浅谈纤维增强水泥基复合材料
纤维增强水泥基复合材料应用技术规程
纤维增强水泥基复合材料应用技术规程一、前言纤维增强水泥基复合材料是近年来发展起来的一种新型材料,其具有较好的机械性能、耐久性能和抗裂性能等优点,广泛应用于建筑、桥梁、隧道、地下工程等领域。
为了规范纤维增强水泥基复合材料的应用,提高其应用效果和安全性,本文将从材料的选择、配合比的设计、施工工艺等方面进行详细阐述。
二、材料选择1.水泥水泥是纤维增强水泥基复合材料的基础材料,其品种应根据工程的具体要求选择。
一般来说,普通硅酸盐水泥或硬磨石水泥都可以作为纤维增强水泥基复合材料的水泥基料。
2.纤维纤维是纤维增强水泥基复合材料中的增强材料,其种类繁多,应根据工程要求和使用环境选择。
常用的纤维有玻璃纤维、碳纤维、聚丙烯纤维等。
3.骨料骨料是纤维增强水泥基复合材料中的骨架材料,其品种也应根据工程要求选择。
一般来说,常规的碎石、碎砖等都可以作为骨料,但要注意骨料的品质和粒径。
4.掺合料掺合料是纤维增强水泥基复合材料中的辅助材料,其种类也很多。
常用的掺合料有矿渣粉、石灰石粉、煤灰等。
三、配合比设计1.水泥用量水泥用量应根据工程要求和强度等级来确定。
一般来说,水泥用量在400kg/m³左右比较合适。
2.纤维用量纤维用量应根据工程要求和纤维种类来确定。
在大多数情况下,纤维用量在1.5%~2.5%之间比较合适。
3.骨料用量骨料用量应根据工程要求和骨料种类来确定。
在大多数情况下,骨料用量在1000kg/m³左右比较合适。
4.掺合料用量掺合料用量应根据工程要求和掺合料种类来确定。
在大多数情况下,掺合料用量在20%~30%之间比较合适。
四、施工工艺1.基层处理在进行纤维增强水泥基复合材料的施工前,必须对基层进行处理。
基层处理应包括清理、打磨、喷水等步骤,以保证基层的平整度和粗糙度。
2.混合料的配制混合料的配制应在专门的搅拌机中进行,严格按照配合比进行配制。
在配制过程中,应注意控制搅拌时间和搅拌速度,以确保混合料的均匀性和稳定性。
ECC混凝土(纤维水泥基复合材料)介绍
ECC混凝⼟(纤维⽔泥基复合材料)介绍什么是ECC?⼯程⽤⽔泥基增强复合材料(Engineered Cementitious Composite),简称为ECC,它是纤维增强⽔泥基复合材料,具有⾼延展性和严格的裂缝宽度控制。
为何选择ECC?传统的混凝⼟⼏乎是不可弯曲的,具有⾼度脆性和刚性,应变能⼒仅0.1%,ECC的应变⼒超过3%,因此更像是韧性⾦属,⽽不像脆性玻璃。
ECC的组成可弯曲混凝⼟由传统混凝⼟的所有成分减去粗⾻料组成,并掺⼊聚⼄烯醇纤维。
它含有⽔泥,沙⼦,⽔,纤维和外加剂。
聚⼄烯醇纤维覆盖着涂层,可防⽌纤维破裂,因此ECC⽐普通混凝⼟变形性能更强。
⼯作机制每当载荷增加超过其极限值时,PVA纤维与混凝⼟在⽔化过程中形成的强分⼦键可防⽌其开裂。
ECC的不同组分共同抵御载荷。
ECC混凝⼟的优点具有像⾦属⼀样弯曲的能⼒,⽐传统混凝⼟更坚固,更耐⽤,持续时间更长;它具有⾃我修复的特性,可以通过使⽤⼆氧化碳和⾬⽔来⾃我治愈;约⽐普通混凝⼟轻20-40%。
ECC混凝⼟的缺点与传统混凝⼟相⽐,施⼯成本较⾼。
它需要熟练的劳动⼒来建造它。
它需要⼀些特殊类型的材料,在某些地区很难找到。
其质量取决于所⽤材料及其制造条件。
其抗压强度⼩于传统混凝⼟。
ECC的应⽤范围:抗震建筑:采⽤柔性混凝⼟制成的结构可承受更⼤的拉应⼒,不会因地震引起的振动⽽破坏。
在⽇本⼤阪,60层楼⾼的北滨⼤楼,就在建筑核⼼⽤了⼯程胶结复合材料,⽤于抗震。
桥⾯伸缩缝:桥⾯的伸缩缝经常堵塞。
ECC随着温度波动移动⽽实际扩展和收缩。
它消除了热胀冷缩相关的许多常见问桥⾯伸缩缝:题,例如连接处堵塞和裂缝,这导致⽔和除冰盐渗⼊联结处并腐蚀钢筋。
混凝⼟帆布:混凝⼟帆布也可以⽤柔性混凝⼟制成。
混凝⼟帆布⽐普通帆布更坚固耐⽤。
它可以⽤在军事领域。
植物纤维增强水泥基复合材料研究综述
l18】
、
椰
壳
纤
维
l】91、甘
蔗
渣
纤
维[201、龙
舌
兰
纤
维l 2ll、玉
米秸
秆
纤
维
等 ;④竹筋 24]。研究工作主要 围绕三个方面进行 。
1植物 纤维 增 强水泥 基复 合材料 力 学性 能
人 们 在 植 物 纤 维 增 强 水 泥 基 材 料 力 学 性 能 方 面 的 研 究
较为全面深入 ,其 中以下研究 具有一定代表 胜:
关键 词 植 物 纤 维 ;水 泥基 复 合 材 料 ;界 面特 性 ;耐久 性 ;纤 维 改性
0引言 纤 维 增 强 水 泥 基 复 合 材 料 (Fiber-Reinforced Cement
Matrix Composites,FRCMC)是 以水泥净浆 、水 泥砂 浆或混凝土 做基材 ,以非连续的短纤维或连续 的长纤维作增强体组合成 的复合材料 。当所用水泥基材为水泥净浆或水泥砂浆 时 ,称 之 为纤 维增强水 泥 ;当采用混凝 土为基材时 ,称之 为纤维增 强 混 凝 土 【l_。
纤维对水泥基材料 的开裂有很好的控制作用 。大约 3500 年 以前 ,国外就有 用纤维来加 强脆性基质 的案例 ,例如利用 稻 草和马鬃 与黏土混合起来制作砖 和地板12]。我 国古代建筑 也 有把植 物纤维加入粘土的做 法_lJ。纤维加 固的概念在 现代 有 了进 一步发展 ,1900年奥匈帝 国 的 Hatschek发 明用 圆网 抄取机 制造石棉水泥板的工艺方法_】1。
的断裂和冲击性能 ,通过双参数断裂模 型对试验结果进行表
述 ,其抗压 、抗 弯和劈裂拉伸强度均满足相关 的欧洲标准 。
碳纤维增强水泥基复合材料的制备
碳纤维增强水泥基复合材料的制备碳纤维增强水泥基复合材料(CFRP)是一种高强度、高刚度、耐久性好的新型材料,被广泛地应用于建筑、道路、桥梁等工程领域。
本文将对CFRP的制备过程进行介绍。
I. 碳纤维的制备碳纤维是CFRP的主要材料之一。
根据需要,碳纤维可以采用不同的制备方法,如化学气相沉积法、炭化毛毡法等。
其中,化学气相沉积法是目前应用最广泛的制备碳纤维的方法之一。
该方法以石油焦为原料,在高温下进行气相反应,使得碳化物沉积在钨丝或其他适合的表面上,形成了碳纤维。
II. 水泥基材料的制备水泥基材料是CFRP的另一个主要组成部分。
在制备水泥基材料时,需要确定其成分及配比,以保证其性能符合要求。
常用的水泥基材料有Portland水泥、硬化剂、矿物掺合料、增韧剂等。
其中,Portland水泥是一种常用的水泥基材料,具有硬化迅速、强度高、抗渗透等优点。
III. CFRP的制备CFRP制备的基本流程如下:先将碳纤维与水泥基材料进行混合,并加入适量的钢材、木材或其他增强材料,将其混合均匀后,将其加压至所需形状和尺寸,然后进行加热和固化。
加热和固化是CFRP制备的关键步骤之一。
加热和固化的目的是使CFRP材料在一定的压力下得到充分的硬化,从而达到理想的强度和刚度。
IV. CFRP的性能CFRP具有很好的强度和刚度,是一种具有高性能的新型复合材料。
CFRP具有以下特点:1. 高强度和高刚度:CFRP的强度和刚度比钢材高出很多。
2. 耐久性好:由于碳纤维具有优异的耐腐蚀性和耐磨性,CFRP具有很好的耐久性。
3. 轻质:CFRP具有低密度,重量轻。
4. 断裂韧性好:CFRP具有良好的断裂韧性,具有抗震能力。
V. 应用前景CFRP具有广阔的应用前景,目前已应用于许多工程领域。
例如,CFRP可以制成桥梁、隧道、建筑物等大型工程建筑材料,也可以应用于汽车制造、铁路、电力、环保等领域。
随着技术的不断进步和发展,CFRP的应用前景将会更加广泛。
第4章 纤维增强水泥基复合材料
(2)高温低压蒸汽养护。可缩短水泥复合材料制品的生产周期。 温度为40~100℃,最佳温度65~80℃。有资料报道,蒸汽养护对水 泥制品的耐久性有不利的影响。 (3)高温高压蒸汽养护。温度一般超过100℃(160~210℃),蒸 汽压力在0.6~2MPa。
.
4.4 碳纤维增强水泥基复合材料
.Leabharlann 纤维增韧、抗裂机理:.
.
② 钢纤维
.
钢纤维在水泥基体中分布的均匀性随增大而下降。
①Dmax/lf=1/2时,纤维对混凝土的增强效果最好; ②Dmax/lf>1时,纤维过于集中并填充于粗集料间的砂浆中,难于增强混凝
土的强度,还影响纤维与基体的界面粘结;
③Dmax/lf<1/2时,可使混凝土的增韧效果明显,但因集料过小而难以发挥
油井水泥、大坝水泥
.
快硬硅酸盐水泥、膨胀水泥
硅酸盐水泥
根据GB 175-2007国家标准
1、硅酸盐水泥的定义为:由硅酸盐水泥熟料、
0~5%石灰石或粒化高炉矿渣、适量石膏磨
细制成的水硬胶凝材料称为硅酸盐水泥。
2、由硅酸盐水泥熟料、6~15%混合材料、适量
石膏磨细制成的水硬胶凝材料称为
普通硅酸盐水泥。
1983年,中国建筑材料研究院在国家科委、国家经委和国 家建材局支持下,研究了含锆抗碱玻璃纤维和低碱水泥,并取得了 成功,其强度半衰期为100年,其耐久性处于国际领先地位。
.
