初中数学教学课件函数(人教版)
合集下载
人教版《一次函数》上课课件PPT初中数学ppt
当自变量x的值为多少时,一次函数y=3x+2的函数值小于0?
在函数 y=kx+b(k≠0)中,当 y<0 时 x 的取值范围.
(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度; 解一元一次不等式:3x+2>0.
因为任何一个以 x 为未知数的一元一次不等式都可以变形为 kx+b>0(k≠0)或 kx+b<0(k≠0)的形式,所以解一元一次不等式可以看作是求一次函数 y=kx+b 的函数值大于 0
解一元一次不等式:3x+2>0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值大于0?
解一元一次不等式:3x+2<0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值小于0?
解一元一次不等式:kx+b>0(k≠0), kx+b<0(k≠0).
当自变量x的值为多少时,一次函数 y=kx+b的函数值大于0,小于0?
课堂练习
1.如图,直线y=ax+b过点A(0,2)和点B(-3,0), 则方程ax+b=0的解是( D) A.x=2 B.x=0 C.x=-1 D.x=-3
2.一次函数y=kx+b(k,b为常数,k≠0)的图象如图所示, 根据图象信息可求得关于x的方程kx+b=3的解为__x_=__2_.
3.如图是函数y=kx+b(k,b是常数,且k≠0)的图象,利用图象直接写出: (1)方程kx+b=0的解; (2)方程kx+b=-2的解; (3)方程kx+b=-3的解. 解:(1)x=2 (2)x=0 (3)x=-1
(2)从第几个月开始小丽的存款数可以超过小华?
解:(1)y1=62+12x,y2=20x (2)由 20x>62+12x 解得 x>734 , 从第 8 个月开始小丽的存款数可以超过小华
在函数 y=kx+b(k≠0)中,当 y<0 时 x 的取值范围.
(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度; 解一元一次不等式:3x+2>0.
因为任何一个以 x 为未知数的一元一次不等式都可以变形为 kx+b>0(k≠0)或 kx+b<0(k≠0)的形式,所以解一元一次不等式可以看作是求一次函数 y=kx+b 的函数值大于 0
解一元一次不等式:3x+2>0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值大于0?
解一元一次不等式:3x+2<0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值小于0?
解一元一次不等式:kx+b>0(k≠0), kx+b<0(k≠0).
当自变量x的值为多少时,一次函数 y=kx+b的函数值大于0,小于0?
课堂练习
1.如图,直线y=ax+b过点A(0,2)和点B(-3,0), 则方程ax+b=0的解是( D) A.x=2 B.x=0 C.x=-1 D.x=-3
2.一次函数y=kx+b(k,b为常数,k≠0)的图象如图所示, 根据图象信息可求得关于x的方程kx+b=3的解为__x_=__2_.
3.如图是函数y=kx+b(k,b是常数,且k≠0)的图象,利用图象直接写出: (1)方程kx+b=0的解; (2)方程kx+b=-2的解; (3)方程kx+b=-3的解. 解:(1)x=2 (2)x=0 (3)x=-1
(2)从第几个月开始小丽的存款数可以超过小华?
解:(1)y1=62+12x,y2=20x (2)由 20x>62+12x 解得 x>734 , 从第 8 个月开始小丽的存款数可以超过小华
人教版初中数学19.2.1 正比例函数(第1课时) 课件
为 y=-6x
.
课堂检测
19.2 一次函数/
4.下列说法正确的打“√”,错误的打“×”. (1)若y=kx,则y是x的正比例函数( × ) (2)若y=2x2,则y是x的正比例函数( × ) (3)若y=2(x-1)+2,则y是x的正比例函数( √ ) (4)若y=(2+k2)x,则y是x的正比例函数( √ )
解得 k 1 ,
2
∴所求的正比例函数解析式是
y
1 2
x;
求 写
(2)当 x=6 时, y = -3.
待定系数法
巩固练习
19.2 一次函数/
若y关于x成正比例函数,当x=2时,y=-6.
(1)求出y与x的关系式;
(2)当x=9时,求出对应的函数值y.
解:(1)设该正比例函数解析式为y=kx.
把x=2,y=-6代入函数解析式得:-6=2k,
(3)y x ; 是; 3
(4)
y
3 x
;
不是;
(5)y=x2+1;
不是;
(6)
y
1 2x
1
.不是.
探究新知
19.2 一次函数/
素养考点 1 利用正比例函数的概念求字母的值
例1 已知y=(k+1)x+k-1是正比例函数,求k的值.
解:根据题意得:k+1≠0且k-1=0, 解得:k=1.
提示:函数解析式可转化为y=kx(k是常数,k ≠0) 的形式.
