用力学原理和相关公式计算物体内部的应力分布。
具体来说,首先我们需要确定物体所受的外力,包括静力、动力以及热力等,这些外力会作用在物体的不同部位上。
然后,通过应用牛顿第二定律、平衡方程等力学原理,可以计算得到物体内部的应力分布情况。
在实际工程中,通常使用数值计算方法来解决这些力学方程,比如有限元法和边界元法等。
强度计算则是根据应力状态来评估物体的强度和稳定性,以确定物体是否满足设计和使用要求。
在进行强度计算时,首先需要确定物体的强度参数,比如抗拉强度、屈服强度、抗剪强度等。
然后,根据物体所受的应力状态,通过应力分析和计算,可以得到物体内部的应力大小。
接下来,比较物体内部的应力和其强度参数,就可以判断物体是否安全和稳定。
应力状态分析和强度计算在各个工程领域中都有广泛的应用。
在土木工程中,它可以用来评估建筑物、桥梁和道路等结构的受力情况,以确保它们的安全使用。
在机械工程中,它可以用来评估机械零件和设备的强度和稳定性,以确保它们能够正常工作。
在航空航天工程中,它可以用来评估飞机和航天器在各种飞行状态下的受力情况,以确保它们在高速和极端环境下的安全性。
总之,应力状态分析和强度计算是工程力学的重要内容,它们不仅可以为工程设计提供依据,还可以用来评估物体的强度和稳定性。
在实际应用中,我们可以通过数值计算的方法来解决应力分析和强度计算问题,从而确保工程项目的安全性和可靠性。
在工程实践中,应力状态分析和强度计算是非常重要的步骤,涉及到许多领域,如结构工程、材料工程、土木工程等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(experimental stress analysis)
§18.1 应变电测法 18.1.1 电阻应变片的工作原理 18.1.2 应变片的主要参数 18.1.3 应变片的粘贴
§18.2 测量电桥电路与应变仪 18.2.1 直流电桥的工作原理 18.2.2 应变仪 18.2.3 应变仪的调整
§18.3 应变测量电桥的组接 18.3.1 应变片温度效应 18.3.2 常用测量电桥的组接 18.3.3 平面应力状态测量
§18.4 光弹性实验方法(不要求)
3学时
1
第18章 实验应力分析 (experimental stress analysis)
实验应力分析是利用实验的方法来测定构件内应力或应 变的一种技术。
R2 C Uout
R3
C B
R
D
D2
21
(5) 半桥接法:
A,B,C 之间接应变片,将
A
C
D1D 及 D2D 之间短路,如图所示, 组成半桥接法。
R
B
R
由于 A, D1 与 C, D2 之间在 平衡箱内部接有与应变片阻值相同
D1 D
D2
的固定精密电阻 R ,所以电桥的输
出电压变化量为
dU BD
U ACK 4
需要的特定应变量。
15
18.2.1 直流电桥的工作原理
桥臂电阻 R1 , R2 , R3 , R4 , 全部或部分为电阻应变片。
R1
B R2
UBD
U
AC
R1R3 R2R4 (R1 R2 )( R3 R4 )
(18.5)
电桥平衡条件:UBD 0 R1R3 R2R4 (18.6)
A
C
R4
R3
直流电桥的输出电压的改变量与应变量成正比, 且为 4 个桥臂电阻感应应变量的线性叠加。
这就是直流电桥的工作原理
18
18.2.2 应变仪
应变仪的作用
以直流电桥输出电压 dUBD 为输入信号,按比例放大后, 显示出相应的应变值。
静态应变仪与动态应变仪
在工程上应变仪分静态应变仪和动态应变仪。 (1) 静态应变仪:
随着新技术的发展,实验应力分析的方法和手段也将日益增多,目 前比较成熟的方法有:应变电测法、光弹性法、激光全息法、散斑干涉 法、云纹法、动光弹技术等。
工程上使用最广泛的是应变电测法和光弹性法。本章对上述两种方
法的一些基本原理作简单的介绍。
4
第18章 实验应力分析 (experimental stress analysis)
参数,也需要通过实验来获得,如弹性模量 E、泊松比 的
测定;
(2) 在工程中,由于工况、约束条件、载荷条件等因素使 得一些结构或构件的应力或应变很难通过现有的理论方法确 定,或在理论分析可能产生较大的误差时,应用实验的方法 直接测定这些参数显然是最有效的手段;
(3) 在工程结构或构件的设计过程中,也需要利用模型实 验来验证设计的可靠性或进行优化设计,这些称为应力分析 试验。
应变仪的频率响应 < 200Hz ,称为 静态应变仪。 (2) 动态应变仪:
应变仪的频率响应 < 10 kHz ,称为 动态应变仪。 (3) 超动态应变仪:
应变仪的频率响应 > 10 kHz ,称为 超动态应变仪。19
静态应变仪的组成
预调平衡电路
电压放大器
模拟/数值转换器 (A/D 转换器)
显示
预调平衡电路的作用
§18.1 应变电测法
应变电测法
利用金属丝的电阻应变效应测量构件表面应变的一种实 验应力分析技术。
应变电测法的测量器件
(1) 电阻应变片: 作为传感器将应变量转化成可测量的电量参数。
(2) 测量电桥: 组成各种测量电路。 (3) 电阻应变仪:
输入测量电路获取的信号加以放大并转换成实际应变值5。
18.1.1 电阻应变片的工作原理
9
18.1.2 应变片的主要参数 简单介绍
(1) 几何尺寸
敏感栅的 宽 b×长 l 。 bmin = 0.2mm ,lmax = 150mm 由于测量的应变是敏感栅范围内的平均应变,所以, 当沿测量方向上应变梯度较大时,宜选用较小尺寸的应变 片,以提高测量精度,反之,则选用较大尺寸的应变片, 以增加测量灵敏度。
道,需要的话,可以通过扩展接口连接其他预调平衡箱,从而增加测
量通道。
23
18.2.3 应变仪的调整
数字应变仪
用砂布清除表面油漆、氧化物等覆盖物,使表面平整; 改用中粒度砂布打出与贴片方向大致成 45的交叉条纹以 增加粘接强度;
仔细用划针沿测试方向划出定位线;
用酒精或丙酮清洗表面油污。
12
(3) 应变片的粘贴:
一般工程测试可选用常温快速固化剂,如 502 胶。其优点 是固化快,1 小时后即可进行测量,固化强度高峰在 24 小时后; 固化后性能稳定且无须特殊固化条件。
D
UAC 直流电源
输
UBD
出 电
压
设:4 个桥臂电阻 R1,R2,R3,R4 全部接成应变片,且由应 变产生的电阻变化率为 dR1/R1,dR2/R2,dR3/R3,dR4/R4
则
dU BD
U BD R1
dR1
U BD R2
dR2
U BD R3
dR3
U BD R4
dR4
16
UBD
(18.5)
UAC
(1) 金属丝的电阻应变效应
R l
A
dR
l d
A
dl
A
l A2
dA
dR d dl dA RlA
(18.1)
A D2 dA DdD 42来自dA 2 dD 2 dl
AD
l
金属丝的电阻率
R 金属丝的电阻 l 金属丝的长度 A 金属丝的横截面面积
D 金属丝截面直径
金属材料的泊松比
试验表明:电阻率的变化率与体积变化率成正比,即 6
dU BD
U BD R1
dR1
U BD R2
dR2
U BD R3
dR3
U BD R4
dR4
U AC
R2 (R1 R2 )2
dR1
U AC
R1 (R1 R2 )2
dR2
U AC
( R3
R4 R4 )2
dR3
U
AC
( R3
R3 R4 )2
dR4
U
AC
(
R1R2 R1 R2
)2
dR1 R1
覆盖石蜡或凡士林油防潮。 特殊测试条件,如高温、高压、液下等环境或长期监测时
的保护十分重要,往往需要特殊保护,查阅有关资料。
14
§18.2 测量电桥电路与应变仪
测量电桥
测量电桥在应变测量电路中起接口的作用: (1) 将应变片接入电桥电路可以实现从电阻变化率到电压变
化率的转换,而电压信号较易进行后处理; (2) 应变片在电桥电路中的不同接入方式,可以用于测量所
dR2 R2
R3R4 (R3 R4 )2
dR3 R3
dR4 R147
若 R1 R2 R3 R4,则
dU BD
U AC 4
dR1 R1
dR2 R2
dR3 R3
dR4 R4
U ACK 4
(1
2
3
4
)
(18.8)
(18.7)
dR
(18.4)
K
R
上式表明:直流电桥的输出电压变化 dUBD 与应变片感应的 应变之间的变换关系,即
在应变片背面滴上适量胶水,不宜过多!
将应变片按预先定位方向放置,此时可用镊子等轻轻拨动 应变片,调整位置和方向,力求定位准确;
在应变片上覆盖一层聚乙烯薄膜,用手指轻轻滚压挤出多 余的胶水和气泡,并保持一段时间。
(4) 检查与连接导线:
胶水固化后轻轻揭去聚乙烯薄膜,检查粘贴质量,包括方
位是否准确,是否夹有气泡。
如质量太差,应该刮除该片,重新按 (2)、(3) 步骤粘贴。
质量满意,即可用电烙铁将应变片引线与导线焊接并用胶
布固定。
最后用万用表再次测量电阻,保证焊接可靠性且应变片连
接正常。
13
(5) 保护: 保护是为了防止应变片在测量前或测量中出现意外损坏。 一般条件下,短期测量不需要特殊保护,但潮湿环境下应
(1
2)
(18.9)
预调平衡通常在预调平衡箱上进行。
22
多通道预调平衡箱的原理
B
B
A
C
A
C
D
D
SA
D
预调平衡箱
输出
CB
(1) 通过多路转换开关 S 切换不同的通道(图中显示两个通道的情况), 每个通道都有独立的预调平衡电路。
(2) 预调平衡箱通过电缆与应变仪相连接;单个预调平衡箱可接 8 ~ 16 通
(2) 名义电阻值
同一生产批次应变片的电阻平均值。 常用值为 120Ω ± 1Ω 。
(3) 应变片的灵敏度 K
同一生产批次应变片的灵敏度平均值。 通常由厂家通过实验测定。常用值为 2.17Ω ± 0.01。
10
以上参数是电测法试验中必须给出的,所以,生产厂 家要在产品包装上标出。
还有一些参数是在某些特殊实验中需要考虑的,如: 在频率较高的动态测量中,要考虑机械滞后;在大变形测 量中要考虑应变极限等参数。这些参数生产厂家并不给出, 可根据具体情况通过实验的测定。
3
本章主要内容:
讨论应力分析试验的基本方法。
应力分析试验
利用物理原理,把不易测量的力学量,如应力、应变等, 转换为容易测量的其他物理量,如电压、光强等,并且这种 转换在理论上有确定的关系。这样,可以通过测量这些物理 量得到相应的力学量。