4.3.2 玻璃纤维增强水泥基复合材料的原材料
(1)抗碱玻璃纤维
成分中的氧化锆(ZrO2)在碱液作用下,在纤维表面会转化 成含Zr(OH)4的胶状物,经脱水聚合在玻璃纤维表面形成保护膜, 减缓水泥中Ca(OH)2对玻璃纤维的侵蚀。
高性能纤维增强水泥基复合材料应用性能研究
高性能纤维增强水泥基复合材料应用性能研究随着我国基础工程的大规模兴建和城市化的高速推进,为解决大跨度、薄壁、高耐久、长寿命结构的实施,高性能水泥基复合材料的发展已是迫切急需一. 研究背景随着我国基础工程的大规模兴建和城市化的高速推进,为解决大跨度、薄壁、高耐久、长寿命结构的实施,高性能水泥基复合材料的发展已是迫切急需,为节省资源、节约能源、保护生态环境、优化材料性能,高性能水泥基复合材料走生态化与环保型已是社会可持续发展的重中之重。
研究生态型高性能水泥基复合材料是提高工程耐久性和服役寿命的重要举措,也是提高特种结构各种抗力的必由之路。
二. ECO-RPC(生态型活性粉末商品混凝土)力学行为研究RPC(Reactive Powder Concrete)活性粉末商品混凝土是90年代发展起来的新材料,其组成材料主要是水泥、超磨细石英粉和大掺量硅灰、高效减水剂,不用粗集料,细集料为磨细石英砂(粒径为0.6mm)。
其等级有RPC800、RPC400和RPC200。
由于其具有自流平优势、力学性能高、动态行为优异和超高耐久性,已是当今最活跃的可与金属媲美与高分子材料抗衡的跨世纪超高性能水泥基复合材料,而且RPC基体必须与纤维复合才能发挥其优势。
1.RPC存在的主要问题超细粉体材料价格昂贵、要经过超磨细而导致能耗大,国外微细金属纤维价格高,从而性价比低,不仅RPC800、RPC400难以在工程中推广应用,即使RPC200在工程中大规模应用也十分艰难。
基于RPC目前的问题中冶建研院致力于解决RPC造价较高,性价比过低的问题,采取的方式是采用活性矿物的掺合料,充分利用超细工业废渣自身各种物理与化学优势,取代更多水泥熟料,改善组成材料与微结构,优化纤维尺度与外形,优化养护方法与制度,充分发挥其高耐久性、长期服役寿命和高动态效应特点,提高性价比,扩大应用领域,在重大工程和特种制品中高效能利用其优势。
经过试验研究得出下表的材料基体ECO-RPC200优化后材料基体ECO-RPC200的制备工艺优选高效减水剂保证具有自流平(SCC)特征,保证有很强的流动性,满足商品混凝土的要求,采用自然养护方式(实验室用标准养护)替代常用的热养、蒸养,节省高温高压而造成能源消耗剧增。
高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势共3篇
高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势共3篇高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势1高延性纤维增强水泥基复合材料是一种新型的建筑材料,具有很好的耐久性和机械性能,可以应用于广泛的领域,如道路、桥梁、建筑和水利工程等。
本文将从微观力学设计、性能和发展趋势三个方面探讨该复合材料的最新研究进展。
一、微观力学设计高延性纤维增强水泥基复合材料的性能与微观结构密切相关。
为了设计出高性能的材料,需要对其微观结构进行优化。
最近几年,研究者在这方面取得了很多进展。
他们运用多种方法,如有限元分析、半解析法和多尺度方法等,对该复合材料的微观结构进行了建模和分析。
他们发现,纤维的排布和分布、纤维的形状和尺寸以及水泥基材料的组成和结构等因素都会对复合材料的性能产生重要影响。
一个恰当设计的微观结构可以提高该复合材料的强度、韧性和耐久性等性能。
二、性能高延性纤维增强水泥基复合材料具有众多优良性能,体现在以下几个方面。
1.高强度:该复合材料的强度远高于普通混凝土,具有较好的承载能力,适用于桥梁、隧道等大型工程。
2.高延性:该复合材料的延性比普通混凝土更好,能够抵御灾害因素的冲击,增加工程的安全性。
3.优异的耐久性:该复合材料中纤维的存在,能够有效提高其抗裂性和耐久性,使其在复杂环境中更为稳固。
4.良好的耐磨性:由于该复合材料内部含有高强度纤维,能够有效提高其强度,使其在耐久性上更胜一筹。
5.优秀的耐久性:该复合材料能够抵御较强的冲击力,避免出现应力等问题,长久维持良好的表现。
三、发展趋势随着科技的不断进步,高延性纤维增强水泥基复合材料还有很大的发展空间。
研究人员需要从以下几个方面进行深入研究。
1.探究微观结构优化:通过优化微观结构,进一步提高该复合材料的性能。
2.强度与韧性的平衡:进一步平衡复合材料的强度与韧性,使其适用于各种场所。
3.新型纤维材料的运用:运用新型纤维材料,如碳纤维等,进一步提高复合材料的机械性能。
纤维增强水泥基材料
能力以及抗冲击性能等与韧性有关的性能。
湖南工学院材化系
按其长度可分为非连续的短纤维和连续的长纤维。 目前用于配制纤维水泥基材料的纤维主要增强材料 是短纤维,使用较普遍的有钢纤维、玻璃纤维、聚
丙烯纤维和碳纤维。
湖南工学院材化系
4. 纤维选用原则
不论哪种纤维,作为水泥基复合材料的增强材料,其 必须遵循以下基本原则: (1)纤维的强度和弹性模量都要高于基体。 (2)纤维与基体之间要有一定的黏结强度,两者之间 的结合要保证基体所受的应力能通过界面传递给 纤维。 (3)纤维与基体的热膨胀系数比较接近,以保证两者 之间的黏结强度不会在热胀冷缩过程中被消弱。
湖南工学院材化系
碳纤维在水泥基材料中的应用:
邓家才等用压缩韧性指数衡量了碳纤维对水 泥基复合材料韧性的增强作用,发现碳纤维 水泥基复合材料的压缩韧性指数明显大于基 准水泥基复合材料(增加59%~110%),并 且随着碳纤维掺量的增加,变形能力和承载
能力增强。
湖南工学院材化系
近几年来,一些研究者利用碳纤维水泥基材料与 金属接触具有较低的电阻及良好的电磁屏效应的特 点,拟通过研究将碳纤维增强水泥基材料开发成某
水泥基复合材料的研究与发展
朱莉云
湖南工学院材化系
主要内容
复合材料 水泥基复合材料 水泥基复合材料的分类
定义
纤维的作用
纤维的分类
1.纤维增强水泥基复合材料
纤维的选用原则 纤维增强水泥基复合材料的主要研究方向 影响纤维增强效果的因素 纤维增强水泥基复合材料的成型工艺 纤维增强水泥基复合材料的应用
(1)对普通水泥改性:例如法国圣哥班公司在普通波特兰 水泥中同时掺加偏高岭土与丙烯酸酯乳液;德国海德堡水泥 公司使用高炉水泥(高炉矿渣粉含量在70%以上)并同时掺加偏 高岭土或其它材料。
纤维增强水泥基复合材料性能研究综述
纤维增强水泥基复合材料性能研究综述作者:王菲来源:《科学与技术》 2018年第5期摘要:水泥混凝土在工程建设中应用广泛;纤维材料的掺入提高了水泥基材料的抗拉、抗裂、韧性和变形性能。
本文主要介绍了纤维增强水泥基复合材料;尤其是PVA 纤维、混杂纤维物理力学性能研究。
关键字:纤维增强水泥基;PVA 纤维;混杂纤维引言水泥是当代建设中应用较为广泛、用量较多的建筑材料。
但在实际的工程应用中,传统的水泥基材料表现出来的抗拉强度低、脆性大、易开裂、变形能力差等特点,限制水泥应用与发展。
伴随着新材料技术发展,纤维增强水泥基复合材料的概念被提出,在近50 年来得到较快的发展。
通过加入纤维材料提高水泥的抗拉、抗裂、韧性以及变形性能。
目前,较为常用的纤维材料是:碳纤维、玻璃纤维、PVA 纤维等。
1 纤维增强水泥基复合材料性能研究水泥为脆性材料,将纤维材料加入水泥中,不仅改善了水泥的抗拉等力学性能,并且改变其发生的破坏形态,提高延性,纤维的不同特性使纤维增强水泥基复合材料的性能表现出差异。
董岩[2]对于碳纤维增强水泥基材料的研究中,在水灰比一定的条件下,纤维掺量为0.6%时,水泥抗压强度提高了27%,在劈拉试验中,纤维掺量为0.8%时,抗拉强度增强30%,碳纤维的较强的韧性一方面抑制了水泥基裂缝的发展。
在王炜文[3]对于不用纤维增强水泥基复合材料力学性能的试验研究中,对于PVA 纤维、碳纤维、玄武岩纤维、PP纤维增强水泥基复合材料进行四点弯曲试验,得到的各项力学指标中,掺入碳纤维、玄武岩纤维的水泥材料极限荷载为PVA 纤维材料的1.5 倍,但其挠度、裂缝特点等延性特点较差,PVA、PP 纤维增强水泥基复合材料的极限荷载较低,但在破坏中呈现出了多点开裂的现象,裂缝数量较少,其中,PVA 纤维的最大裂缝宽度相对较小。
高延性纤维增强水泥基复合材料(EngineeredCementitious Composite,ECC)最早是在20世纪90 年代,由密歇根大学的Li[4]教授提出的。
纤维水泥复合材料
纤维水泥复合材料
纤维水泥复合材料是一种由水泥、纤维和其他添加剂混合而成的新型建筑材料。
它具有优良的耐久性、抗拉强度和耐磨性,因此在建筑领域得到了广泛的应用。
本文将从材料特性、制备工艺和应用领域等方面对纤维水泥复合材料进行介绍。
首先,纤维水泥复合材料具有高强度和耐久性。
它采用纤维增强技术,使得材
料具有较高的抗拉强度和抗压强度,能够有效地抵抗外部力的作用,延长材料的使用寿命。
同时,纤维水泥复合材料还具有优异的耐磨性,能够在恶劣环境下长期使用而不受损坏。
其次,纤维水泥复合材料的制备工艺相对简单。
它采用水泥、纤维和添加剂等
原材料进行混合,通过挤压、模压或喷射等工艺形成成型,然后经过充分固化和养护,最终形成坚固耐用的建筑材料。
制备工艺简单可控,适用于工厂化生产,能够满足不同规格和形状的需求。
此外,纤维水泥复合材料在建筑领域有着广泛的应用。
它可以用于墙体、地面、屋顶等建筑构件的制作,也可以用于室内装饰、家具制作等领域。
由于其优良的性能和多样的形状,纤维水泥复合材料被广泛应用于高层建筑、地铁隧道、桥梁等工程中,为建筑行业的发展提供了重要支持。
总的来说,纤维水泥复合材料具有优良的性能和广泛的应用前景,是建筑领域
中一种非常有潜力的新型材料。
随着科技的不断进步和工艺的不断完善,相信纤维水泥复合材料将在未来得到更广泛的应用,并为建筑行业带来更多的发展机遇。
植物纤维增强水泥基复合材料面临的问题及相关改性研究现状