C.y=8x2
D.y=8x﹣4
课堂检测
19.2 一次函数/
基础巩固题
1.下列各函数是正比例函数的是( C )
A. y 2x 1 B. y x2
C. y x
人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件
新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程
x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究
2024(人教版)数学九年级上册 第22章 二次函数 教材解读课件
针内对容训分练析
本章学情分析:
“二次函数”这一章是在学习一次函数的基础上,具体研究的第二个函数模型,是应用研 究函数性质的一般方法去研究函数的第二次实践,对学生而言,即学习了新的函数模型,又增 强了对函数研究方法的掌握,为后续研究其他函数积累宝贵经验。二次函数的学习过程充满着 观察、分析、抽象、概括等方法,蕴含着从特殊到一般,数形结合、函数的思想,因此学习二 次函数是学生认识函数的又一次飞跃。
一是让学生体会生活中处处有数学,数学源于生活、又服务于生活的教学 理念,体会数学就在我们身边的道理;
二是从简单的实际问题入手,激发学生学习数学的兴趣。
针内对容训分练析
第二课时二次函数y=ax2的图象和性质内容解析 本节课类比一次函数的研究方法,先通过观察函数图象,认识函数特征,
从而得出函数的性质。对于二次函数y=ax2的研究分别从a>0,a<0两种情况 入手,在具体的研究过程中,始终是从特殊到一般,例如a>0时,a从具体的 数字1开始,再到12,2等;在每一次具体的函数研究过程中,都是从图象入 手.本节课从形状、开口方向、开口大小、对称性、顶点、增减性对二次函数y =ax2(a>0)的图象特征进行研究,从而得到二次函数y=ax2(a>0)的性 质.此外,a<0的情况又是类比a>0的学习方法开展研究,最终经历以上探究 过程,得出二次函数y=ax2的图象特征和性质.
以现实生活为背景,通过对投掷、跳水、跳远、拱桥、隧道等抛物线的探究, 建立合理的平面直角坐标系,利用待定系数法确定二次函数的表达式是解决此类问 题的关键.
通过探究矩形面积与矩形一边长两个变量之间的关系,让学生体会运用函数观 点解决实际问题的作用,初步体验建立函数模型的过程和方法.
针内对容训分练析
第九 十课时 实际问题与二次函数内容解析 利用二次函数解决销售利润问题的方法:(1)读懂题意;(2)借助销售问题中
3.2.1函数的性质-单调性课件(人教版)
(1 ) < (2 ),那么就称函数() 有(1 ) > (2 ),那么就称函数
在区间上单调递增.
()在区间上单调递减.
就叫做函数 () 的单调递增区间, 就叫做函数 () 的单调递增区间,
简称增区间.
简称减区间.
(2)用定义法证明函数的单调性
(1)取值;
课堂例题
例1 根据定义,研究函数() = + ( ≠ 0)的单调性。
追问1:由初中知识可知,一次函数图象的上升还是下降取决于谁?
追问2:根据单调性的定义,判断单调性的关键是比较 (1 )和(2 ) 的大小?
那如何比较(��1 )和(2 )的大小呢?
分析:根据函数单调性的定义,需要考察当1<2时,(1)<(2)还是
章节:第三章 函数的概念与性质
标题:3.2函数的基本性质 (1)
单调性
目
录
1.教学目标
2.新课讲授
3.新课小结
4.作业巩固
环节1:教学目标分解
教学目标
1.理解增函数、减函数的概念及函数单调性的定义;会根
据单调定义证明函数单调性; 理解函数的最大(小)值
及其几何意义;
2.学会运用函数图象理解和研究函数的性质.
(1)>(2).根据实数大小关系的基本事实,只要考察(1)-(2)与0
的大小关系.
解:函数()=+( ≠ 0)的定义域是,∀1,2 ∈ ,且1<2,
则(1)-(2)=(1+)-(2+)=(1-2).
由1<2,得1-2<0.所以
(2)任意取1 ,2 ∈ (−∞, 0],
当1 <2 时,有(1 ) < (2 ).
函数() = ||在区间(−∞, 0]上是单调递增的.
在区间上单调递增.
()在区间上单调递减.
就叫做函数 () 的单调递增区间, 就叫做函数 () 的单调递增区间,
简称增区间.
简称减区间.
(2)用定义法证明函数的单调性
(1)取值;
课堂例题
例1 根据定义,研究函数() = + ( ≠ 0)的单调性。
追问1:由初中知识可知,一次函数图象的上升还是下降取决于谁?
追问2:根据单调性的定义,判断单调性的关键是比较 (1 )和(2 ) 的大小?
那如何比较(��1 )和(2 )的大小呢?