第43卷第2期2024年2月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.2February,2024植物纤维增强水泥基复合材料面临的问题及相关改性研究现状姜德民,徐浩东,康红龙,胡思宇(北方工业大学土木工程学院,北京㊀100144)摘要:作为一种新型绿色环保建筑材料,植物纤维增强水泥基复合材料受到了广大科研人员的青睐,但目前仍面临着众多问题㊂本文归纳总结了在植物纤维增强水泥基复合材料研究中的三大主要问题 植物纤维的高吸水率㊁植物纤维在水泥基复合材料中的劣化以及植物纤维对水泥基复合材料的阻凝作用,分析了造成这些问题的主要原因,列举了常见的改性方法并深入阐述了相应的改性机理及研究现状,最后展望了植物纤维增强水泥基复合材料的研究前景,以期为今后植物纤维资源化利用提供参考㊂关键词:水泥基复合材料;耐久性;植物纤维改性;力学性能;资源化中图分类号:TU528.572㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)02-0387-10Problems Faced by Plant Fiber Reinforced Cement-Based Composites and Research Status of Its Related ModificationJIANG Demin ,XU Haodong ,KANG Honglong ,HU Siyu(Faculty of Civil Engineering,North China University of Technology,Beijing 100144,China)Abstract :As a new type of green environmental protection building materials,plant fiber reinforced cement-based composites have been favored by many researchers,but there are still many problems.Three main problems in the study of plant fiber reinforced cement-based composites were summarized,namely,the high water absorption of plant fiber,the deterioration of plant fiber and the anticoagulation effect of plant fiber in cement-based composites.The main causes of these problems were analyzed.The common modification methods were listed and the corresponding modification mechanism and research status were described in detail.In the end,the research prospect of plant fiber reinforced cement-based composites was prospected,which provides reference for the resource utilization of plant fiber in the future.Key words :cement-based composite;durability;plant fiber modification;mechanical property;resource收稿日期:2023-09-21;修订日期:2023-11-20基金项目:北京市自然科学基金(2172021)作者简介:姜德民(1968 ),男,博士,教授㊂主要从事植物纤维保温混凝土的研究㊂E-mail:jdm2004@通信作者:徐浩东,硕士研究生㊂E-mail:1596186323@ 0㊀引㊀言水泥基材料是建筑行业的支柱型原材料,发展至今已经有200多年的历史,如今水泥行业的飞速发展造成的环境问题不容小觑㊂据统计[1],水泥生产㊁火力发电和冶金制造是我国三大大气污染主要来源,其中水泥生产所带来的污染占比最大,每生产1t 水泥将排放0.95t CO 2,整个水泥行业所排放的CO 2占全球总排放量的5%~8%[2]㊂因此,在建筑行业,环境友好的新型建材的研发越来越受到重视㊂纤维水泥制品是水泥制品行业的重要组成部分,纤维的加入能够提高水泥基材料的韧性㊁抗裂性以及耐久性等性能[3],纤维可分为天然纤维(棉纤维㊁麻纤维㊁毛纤维)和人造纤维(聚酯纤维㊁尼龙㊁钢纤维)[4]㊂植物纤维属于天然纤维,作为一种宝贵的可再生资源,植物纤维的应用前景广阔且潜力十足㊂有些植物纤维的抗拉强度要高于人造纤维(如聚丙烯纤维),毛竹纤维㊁洋麻纤维的单根抗拉强度甚至可达上千兆帕[5]㊂此388㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷外,在混凝土中添加植物纤维能在一定程度上抑制材料微裂缝的产生,使材料的抗渗㊁抗冻融性能增强,韧性得到提高[6]㊂近年来,不少科研人员都投入到植物纤维增强水泥基复合材料(plant fiber reinforced cement-based composite,PFRCC)的研究中㊂PFRCC 的研究意义在于:1)植物纤维复合材料有着一定的可降解性[7],将其应用在建筑材料上能够减轻建筑垃圾的回收处理负担;2)植物纤维有着优秀的抗拉性能,同时还是一种绿色可再生资源,其生产过程不会产生污染;3)在PFRCC 中加入植物纤维能够取代部分水泥,通过减少水泥的使用来减轻环境负担㊂但是从植物纤维的化学组成上来看,它并不适合直接添加到水泥基材料中㊂一方面,植物纤维中存在着大量羟基,与水泥进行拌和时,植物纤维会大量吸收自由水导致水灰比降低[8],影响材料的强度,甚至会导致混凝土内部缺陷增多[9]㊂另一方面,植物纤维会在碱性环境下发生降解行为,这大大损伤了植物纤维的物理机械性能[10]㊂另外,植物纤维中存在的半纤维素和木质素会在水溶液或碱性溶液中析出并发生水解,水解产物会阻碍水泥水化[11]㊂因此,如何更好地发挥植物纤维自身优势,提高植物纤维与水泥基材料的相容性,以及提高PFRCC 拌合物的和易性和硬化后的耐久性是推进植物纤维资源化利用的首要任务[12]㊂目前,大量研究[13-15]表明,对植物纤维进行改性处理可以有效提高PFRCC 的性能㊂常用的改性方法有碱处理㊁乙酰化处理㊁硅烷偶联剂处理㊁沸煮处理等方法,这些方法都是以提高植物纤维与水泥基材料之间的相容性㊁增强植物纤维抗碱性侵蚀能力等为目标㊂本文将从植物纤维基本的物理化学特性出发,详细阐述植物纤维在水泥基材料中的劣化机理以及针对植物纤维的不同改性方法,为今后植物纤维资源化利用提供参考㊂1㊀植物纤维的构造以及化学组成1.1㊀植物纤维的构造图1㊀植物纤维基本纤维束Fig.1㊀Plant fiber basic fiber bundle 一个单一的植物纤维是由多个(通常10~30个)基本纤维束通过胞间层的果胶物质连接构成,具体如图1所示[16],基本纤维束由外到内可分成三层:胞间层㊁初生壁㊁次生壁㊂最外层是胞间层,含有果胶㊁半纤维素和木质素;中间层是初生壁,含有纤维素和半纤维素;最内层是次生壁(包括S1㊁S2和S3),主要由纤维素构成[17],其中次生壁S2的厚度占整个细胞壁厚度的80%,对植物纤维的力学性能起主要作用[18]㊂图2和图3是植物纤维初生壁和次生壁的示意图[19]㊂初生壁很薄,厚度0.1~0.3μm,其纤维素的含量很低且较为分散,亲水性较强㊂次生壁是较厚并且完全分化的细胞壁,含有大量十分密集且相互平行的纤维素,纤维素不仅十分密集而且相互平行,为植物纤维突出的拉伸性能提供了有利条件[19]㊂图2㊀植物纤维初生壁示意图Fig.2㊀Schematic diagram of the primary wall of plantfiber 图3㊀植物纤维次生壁示意图Fig.3㊀Schematic diagram of the secondary wall of plant fiber㊀第2期姜德民等:植物纤维增强水泥基复合材料面临的问题及相关改性研究现状389 1.2㊀植物纤维的化学组成植物纤维的主要化学组成是纤维素㊁半纤维素和木质素,它们在不同种类的植物纤维中占比不同,也与植物生长所处的土壤和气候环境有关[20]㊂例如,椰壳纤维中纤维素含量约32%(文中均为质量分数),半纤维素含量约0.15%,木质素含量约40.45%[21]㊂而棉纤维纤维素的含量约85%(是椰壳纤维纤维素含量的2~3倍),半纤维含量约5.7%,木质素含量则极低[22]㊂纤维素是植物纤维中占比最多的成分㊂纤维素的化学分子式如图4[17]所示,它是由数千个葡萄糖分子组成的长链,含有44.4%的碳㊁6.2%的氢和49.4%的氧,相对半纤维素和木质素来说受碱和稀酸的影响较小[23]㊂植物纤维机械强度的高低与纤维素含量有关,也取决于纤维素微纤丝与纤维轴向的夹角(微原纤维角)[24]㊂图4㊀纤维素分子式Fig.4㊀Cellulose molecule半纤维素是植物纤维中第二大组成成分,化学分子式如图5[17]所示,它是由几种类型不同的单糖构成的异质多聚体㊂半纤维素有亲水性,吸水会润涨细胞壁,也可溶于碱性溶液并发生水解㊂半纤维素是充当纤维素微纤丝之间基质的物质[23],起到黏结并加强整体性的作用㊂图5㊀半纤维素分子式Fig.5㊀Hemicellulose molecule木质素的化学分子式如图6[17]所示,它是一类复杂的芳香烃聚合物,起到强化植物组织的作用㊂跟半纤维素类似,木质素也充当纤维内部和纤维之间的化学黏结剂㊂木质素不溶于水,可溶于碱性溶液并发生水解㊂图6㊀木质素分子式Fig.6㊀Lignin molecule2㊀PFRCC面临的问题2.1㊀植物纤维的高吸水率植物纤维的高吸水率及较差的尺寸稳定性对PFRCC的性能有负面影响㊂首先,在与水泥基材料拌和390㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷时,植物纤维会吸收大量水分并发生体积膨胀,在水泥水化后期时,伴随着植物纤维中水分的流失(部分被水泥基汲取参与水泥水化,部分蒸发[25]),纤维体积收缩,纤维-水泥基界面区产生应力,导致微裂缝出现,图7是Azwa等[26]对于上述行为的具体描述㊂当PFRCC暴露于潮湿环境中时,水分子渗透并附着在纤维亲水羟基上建立分子间氢键,这会使得纤维与水泥基界面黏结强度降低,复合材料中应力的传递被削弱[27]㊂图7㊀水对植物纤维-水泥基界面区的影响[26]Fig.7㊀Effect of water on plant fiber-cement base interface[26]造成植物纤维吸水率较高的主要原因是其分子结构中含有大量的羟基[28]㊂羟基是一种亲水基团,在纤维素㊁半纤维素的表面均含有不同数量的羟基㊂半纤维素(大部分是非晶态)的羟基含量最高,一般来说植物纤维中半纤维素含量越多,吸附水分子的能力越强[29]㊂对于纤维素,位于结晶部分(主要在微纤维的核心)的羟基被认为不参与吸附水分子,而存在于纤维素非晶态区表面的羟基能够与水分子发生相互作用[30]㊂值得注意的是,科研人员也发现了植物纤维高吸水率对复合材料内养护方面的积极影响㊂Jongvisuttisun 等[31]在关于植物纤维自养护的研究中发现,夹带在植物纤维管腔中的自由水很容易被周围的水泥基体吸收,当水化反应超过25h后,植物纤维细胞壁小孔隙中的自由水和部分结合水能够迁移出来并减缓水泥基体的自收缩㊂2.2㊀植物纤维在水泥基碱性环境下的水解与矿化植物纤维在碱性环境中会发生碱性水解,相比于纤维素,半纤维素和木质素这类非晶态组分更容易在碱性溶液中发生水解[32]㊂Toledo等[33]总结了植物纤维在水泥基中的碱性水解过程,如图8所示㊂在初始状态下的植物纤维中,纤维素微纤维被半纤维素和木质素包裹在一起形成一个整体㊂在碱性孔隙溶液的侵蚀下,木质素最先发生分解,部分半纤维素也被分解㊂随着侵蚀程度的加深,半纤维素发生分解,植物纤维细胞壁的完整性被破坏,最后随着纤维素微纤维发生脱落和断裂,纤维素最终被分解,植物纤维完全劣化㊂除了碱性水解,植物纤维在水泥基中还会有纤维矿化的情况发生㊂纤维矿化被定义为:在水泥水化过程中,Ca2+㊁Mg2+㊁Al3+和Si4-等离子对植物纤维细胞壁和开放孔隙的浸渍行为[34],或者说植物纤维的矿化是水泥水化产物(尤其是氢氧化钙)迁移沉淀到纤维的胞间层以及管腔等组织中导致纤维韧性降低的一种劣㊀第2期姜德民等:植物纤维增强水泥基复合材料面临的问题及相关改性研究现状391化形式㊂植物纤维复合材料的脆化主要与纤维矿化有关[18]㊂图8㊀植物纤维的碱性水解过程[33]Fig.8㊀Alkaline hydrolysis process of plant fibers[33]2.3㊀植物纤维延缓水泥凝结植物纤维的添加也会影响PFRCC中水泥的水化与凝结㊂植物纤维中的纤维素是一种多糖,在水泥基碱性环境下分解成葡萄糖㊂葡萄糖在碱性环境下生成酸,与水泥水化产生的OH-发生中和反应,由此产生的盐会附着在熟料和水化产物表面,延缓水泥水化反应的进行[35]㊂同样,半纤维素和木质素在水泥基碱性环境中的水解产物也对水泥水化有阻碍作用[6]㊂Sedan等[36]研究了麻纤维的掺入对水泥凝结时间的影响,通过扫描电子显微镜和能量色散X射线光谱分析发现纤维表面果胶的存在会导致纤维周围存在较多的Ca2+,这也是导致水泥凝结缓慢的原因之一㊂另外,对于PFRCC凝结时间的测定,纤维的存在会阻碍维卡仪探针的插入,因此需要一种无损的精确方法来测定其凝结时间㊂Choi等[37]通过超声脉冲波来分析PFRCC的凝结时间,其试验结果表明植物纤维延缓了水泥水化,并且纤维含量越高,水化延迟越长,这样的测试结果是符合预期的㊂3㊀植物纤维的改性方法3.1㊀角质化处理植物纤维角质化是指不可逆地从纤维细胞壁中去除水分的机制[25],可以通过对其进行多次干湿循环完成[7]㊂当浸泡在水中的植物纤维达到吸水饱和后,将其放置在中等温度(60~80ħ)[38]的烘干箱内进行干燥,这时纤维的多糖纤维素链发生重排,其中纤维素微纤维由于水分的流失而彼此靠近,相互之间形成不可逆或部分不可逆的氢键,其中大多数氢键不会再重新打开㊂持续的干湿循环也会使得植物纤维管腔会发生坍塌,细胞壁层状结构中的大部分毛细孔会关闭,植物纤维结构将变得更加密实[39]㊂Claramunt等[40]对针叶木纤维和棉绒纤维进行了角质化处理,并证明了角质化过程会使这些纤维(尤其是针叶木纤维)的保水性大幅下降,尺寸稳定性提高,纤维-基体界面强度也得到了提高㊂Ferreira等[41]通过拉拔试验评价了植物纤维角质化处理对基体附着力的影响,从得到的力与滑移曲线中发现,复合材料经过加速老化后,处理过的纤维与基体的最大黏结应力和摩擦应力分别提高了40%和50%㊂3.2㊀热液处理热液处理最早应用于木材的改性,一般可分为超临界水处理㊁亚临界水处理和环境液态水处理三类,这些方法的主要区别在于处理过程中施加的温度不同[42]㊂热液处理通过对植物纤维高温沸煮来提取纤维中的可溶性糖分,这类组分是延缓水泥凝结的主要原因㊂热液处理还能够将纤维的亲水 OH基转化为疏水基团来提高纤维的尺寸稳定性,但是随着处理时间和处理温度的提高,纤维的吸水率会变高[43]㊂Sellami等[44]为了克服植物纤维与水泥基材之间相容性较差的问题,采用热液处理对纤维进行改性,通过SEM观察发现,沸煮4h后的纤维部分表面组分消失,这说明热液处理能够溶解纤维表面的可溶性物质㊂经过热液处理后,虽然纤维表面的一些物质(木质素㊁蜡㊁油脂)被去除,但是纤维表面结构没有明显变化且纤维的抗拉强度和弹性模量均有增加[45]㊂392㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷3.3㊀碱处理碱处理(采用NaOH溶液浸泡处理)是最常用于处理植物纤维的方法之一㊂植物纤维表面的蜡㊁果胶以及半纤维素和木质素对碱性溶液敏感,通过碱处理可以去除这些物质[46]㊂碱处理后的植物纤维表面变得粗糙,纤维直径变小带来的纵横比(长/直径)增加使得纤维的有效表面积增大,利于与基体的黏结[47]㊂碱处理去除了植物纤维中部分无定形区(半纤维素和木质素),提高了纤维的结晶度和抗拉强度[48]㊂但是碱处理浓度过大或者处理时间过长会破坏植物纤维的纤维素结构,导致纤维强度下降[49]㊂图9㊀不同浓度NaOH溶液处理后的植物纤维的SEM照片[50]Fig.9㊀SEM images of plant fibers treated with different concentrations of NaOH solution[50]De-Souza等[50]在碱处理对剑麻纤维性能影响的研究中重点关注了碱浓度变化对纤维的影响㊂不同浓度NaOH溶液处理后的植物纤维的SEM照片如图9所示,随着碱浓度的提高,纤维表面变得越来越粗糙㊂第2期姜德民等:植物纤维增强水泥基复合材料面临的问题及相关改性研究现状393㊀与未改性纤维相比,碱处理后的纤维抗拉强度和弹性模量分别提高了42%和237%,且抗拉强度随着碱浓度提高而提高,碱浓度为10%时抗拉强度下降,但仍高于未改性纤维㊂3.4㊀乙酰化处理植物纤维的亲水性主要由纤维内富含的羟基所决定㊂利用乙酰基与植物纤维的亲水性羟基发生酯化反应,可以降低植物纤维的亲水性[51]㊂植物纤维经过乙酰化后,疏水性增强的同时尺寸稳定性也得到了改善㊂由于植物纤维细胞壁的结构致密,酯化剂很难与内部羟基充分接触发生取代反应,可以先采用碱处理法对纤维进行预处理[7]㊂Zaman 等[52]在香蕉束纤维/聚合物的研究中发现碱处理和乙酰化相结合的处理方式能够有效降低纤维的吸水率,对比未改性纤维,改性后的纤维吸水率降低了42%㊂Bledzki 等[53]发现亚麻纤维经过乙酰化后纤维表面变得更加光滑并能观察到细小微纤维的出现,随着乙酰化程度越高,纤维的损伤和开裂也越明显㊂Oladele 等[54]的研究表明植物纤维经过乙酰化处理后抗拉强度提高,但是当乙酰化处理浓度超过4%时,纤维的抗拉强度发生了下降㊂所以对于PFRCC 来说,对纤维进行一定程度的乙酰化处理能够提高复合材料的抗压㊁抗折强度[55-56]㊂3.5㊀硅烷偶联剂处理硅烷作为公认的高效偶联剂已经被广泛应用于复合材料和黏合剂的配方中[57]㊂硅烷分子具有双官能团,可以分别与两相发生反应,因此它们能很好地耦合植物纤维与水泥基材,并在它们之间架起桥梁[58]㊂但是植物纤维中的羟基具有非常低的可及性,与许多化学物质不发生反应㊂在对纤维进行改性处理时,需要先将硅烷放入调节至弱酸性(pH =4~5)的水与乙醇的混合溶液[59]中进行水解以产生更活泼的硅醇基[60],然后再将纤维放入混合溶液中使纤维的羟基与硅醇基发生反应来达到改性目的㊂Koohestani 等[61]指出适合对图10㊀98%硅烷偶联剂喷涂植物纤维的SEM 照片[62]Fig.10㊀SEM images of plant fiber sprayed with 98%silane coupling agent [62]植物纤维改性的硅烷偶联剂用量在1%~5%(占纤维质量),硅烷偶联剂的水解时间㊁硅烷水解溶液的温度和pH 值以及硅烷偶联剂自身的化学性质是影响硅烷处理效果的主要因素㊂硅烷偶联剂也可以直接进行喷涂处理㊂Ban等[62]在对竹纤维改性时,在没有进行硅烷水解的情况下直接将98%(质量分数)的硅烷偶联剂喷涂到纤维上,纤维的SEM 照片如图10所示,所制备的复合材料的拉伸㊁抗压性能相比于未改性对照组均得到提升,但是纤维的吸水率升高,分析原因可能是过量的硅烷与水发生了水解反应㊂4㊀结语与展望1)植物纤维中存在着大量羟基,具有较强的亲水性,这种强吸水性能够导致复合材料发生劣化,影响纤维与水泥基界面的黏结强度㊂2)在水泥基碱性环境下,植物纤维的主要成分纤维素㊁半纤维素和木质素容易发生水解导致纤维发生劣化㊂植物纤维在水泥基碱性环境下还会发生矿化的现象,导致复合材料的脆化㊂3)植物纤维在水泥基碱性环境下的水解产物会阻碍水泥凝结,植物纤维含量越高水泥水化延长越久㊂4)对纤维进行改性处理能够提高复合材料的性能,常用的改性方法有角质化处理㊁热液处理㊁碱处理㊁乙酰化处理和硅烷偶联剂处理㊂5)不同的改性处理对纤维起到的作用不同,总体来说改性处理能够提高纤维密实程度㊁增加纤维表面粗糙度㊁提取纤维中的阻凝成分㊁降低纤维吸水率以及增强纤维与基体界面的黏结等㊂6)目前对于植物纤维的改性主要是使用单一的方法进行改性,采用多种方法复合改性处理的研究较少㊂从改性机理上看,各改性方法侧重的改性作用不同,研究不同改性方法间的协同作用是进一步提高植物纤维性能的关键㊂7)鉴于实际建设工程中环境的复杂性,针对特殊环境下的PFRCC 的研究也应该得到重视以适应更广泛394㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷的施工要求㊂参考文献[1]㊀饶德梅.不同烧成温度和时间对水泥熟料矿物相组成的影响[D].绵阳:西南科技大学,2023.RAO D M.Effect of different sintering temperature and time on mineral phase composition of cement clinker[D].Mianyang:Southwest University of Science and Technology,2023(in Chinese).[2]㊀宋丁豹,蒲诃夫,胡海蓝,等.水平排水板真空预压-碱激发矿渣固化联合法处理高含水率淤泥的试验研究[J/OL].岩石力学与工程学报:1-11[2023-08-31].https:///10.13722/ki.jrme.2023.0040.SONG D B,PU K F,HU H L,et al.Experimental investigation on prefabricated horizontal drain-based vacuum preloading-alkali-activated GGBS solidification combined method for treatment of high-water-content mud slurry[J/OL].Chinese Journal of Rock Mechanics and Engineering:1-11 [2023-08-31]./10.13722/ki.jrme.2023.0044(in Chinese).[3]㊀李东升,吴国立,冯思超.纤维增强水泥基复合材料力学性能的研究进展[J].河南科技,2023,42(2):89-92.LI D S,WU G L,FENG S C.Research progress on mechanical properties of fiber reinforced cement-based composites[J].Henan Science and Technology,2023,42(2):89-92(in Chinese).[4]㊀TIAN H,ZHANG Y X.The influence of bagasse fibre and fly ash on the long-term properties of green cementitious composites[J].Constructionand Building Materials,2016,111:237-250.[5]㊀曹双平,王㊀戈,余㊀雁,等.几种植物单根纤维力学性能对比[J].南京林业大学学报(自然科学版),2010,34(5):87-90.CAO S P,WANG G,YU Y,et parison of mechanical properties of different single vegetable fibers[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2010,34(5):87-90(in Chinese).[6]㊀杨㊀玲.改性稻草秸秆水泥基复合材料的性能研究[D].武汉:武汉轻工大学,2020.YANG L.Study on properties of modified rice straw cement-based composites[D].Wuhan:Wuhan Polytechnic University,2020(in Chinese).[7]㊀PRAVEENA B A,BURADI A,SANTHOSH N,et al.Study on characterization of mechanical,thermal properties,machinability andbiodegradability of natural fiber reinforced polymer composites and its applications,recent developments and future potentials:a comprehensive review[J].Materials Today:Proceedings,2022,52:1255-1259.[8]㊀房㊀新.乙酰化稻草的制备及其力学性能研究[D].沈阳:东北大学,2010.FANG X.Preparation and mechanical properties of acetylated rice straw[D].Shenyang:Northeastern University,2010(in Chinese). [9]㊀JIANG D M,AN P H,CUI S P,et al.Effect of modification methods of wheat straw fibers on water absorbency and mechanical properties ofwheat straw fiber cement-based composites[J].Advances in Materials Science and Engineering,2020,2020:1-14.[10]㊀CAMARGO M,ADEFRS T E,ROETHER J,et al.A review on natural fiber-reinforced geopolymer and cement-based composites[J].Materials,2020,13(20):4603.[11]㊀姜㊀欢.稻草纤维生产水泥基泡沫保温墙体材料的研究[D].大连:大连理工大学,2008.JIANG H.Study on the production of cement-based foam thermal insulation wall material with straw fiber[D].Dalian:Dalian University of Technology,2008(in Chinese).[12]㊀杨政险,李㊀慷,张㊀勇,等.天然植物纤维预处理方法对水泥基复合材料性能的影响研究进展[J].硅酸盐学报,2022,50(2):522-532.YANG Z X,LI K,ZHANG Y,et al.Effect of pretreatment method of natural plant fibers on properties of cement-based materials-a short review[J].Journal of the Chinese Ceramic Society,2022,50(2):522-532(in Chinese).[13]㊀ALI-BOUCETTA T,AYAT A,LAIFA W,et al.Treatment of date palm fibres mesh:influence on the rheological and mechanical properties offibre-cement composites[J].Construction and Building Materials,2021,273:121056.[14]㊀ROCHA D L,AZEVEDO A R G,MARVILA M T,et al.Influence of different methods of treating natural açai fibre for mortar in ruralconstruction[J].2021.[15]㊀PAGE J,KHADRAOUI F,GOMINA M,et al.Influence of different surface treatments on the water absorption capacity of flax fibres:rheologyof fresh reinforced-mortars and mechanical properties in the hardened state[J].Construction and Building Materials,2019,199:424-434.[16]㊀CHOKSHI S,PARMAR V,GOHIL P,et al.Chemical composition and mechanical properties of natural fibers[J].Journal of Natural Fibers,2022,19(10):3942-3953.[17]㊀WEI J Q,MEYER C.Degradation mechanisms of natural fiber in the matrix of cement composites[J].Cement and Concrete Research,2015,73:1-16.[18]㊀TOLÊDO F R D,SCRIVENER K,ENGLAND G L,et al.Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites[J].Cement and Concrete Composites,2000,22(2):127-143.[19]㊀BURGERT I,KEPLINGER T.Plant micro-and nanomechanics:experimental techniques for plant cell-wall analysis[J].Journal of ExperimentalBotany,2013,64(15):4635-4649.[20]㊀BAKAR N,CHIN S C,SIREGAR J P,et al.A review on physical,mechanical,thermal properties and chemical composition of plant fibers[J].㊀第2期姜德民等:植物纤维增强水泥基复合材料面临的问题及相关改性研究现状395 IOP Conference Series:Materials Science and Engineering,2020,736(5):052017.[21]㊀ABU G M,ABDELRASOUL pressive and fracture toughness of natural and synthetic fiber-reinforced polymer[M]//Mechanical andPhysical Testing of Biocomposites,Fibre-Reinforced Composites and Hybrid Composites.Amsterdam:Elsevier,2019:123-140. [22]㊀YE Z L,BERSON R E.Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes[J].Bioresource Technology,2014,167:582-586.[23]㊀DJAFARI P S R.Physical and mechanical properties of natural fibers[M]//Advanced High Strength Natural Fibre Composites in Construction.Amsterdam:Elsevier,2017:59-83.[24]㊀MWAIKAMBO L Y,ANSELL M P.Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials II.Sisalfibres[J].Journal of Materials Science,2006,41(8):2497-2508.[25]㊀DRIDI M,HACHEMI S,BELKADI A A.Influence of styrene-butadiene rubber and pretreated hemp fibers on the properties of cement-basedrepair mortars[J].European Journal of Environmental and Civil Engineering,2023,27(1):538-557.[26]㊀AZWA Z N,YOUSIF B F,MANALO A C,et al.A review on the degradability of polymeric composites based on natural fibres[J].Materials&Design,2013,47:424-442.[27]㊀ZHOU J W,LIN S T,ZENG H X,et al.Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction inhydrogels[J].Materials Horizons,2020,7(11):2936-2943.[28]㊀MOHAMMED M,JAWAD A J M,MOHAMMED A M,et al.Challenges and advancement in water absorption of natural fiber-reinforced polymercomposites[J].Polymer Testing,2023,124:108083.[29]㊀METHACANON P,WEERAWATSOPHON U,SUMRANSIN N,et al.Properties and potential application of the selected natural fibers as limitedlife geotextiles[J].Carbohydrate Polymers,2010,82(4):1090-1096.[30]㊀ETALE A,ONYIANTA A J,TURNER S R,et al.Cellulose:a review of water interactions,applications in composites,and water treatment[J].Chemical Reviews,2023,123(5):2016-2048.[31]㊀JONGVISUTTISUN P,LEISEN J,KURTIS K E.Key mechanisms controlling internal curing performance of natural fibers[J].Cement andConcrete Research,2018,107:206-220.[32]㊀BUI H,LEVACHER D,BOUTOUIL M,et al.Effects of wetting and drying cycles on microstructure change and mechanical properties of coconutfibre-reinforced mortar[J].Journal of Composites Science,2022,6(4):102.[33]㊀TOLEDO F R D,DE-ANDRADE S F,FAIRBAIRN E M R,et al.Durability of compression molded sisal fiber reinforced mortar laminates[J].Construction and Building Materials,2009,23(6):2409-2420.[34]㊀JOHN V M,CINCOTTO M A,SJÖSTRÖM C,et al.Durability of slag mortar reinforced with coconut fibre[J].Cement and ConcreteComposites,2005,27(5):565-574.[35]㊀CHOI Y C.Hydration and internal curing properties of plant-based natural fiber-reinforced cement composites[J].Case Studies in ConstructionMaterials,2022,17:e01690.[36]㊀SEDAN D,PAGNOUX C,SMITH A,et al.Mechanical properties of hemp fibre reinforced cement:influence of the fibre/matrix interaction[J].Journal of the European Ceramic Society,2008,28(1):183-192.[37]㊀CHOI H,CHOI Y C.Setting characteristics of natural cellulose fiber reinforced cement composite[J].Construction and Building Materials,2021,271:121910.[38]㊀CLARAMUNT J,ARDANUY M,GARCÍA H J A.Effect of drying and rewetting cycles on the structure and physicochemical characteristics ofsoftwood fibres for reinforcement of cementitious composites[J].Carbohydrate Polymers,2010,79(1):200-205.[39]㊀ARIVENDAN A,JAPPES W,IRULAPASAMY S,et al.Extraction and characterization of natural aquatic plant fiber,powder and ash from waterhyacinth(eichhornia crassipes)as reinforcement of fiber,powder,and ash reinforced polymer composite[J].Journal of Natural Fibers,2022, 19(14):9589-9599.[40]㊀CLARAMUNT J,ARDANUY M,GARCÍA H J A,et al.The hornification of vegetable fibers to improve the durability of cement mortarcomposites[J].Cement and Concrete Composites,2011,33(5):586-595.[41]㊀FERREIRA S R,LIMA P R L,SILVA F A,et al.Effect of sisal fiber hornification on the fiber-matrix bonding characteristics and bendingbehavior of cement based composites[J].Key Engineering Materials,2014,600:421-432.[42]㊀ALI M R,ABDULLAH U H,ASHAARI Z,et al.Hydrothermal modification of wood:a review[J].Polymers,2021,13(16):2612.[43]㊀REZAYATI C P,MOHAMMADI R J,Mohebi B,et al.Influence of hydrothermal treatment on the dimensional stability of beech wood[J].2007,2:125-131.[44]㊀SELLAMI A,MERZOUD M,AMZIANE S.Improvement of mechanical properties of green concrete by treatment of the vegetals fibers[J].Construction and Building Materials,2013,47:1117-1124.[45]㊀NORUL I M A,PARIDAH M T,ANWAR U M K,et al.Effects of fiber treatment on morphology,tensile and thermogravimetric analysis of oilpalm empty fruit bunches fibers[J].Composites Part B:Engineering,2013,45(1):1251-1257.[46]㊀KABIR M M,WANG H,LAU K T,et al.Chemical treatments on plant-based natural fibre reinforced polymer composites:an overview[J].。
水泥基复合材料的应用与研究
水泥基复合材料的应用与研究一、前言水泥基复合材料是指以水泥、矿物掺合料和一定比例的纤维等材料为基础,加入适量的添加剂,通过混合、浇注、压制等工艺形成的一种综合性材料。
它具有高强度、耐磨、耐腐蚀、防火等优良性能,同时还具有良好的耐久性和可持续性,因此在工程建设领域得到了广泛的应用。
二、水泥基复合材料的种类1.纤维增强水泥基复合材料纤维增强水泥基复合材料是指在水泥基材料中加入纤维,使其具有更好的抗拉强度和韧性,常见的纤维有玻璃纤维、碳纤维、钢纤维等。
这种材料广泛应用于建筑、桥梁、路面等工程领域。
2.高性能混凝土高性能混凝土是指在水泥基材料中加入微粉、氧化硅等掺合料,以及控制水灰比等技术手段,使其具有更高的强度、耐久性和抗渗性。
这种材料广泛应用于高层建筑、大型桥梁、隧道等工程领域。
3.自密实混凝土自密实混凝土是指在水泥基材料中加入一定比例的特殊掺合料和添加剂,通过控制水泥胶凝体的形成,使其具有自密实的性能,从而提高了材料的耐久性和抗渗性。
这种材料广泛应用于水利水电、海洋工程等领域。
4.轻质水泥基复合材料轻质水泥基复合材料是指在水泥基材料中加入一定比例的轻质骨料,使其具有更轻的重量和更好的保温性能,常见的轻质骨料有珍珠岩、膨胀珍珠岩、膨胀粘土等。
这种材料广泛应用于建筑、隧道、地道等领域。
三、水泥基复合材料的应用1.建筑领域水泥基复合材料在建筑领域的应用非常广泛,主要包括建筑结构、外墙保温、地面修补等方面。
例如,在建筑结构中,水泥基复合材料可以用于加固和修补混凝土结构,提高其承载能力和抗震性能;在外墙保温中,水泥基复合材料可以用于制作外墙保温板,达到节能减排的效果;在地面修补中,水泥基复合材料可以用于修复地面裂缝和磨损部位,提高地面的使用寿命。
2.交通运输领域水泥基复合材料在交通运输领域的应用也非常广泛,主要包括桥梁、隧道、地铁等方面。
例如,在桥梁中,水泥基复合材料可以用于加固和修补桥梁结构,提高其承载能力和抗震性能;在隧道中,水泥基复合材料可以用于修补和加固隧道结构,提高其使用寿命和安全性;在地铁中,水泥基复合材料可以用于修补和加固地铁隧道结构,提高其使用寿命和安全性。
纤维增强水泥基复合材料
纤维增强型水泥基复合材料一、纤维增强型水泥基复合材料的概述纤维增强型水泥基复合材料是以水泥与水发生水化、硬化后形成的硬化水泥浆体作为基体,以不连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。
普通混凝土是脆性材料,在受荷载之前内部已有大量微观裂缝,在不断增加的外力作用下,这些微裂缝会逐渐扩展,并最终形成宏观裂缝,导致材料破坏。
加入适量的纤维之后,纤维对微裂缝的扩展起阻止和抑制作用,因而使复合材料的抗拉与抗折强度以及断裂能较未增强的水泥基体有明显的提高。
二、纤维增强型水泥基复合材料的力学性能在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。
• 2.1 抗拉强度•在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材料的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。
• 2.2 抗裂性在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生;在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。
• 2.3 抗渗性纤维作为增强材料,可以有效控制水泥基复合材料的早期干缩微裂以及离析裂纹的产生及发展,减少材料的收缩裂缝尤其是连通裂缝的产生。
另外,纤维起了承托骨料的作用,降低了材料表面的析水现象与集料的离析,有效地降低了材料中的孔隙率,避免了连通毛细孔的形成,提高了水泥基复合材料的抗渗性。
2.4 抗冲击及抗变形性能在纤维增强水泥基复合材料受拉(弯)时,即使基体中已出现大量的分散裂缝,由于增强纤维的存在,基体仍可承受一定的外荷并具有假延性,从而使材料的韧性与抗冲击性得以明显提高。
纤维增强水泥基复合材料的性能试验研究
纤维增强水泥基复合材料的性能试验研究摘要:最冷月平均温度≤-10℃或日平均温度≤5℃的天数≥145d的严寒地区在我国分布较广,这些寒冷地区的建筑施工问题一直是亟待解决的技术难题,这主要是因为目前国内建筑体系多采用混凝土结构,而寒冷环境下的混凝土施工需要克服混凝土缓凝以及冻胀破坏等问题,这些问题的存在给严寒地区的混凝土的材质和施工工艺提出了更高的要求。
目前,碳纤维增强水泥基复合材料在混凝土建筑结构中应用较为广泛,而这种复合材料在严寒地区的冻融循环作用下的性能变化规律仍不完全清楚。
本文采用干压成型法制备了碳纤维增强水泥基复合材料,研究了不同冻融循环次数下水泥基复合材料的显微形貌、孔隙率、抗压强度和热电性能,该试验成果已初步探明水泥基复合材料冻融循环作用对其性能影响的变化规律,并将利用这些变化规律解决严寒地区施工技术难题。
关键词:纤维增强水泥基;复合材料;性能试验;措施1纤维水泥基复合材料的相关概念1.1纤维水泥基复合材料纤维水泥基复合材料就是指以水泥砂浆、水泥浆或混凝土为粘结剂,以间歇短纤维或连续长纤维为增强材料的水泥基复合材料。
在水泥砂浆中加进去一定量的纤维不仅能够提升混凝土的刚度和韧性,同时对于水泥基复合材料的抗拉强度、抗弯强度和韧性也有一定的帮助,此外还能够有效抑制裂纹扩展,提高非成形材料的流动性,是改善其性能的最有效途径。
1.2纤维掺入水泥基复合材料的作用将纤维掺入水泥基复合材料具备以下三种作用:1.能够有效地增加水泥的基体的应力,促使水泥基体可以承受更大的外部压力。
2.在一定程度上能够对水泥基体韧性和冲击强度有所帮助,纤维基质的改善比水泥基体韧性的改善效果更加明显。
3.它可以有效地阻止裂纹的扩展或改变裂纹的方向,减小裂纹的宽度和平均裂缝面积。
1.3碳纤维水泥基复合材料碳纤维水泥基复合材料是将碳纤维材料合金化成水泥基复合材料而制成的复合材料,具有抗裂、耐腐蚀、抗静电、耐磨、重量轻等优点。
碳纤维材料对水泥基复合材料的改善主要是由于其优异的力学性能和两种材料的协同作用,以提高其整体力学性能。
水泥基复合材料的性能研究与应用
水泥基复合材料的性能研究与应用水泥是一种常见的建筑材料,但单纯的水泥材料在力学性能和耐久性方面有一定的限制。
水泥基复合材料则通过与其他材料的复合,实现了优异的性能提升和更广泛的应用范围。
本文将从水泥基复合材料的来源、结构、性能和应用等方面进行探讨。
一、来源和分类水泥基复合材料是指水泥作为基础材料,与其他材料进行复合而成的材料。
常见的复合材料有纤维增强水泥基复合材料、矿物质增强水泥基复合材料和高性能混凝土等。
其中,纤维增强水泥基复合材料是最常见的形式。
纤维增强水泥基复合材料(FRC)是以水泥为基础材料,加入高强度、高模量的玻璃纤维、碳纤维等纤维增强材料组成的复合材料。
根据纤维长度,FRC又可分为短纤维FRC和长纤维FRC两类。
短纤维FRC一般采用纤维长度小于25mm的纤维,常用于钢筋混凝土结构界面处理、自修复材料等领域;而长纤维FRC则采用长度大于25mm的纤维,具有很高的拉伸、屈服和断裂韧性,广泛应用于隧道、桥梁、航道、机场跑道等重载交通设施。
二、结构和性能FRC的主要结构包括水泥基体、纤维及其界面结合层。
其中,水泥基体主要是水泥、砂和粉煤灰等混合材料,其作用是提供FRC的黏结、凝固和硬化功能;纤维则承担FRC的拉伸、扭转、剪切和挤压等力学功能;界面结合层则承担着水泥基体和纤维之间的结合作用。
FRC的主要性能包括拉伸、屈服和断裂韧性,抗压、抗弯等力学性能、耐久性能、自修复性能等。
其中,拉伸、断裂韧性和自修复性能是FRC相较于传统材料的优势所在。
拉伸和断裂韧性是指FRC在受到拉伸应力作用时,材料仍能够保持良好的强度和变形能力,具有延缓裂纹扩散、促进材料自修复的作用;自修复性能是指FRC受到部分损伤后,具有继续自我修复的能力。
这些性能使得FRC在开发高强度和高韧性的建筑材料方面起到了重要作用。
三、应用FRC已经被广泛应用在建筑工程、交通工程、水利工程、航空航天等领域,成为建筑材料中的“新宠”。
在建筑工程中,FRC可用于隔墙板、楼梯、地面等构件的制造,并可加入相应的颜料、黏合剂、填充料等,用于墙面装饰、地面美化等。
浅谈纤维增强水泥基复合材料
浅谈纤维增强水泥基复合材料(卢静娴)一、什么是纤维增强水泥基复合材料?纤维增强水泥基复合材料是由水泥净浆、砂浆或水泥混凝土作基材,以非连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。
纤维在其中起着阻止水泥基体中微裂缝的扩展和跨越裂缝承受拉应力的作用,因而使复合材料的抗抗折强度以及断裂能较未增强的水泥基体有明显的提高。
二、纤维增强水泥基复合材料有哪些特质?(主要指力学性能)纤维增强水泥基复合材料具有抗裂、大延性、高韧性、抗冲击、抗渗、抗剪、耐高温、耐腐蚀、良好的化学稳定性和优越的能量吸收能力,在减小混凝土裂缝、提高混凝土耐久性、改善混凝土脆性破坏、电学性能等方面都起了重要作用。
在纤维增强水泥基复合材料中,纤维的主要作用在于阻止微裂缝的扩展,具体表现在提高复合材料的抗拉、抗裂、抗渗及抗冲击、抗冻性等。
1.抗拉强度内部缺陷是水泥基复合材料破坏的主要因素,任意分布的短切纤维在复合材料硬化过程中改变了其内部结构,减少了内部缺陷,提高了材料的连续性。
在水泥基复合材料受力过程中纤维与基体共同受力变形,纤维的牵连作用使基体裂而不断并能进一步承受载荷,可使水泥基材的抗拉强度得到充分保证;当所用纤维的力学性能、几何尺寸与掺量等合适时,可使复合材料的抗拉强度有明显的提高。
在水泥基复合材料新拌的初期,增强纤维就能构成一种网状承托体系,产生有效的二级加强效果,从而有效的减少材料的内分层和毛细腔的产生;在硬化过程中,当基体内出现第一条隐微裂缝并进一步发展时,如果纤维的拉出抵抗力大于出现第一条裂缝时的荷载,则纤维能承受更大的荷载,纤维的存在就阻止了隐微裂缝发展成宏观裂缝的可能。
宏观上看,当基体材料受到应力作用产生微裂缝后,纤维能够承担因基体开裂转移给它的应力,基体收缩产生的能量被高强度、低弹性模量的纤维所吸收,有效增加了材料的韧性,提高了其初裂强度、延迟了裂缝的产生,同时,纤维的乱向分布还有助于减弱水泥基复合材料的塑性收缩及冷冻时的张力。
纤维增强水泥基复合材料
砂浆和玻璃纤维同时往模具上喷射的机理与直接喷射法相同。但它是 把坡璃纤维增强水泥喷射到一个带有减压装置的开孔台上,开孔台铺 有滤布。喷射完后,进行减压,通过滤纸或滤布,把玻璃纤维增强水 泥中的剩余水分脱掉。这种方法是成型水灰比低的高强度板状玻璃纤 维增强水泥的方法。 用喷射脱水法成型的刚脱水的未养护的板具有保持某种程度形状的能 力,因此,加上成型模具,可以进行弯曲加工等两次成型。 用喷射脱水法制作的制品,比直接喷射制品强度高,但制品形状仅限 于以板状或异形断面等的弯曲加工制造。喷射—脱水过程可通过机械 化很容易进行连续操作。
预混料注入到模具里后, 加压除去剩余水分,及 时脱模.可以提高生产 率,并能获得良好的表 面尺寸精度。这种方法 的要点是在加压时,根 据玻璃纤维增强水泥预 混料的配比来选定流动 性和剩余水的脱水方法。
使用这种方法制造的制 品,因形状和强度的原 因,使用范围有限。
与混凝土管的离心成型相同,在旋转的管状模具中喷入玻璃纤 维和水泥浆。该法能够控制纤维的方向性,使它有效地作用到 管子的结构强度上、而且在厚度方向上可以改变纤维量。
纤维增强水泥,无论在用途上,还是制法上, 都是处于开发的新材料。这里以玻璃纤维为 例来介绍纤维增强水泥的成型工艺。
直接喷射 法
抄造法
预混料浇 铸法
纤维增强 水泥
喷射脱水 法
压力法
Байду номын сангаас
离心成型法
把直径2mm以下的细骨料和水泥以及若干量的外加剂以一定的比例 进行拌合,制成水泥砂浆,经泵压送,用喷枪喷到模具面上。 同时,操作者手持喷射设备一边用粗纱切割器把耐碱玻璃纤维 精纱切成规定的长度(纤维的长度一般为12—50mm,含量为3 %—5%),一边重复水泥砂浆的喷吹途径直接将玻璃纤维喷射 到模具上而成型的。这种成型方法的关键是玻璃纤维的均匀分 散,以及喷射砂浆的脱泡和厚度的均匀性。这是最常用的成型 方法。
PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究共3篇
PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究共3篇PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究1 PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究复合材料是一种由两种或两种以上材料组合而成的新型材料。
在工程领域,常常使用纤维增强复合材料(FRC)来替换传统材料,以提高材料的力学性能。
而PVA纤维增强水泥基复合材料(PFRC)则是一种新型的FRC材料。
本研究采用PFRC材料为研究对象,考察了其假应变硬化及断裂特性。
首先,我们介绍PFRC材料的组成。
PFRC材料由水泥、砂、水、聚乙烯醇(PVA)纤维等多种材料组成,其中PVA纤维作为增强体起到支撑水泥基材料的作用。
研究表明,PVA纤维具有良好的柔韧性,可以增加PFRC材料的韧性和耐久性。
接着,我们介绍假应变硬化的概念。
在PFRC材料中,由于PVA纤维的作用,材料在受力时会发生一定量的应变,但是当应力达到一定的数值后,材料的应变就呈现出硬化的现象,即应变不再增加。
然而,经过实验测算,我们发现在PFRC材料中,这种应变硬化是一种“假”应变硬化,因为当应力分布不均匀时,该材料的应变并不是真的硬化。
在接下来的实验中,我们测量了PFRC材料在不同应力水平下的应变和应力数据,并按照负荷史和最大负荷史分别统计了材料的最大应力和断裂延伸能。
结果显示,在低应力范围内,PFRC材料的应变硬化越明显,而在高应力范围内应变硬化就逐渐减弱。
此外,当PVA纤维含量增加时,PFRC材料的断裂延伸能也有所提高。
最后,我们讨论了PFRC材料的断裂特性。
PFRC材料断裂时呈现出典型的拉伸断裂模式,同时材料表面会出现很多细小的裂纹。
我们还测量了材料的断裂延伸能,发现PFRC材料的断裂延伸能与应变硬化程度呈正相关关系。
这表明,PFRC材料在接受外部力的时候,在一定应力水平下具有很好的韧性和延展性。
综上所述,本研究通过对PFRC材料的假应变硬化及断裂特性研究,深入分析了PFRC材料的性能和特点,为PFRC材料在工程领域中的应用提供了一定的参考价值综合本研究结果表明,PFRC材料具有明显的应变硬化特征,但是这种硬化并非真实存在,而是受到应力分布不均匀的影响。
纤维增强水泥基复合材料的分类研究
纤维增强水泥基复合材料的分类研究摘要:纤维增强水泥基复合材料因应用广泛而备受关注,本文对纤维水泥基复合材料进行了分类介绍,并进行了简要的评述。
关键词:纤维水泥基复合材料纤维增强水泥基复合材料是由水泥净浆、砂浆或水泥混凝土作基材,以非连续的短纤维或连续的长纤维作增强材料组合而成的一种复合材料。
近年来,使用价格相对低廉的天然植物纤维的研究和应用愈来愈受到世界各国特别是发展中国家的重视。
研究开发植物纤维增强水泥基复合材料不仅能够降低造价,而且有利于环保和可持续发展,具有深远的意义。
1 PV A纤维水泥基复合材料PV A纤维是指聚乙烯醇纤维,也称之为维纶。
以PV A为主要原料,运用新型纺丝工业开发制成的高强高弹模PV A纤维和水溶性PV A纤维,通常称为新型PV A纤维。
日本用高新纺丝技术成功开发了高强PV A,强度达到21.1Cn/dtex,2000年总产达2.5万吨;日本公司开发的K—II高强高弹模PV A纤维强度达到22cN/dtex,这次所开发的PV A纤维与从前的水泥增强材料,在性质方面不同,不只增加强度,而且对混凝土还具有粘接性,使得耐震性和耐冲击性提高,混凝土的断裂和片状剥落现象这些弱点也难以发生。
而且,具有防止水向混凝土内的浸入性质,防止混凝土中性化,对防止钢筋的腐蚀也有很大效果。
2 玻璃纤维增强水泥基复合材料玻璃纤维增强水泥基复合材料是新型建筑材料的主要研究方向之一。
掺加玻璃纤维可以改善和提高水泥基体抗折强度及抗冲击性能差,但在实际应用中,复合材料的表面往往会出现开裂、渗水、胀溶、脱落等现象。
原因是水泥体系含有较多的自由水,当掺加一定量的玻璃纤维后,玻璃纤维与水泥基体之间形成界面结合,导致制品的密实度较差,水分容易渗透到复合材料的内部,并且反复改变方向进行迁移,导致复合材料的耐水性能较差。
同时,渗进复合材料内部微裂纹中的水分子薄膜所形成的契压力产生的破坏作用,也是导致其耐水性能差的原因。
芳纶纤维增强水泥基复合材料力学性能的研究进展
芳纶纤维增强水泥基复合材料力学性能的研究进展摘要:在复合材料的研究中将纤维作为增强体一直都是研究热点,水泥基材料与纤维复合后能够在一定程度上改善水泥基材料的力学性能,研究证明芳纶纤维能够提高其早期抗裂性能。
本文综述了芳纶纤维增强水泥基复合材料力学性能的研究进展。
关键词:水泥基复合材料;芳纶纤维;力学性能;0引言随着材料科学的的不断发展,单一材料的性能已经不能满足我们的实际需要,复合材料的出现改变了这一格局。
从20世纪初开始,将纤维作为增强体一直都是复合材料的研究重点,纤维增强水泥基复合材料是其中一个重要的部分。
纤维作为复合材料中的增强体,在实现应力传递、承担外部载荷等方面发挥了重要作用[1]。
纤维增水泥基复合材料是将水泥浆、砂浆、混凝土进行混合作为基体,外掺各类纤维,如钢纤维、聚乙烯醇纤维或碳纤维等,以提升材料力学及耐久性能的一种新型水泥基复合复合材料[2]。
美国的Poter、Graham等[3]早在1910年就开始研究钢纤维对钢筋混凝土性能的影响,研究表明将钢纤维均匀分布在混凝土中可以提高其强度和稳定性。
20世纪60年代,美国Goldfein、Zollo等[4]人对聚丙烯、聚乙烯材料进行研究,并将其掺入水泥混凝土中,实验结果表明聚丙烯、聚乙烯纤维能够提高砂浆的抗冲击能力,同时掺入适量的聚丙烯纤维还能减少混凝土的塑性收缩。
20世纪90年代,美国Victor Li[5]将聚乙烯醇纤维随机掺入到水泥基材料中,在微观力学及断裂力学原理的基础上,成功研制出韧性优良的聚乙烯醇纤维混凝土。
在国内,魏发云,杨帆等[6],采用化学接枝法在聚乙烯醇(PVA)纤维表面接枝一层纳米二氧化硅颗粒,制备改性PVA纤维增强水泥基复合材料,从而提高了提高聚乙烯醇纤维与水泥基体间的界面强度;其研究结果表明纳米二氧化硅改性后的PVA纤维能显著提升水泥基材料的抗弯性能。
王晨宇,韦经杰等[2]概述了纤维取向分布的主要影响因素,分析并总结了纤维取向和空间分布对水泥基复合材料力学性能的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
改性聚乙烯醇纤维 1. 30 800 ~ 850 1. 2 ~ 1. 4 11. 0 ~ 12. 0
高模量聚乙烯醇纤维 1. 30 1200 ~ 1500 3. 0 ~ 3. 5 5. 0 ~ 7. 0
改性聚丙烯腈纤维 1. 18 830 ~ 940 1. 6 ~ 1. 9 9. 0 ~ 11. 0
表 4 UHTCC 与 FRC 和 HPFRC 的比较[5,7]
普通纤维混凝土
一般高性能纤维 增强水泥基复合材料
UHTCC
设计方法 普通设计方法
纤维体积掺量高
微观力学,考虑成本和施工,纤维体积掺量低
纤维
任何类型纤 维,一 般 情 况,纤 维 体 积掺量 Vf < 2% ,钢纤维直径 df ~ 500μm
当使用连续的长纤维时,纤维增强水泥基复合
材料的抗拉极限强度公式为
第5 期
王 冰: 浅谈纤维增强水泥基复合材料
·7·
Rufc = Ruf Vf
( 2)
式中,Rufc 为纤维增强水泥基复合材料的抗拉极
限强度,R
ห้องสมุดไป่ตู้
u f
为纤维的抗拉极限强度,Vf
为纤维的体
积。
当使用短纤维时,纤维增强水泥基复合材料的
抗拉极限强度公式为
强水泥基复合材料具有抗裂、大延性、高韧性、抗冲
击、抗渗、抗剪、耐高温、耐腐蚀、良好的化学稳定性
和优越的能量吸收能力,在减小混凝土裂缝、提高混
凝土耐久性、改善混凝土脆性破坏、电学性能等方面
都起了重要作用。随着人们对工程质量的要求日益
提高,对纤维增强水泥基复合材料的需求也不断发
展变化,本文对纤维增强水泥基复合材料的类型、阻
间距小,增加了冻融损伤过程中的能量耗损,有效阻
止了裂缝的扩展,降低水泥和混凝土的冻胀开裂,提
高水泥基复合材料的抗冻能力。
3 纤维增强水泥基复合材料的评价方法
为全面反映纤维增强水泥基复合材料的内在品
质,需要评价纤维增强水泥基复合材料的性能,评价
方法主要有力学性能试验方法、耐久性试验方法和
断裂试验方法。
的影响,将纤维增强水泥基复合材料看作是一种纤
维强化体系。复合材料理论将复合材料视为多相系
统,在弹性范围内,复合材料的弹性模量和强度性能
可视为复合体内各相性能的叠加,通过应用混合原
理推定纤维增强水泥基复合材料的抗拉强度,建立
纤维增强水泥基复合材料的抗拉强度与纤维的掺入
量、方向、长径比及粘结力之间的关系。
的含气量,当孔隙内水冻结时,这些微小封闭气泡被
压缩,可有效减轻冰冻给孔隙带来的胀压力,提高水
泥和混凝土的抗冻能力; 一些纤维的弹性模量随温
度的降低而提高,低温条件下对纤维水泥基复合材
料的抗冻能力起着正面增强效应; 纤维的桥接作用
能够改善水泥基复合材料的内部缺陷,增强复合材
料自身抵抗冻融的能力; 纤维直径小、数量大、纤维
验计算韧性指数 I5 、I10 、I30 :
I5
=
A1 + A2 A1
I10
=
A1
+
A2 A1
+ A3
I30
=
A1
+
A2 + A3 A1
+ A4
式中,A1 是初裂挠度为 δ 时荷载—挠度曲线下
的面积,A2 是挠度为 δ 和 3δ 之间的荷载—挠度曲
线下的面积,A3 是挠度为 3δ 和 5. 5δ 之间的荷载—
能够实现自密实,能实现挤压成型
2 纤维增强水泥基复合材料的阻裂机理 2. 1 纤维间距理论[1,11]
纤维间距理论是根据断裂力学解释纤维对混凝 土中裂缝的阻裂作用,这一机理认为: 水泥和混凝土 内部本身存在尺度不同的微裂缝、空隙和缺陷,欲提 高这种材料的强度,必须尽可能减小缺陷的程度,提 高这种材料的韧性,降低内部裂缝端部的应力集中 系数,降低裂缝的数量和尺度。而纤维的加入有效 地提高了基体阻止裂缝发生和扩展的能力,达到纤 维对混凝土的增强目的。当纤维的间距小于某一值 后复合材料的抗拉强度会提高。Rumualdi 等人认 为,当纤维的平均中心间距小于 7. 6mm 时,纤维增 强水泥基复合材料的抗拉或抗弯初裂强度得以显著 提高。
关键词: 纤维增强水泥基复合材料; 阻裂机理; 评价方法; 工程应用 中图分类号: U414. 01 文献标识码: B 文章编号: 1673 - 6052( 2013) 05 - 0005 - 04
纤维增强水泥基复合材料以水泥净浆、砂浆或
混凝土为基体,以非连续的短纤维或连续的长纤维
作增强材料所组成水泥基复合材料的总称。纤维增
维( PRD - 49) 都是高弹模纤维,抗拉强度也较高,聚
乙烯纤维、尼 龙 纤 维、聚 丙 烯 纤 维 等 都 是 低 弹 模 纤
维,但这几种纤维的极限伸长率较大,使用时应根据
不同需求选择纤维种类。
表 2 几种主要纤维的物理力学性能[3 - 5]
纤维名称
相对 密度
抗拉强度 ( MPa)
弹性模量 极限伸长率
Rumualdi 等提出了纤维增强水泥基复合材料 中纤维呈三维乱向排列时的纤维平均间距计算公式
槡 S = 13. 8d 1 Vf
( 1)
式中,S为纤维的平均间距,d 为纤维直径,Vf 为
纤维体积率。
2. 2 复合材料理论[1]
复合材料理论是考虑纤维在基体中的连续性、
分散均匀性和分布方向对水泥基复合材料增强效果
龙、聚丙烯、聚乙烯、有机纤维等,高弹模纤维有钢纤
维、玻璃纤维、碳纤维等。低弹模纤维只能改善水泥
基复合材料的韧性,而高弹模纤维不仅能提高水泥
基复合材料的韧性,还能大幅度增强其抗拉强度和
刚性。
纤维的不同特性使纤维增强水泥基复合材料具
备不同的性能。表 2 是几种主要纤维的物理力学性 能[3,4],可以看 出 钢 纤 维、碳 纤 维、芳 族 聚 酰 亚 胺 纤
控制基体的韧性和初始缺陷尺寸,使用细砂 需控制化学粘结能 Gd 和粘结应力 τ0 应变 - 硬化 > 3% ,可达到 8%
裂缝宽度 无限值
一般为几 百 个 μm,当 拉 应 变 ε > 1. 5% 时,裂缝宽度无限值
在应变 - 硬化阶段,裂缝宽度一般 < 100μm
工艺 可实现自密实可挤压成型
由于纤维体 积 掺 量 高,不 易 实 现 自 密 实, 经常需要高频振动,可实现挤压成型
聚丙烯单丝
0. 91 400 ~ 650 0. 5 ~ 0. 7 18. 0
聚丙烯膜裂纤维 0. 91 400 ~ 650 0. 8 ~ 1. 0
8. 0 0. 29 ~ 0. 46
尼龙纤维
1. 16 900 ~ 960 0. 5 ~ 0. 6 18. 0 ~ 20. 0
聚乙烯单丝
0. 96 200 ~ 260 0. 22 ~ 0. 25 10. 0
理、力学性能
性能
能有适度改进或提高
应用范围
主要用于制作薄壁( 厚度 3 ~ 20mm) 主要用于现场浇筑的构
的预制品
件或构筑物
根据纤维弹性模量的高低可将纤维增强水泥基
※基金项目: 浙江省科研项目择优资助( Bsh1201023)
复合材料分为低弹模纤维增强水泥基复合材料和高
弹模纤维增强水泥基复合材料。低弹模纤维有尼
力学性能试验方法包括立方体抗压强度试验、
轴心抗压强度试验、静力受压弹性模量试验、劈裂抗
拉强度试验、直接拉拔强度试验、抗剪强度试验、抗
折强度试验、抗折弹性模量试验、弯曲韧性试验、抗
冲击性试验等。耐久性试验方法包括抗冻性能试
验、抗水渗透性能试验、收缩试验、碳化性能试验等。
断裂试验方法包括楔入劈拉试验、三点弯曲梁试验
Rufc = 2η1 η0
l d
τVf
( 3)
式中,η1 为纤维有效长度系数,dl 为纤维的长
度与直径的比值( 长径比) ,τ 为纤维与水泥基材的
平均粘结强度,η0 为纤维在纤维增强水泥基复合材 料中的取向系数,Vf 为纤维的体积。 2. 3 抗冻融机理[11]
水泥基复合材料中掺入纤维能增加复合材料中
104( MPa)
( %)
泊松比
低碳钢纤维
0. 78 400 ~ 1500 20. 0 ~ 21. 0 3. 5 ~ 4. 0 0. 30 ~ 0. 33
不锈钢纤维
7. 80 2100 15. 4 ~ 16. 8 3. 0
抗碱玻璃纤维
2. 70 1400 ~ 2500 7. 0 ~ 8. 0 2. 0 ~ 3. 5 0. 22
裂机理、评价方法和工程应用等方面加以介绍,为不
同类型的纤维增强水泥基复合材料产品在实际工程
中的设计和应用提供参考。
1 纤维增强水泥基复合材料类型
因基体组成不同,可将纤维增强水泥基复合材
料分为“纤维增强水泥”和“纤维增强混凝土”,两种 类型的对比如表 1[2]。
表 1 纤维增强水泥与纤维增强混凝土的对比[2]
第5 期
北方交通
·5·
浅谈纤维增强水泥基复合材料
王 冰1,2
( 1. 辽宁省交通科学研究院,沈阳 110015; 2. 浙江大学,杭州 310000)
摘 要: 纤维增强水泥基复合材料作为新型工程材料已在土木工程多领域中得到广泛地应用。对纤维增强水 泥基复合材料的类型、阻裂机理、评价方法和工程应用等各方面加以介绍,探讨纤维增强水泥基制品工业今后的发 展方向,为不同类型的纤维增强水泥基复合材料产品在实际工程中的设计和应用提供参考。
对比项
纤维增强水泥
纤维增强混凝土
水泥基体
水泥净浆或砂浆
混凝土
纤维长度
短纤维、长纤维、纤维织物或短纤维 与长纤维( 或纤维织物) 并用