分析:根据函数单调性的定义,需要考察当1<2时,(1)<(2)还是
章节:第三章 函数的概念与性质
标题:3.2函数的基本性质 (1)
单调性
目
录
1.教学目标
2.新课讲授
3.新课小结
4.作业巩固
环节1:教学目标分解
教学目标
1.理解增函数、减函数的概念及函数单调性的定义;会根
据单调定义证明函数单调性; 理解函数的最大(小)值
及其几何意义;
2.学会运用函数图象理解和研究函数的性质.
(1)>(2).根据实数大小关系的基本事实,只要考察(1)-(2)与0
的大小关系.
解:函数()=+( ≠ 0)的定义域是,∀1,2 ∈ ,且1<2,
则(1)-(2)=(1+)-(2+)=(1-2).
由1<2,得1-2<0.所以
(2)任意取1 ,2 ∈ (−∞, 0],
当1 <2 时,有(1 ) < (2 ).
函数() = ||在区间(−∞, 0]上是单调递增的.
第19章 一次函数的图象和性质 (教学课件)- 人教版八年级数学下册
y随 x的增大而增大;
2
k<0时,直线从左向右下降,
A
y随 x的增大而减小.
-5
O
-2
y =3x+1 y =x+1 C B
D 5x E
初中数学
一次函数的图象和性质
思考 观察图形你能找到这四个函数图像的共同之处吗
?
(1) y=x+1 ;
(2) y=3 x+1 ;
(3) y= -x+1 ;
(4) y=-3 x+1.
则它的图象经过第
象限.
初中数学
一次函数的图象和性质
初中数学
一次函数的图象和性质
画 探究1 画一次函数 y=2 x-3 的图象.
y
2
-5
O
5x
-2
-4
-6
初中数学
一次函数的图象和性质
画 探究1 画一次函数 y=2 x-3 的图象.
列表
y
2
-5
O
5x
-2
-4
-6
初中数学
一次函数的图象和性质
画 探究1 画一次函数 y=2 x-3 的图象.
x … -2 -1 0 1 2 … y … -7 -5 -3 -1 1 … y
>−
5 3
时, y随x的增大
初中数学
课前复习
练习4 正比例函数 y = (2a− 1) x的图象经过第二、四象限,那么 a 的取值范围是 .
练习5 设一次函数 y = kx + b(k ≠ 0)的图象经过 A(1,3), B(0,−2) 两点,求此函数的解析式.
初中数学
课前复习
练习4 正比例函数 y = (2a− 1) x的图象经过第二、四象限,那么 a
人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)
新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文
你还记得如何画出一次函数的图像吗?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
人教版初中数学《正比例函数》_课件
【获奖课件ppt】人教版初中数学《正 比例函 数》_ 课件1- 课件分 析下载
【获奖课件ppt】人教版初中数学《正 比例函 数》_ 课件1- 课件分 析下载
总结
知1-讲
(1)根据题意可先得到数量间的关系式,然后写成 函
数解析式的形式. (2)判断一个函数是否为正比例函数的依据:看两 个 变量的比是不是常数,即是不是形如y=kx(k是常 数,k≠0)的函数.
总结
知1-讲
一般地,形如y=kx(k是常数,k≠0)的函数,叫 做正比例函数,其中k叫做比例系数.
【获奖课件ppt】人教版初中数学《正 比例函 数》_ 课件1- 课件分 析下载
【获奖课件ppt】人教版初中数学《正 比例函 数》_ 课件1- 课件分 析下载
知1-讲
例1 写出下列问题的函数关系式,并判断哪些是正比例函数
知1-讲
上面问题中,表示变量之间关系的函数解析式分
别为:
(1) l=2πr;
(2)m=7. 8V;
(3)h=0.5n;
(4)T=-2t.
正如函数y=300t一样,上面这些函数都是常
数与
自变量的积的形式.
【获奖课件ppt】人教版初中数学《正 比例函 数》_ 课件1- 课件分 析下载
【获奖课件ppt】人教版初中数学《正 比例函 数》_ 课件1- 课件分 析下载
【获奖课件ppt】人教版初中数学《正 比例函 数》_ 课件1- 课件分 析下载
润,
【获奖课件ppt】人教版初中数学《正 比例函 数》_ 课件1- 课件分 析下载
知1-讲
解:(1)C=2πr,是正比例函数.
(2)Q=30-
1 5
t,不是正比例函数.
(3)s=4t,是正比例函数.
人教版八年级数学下册19.1.2《函数的图像》课件
如点(2,4)表示x=2时 S=4。
八年级 数学
第十一九章 函数的图象
函数的图象
你记住了吗?
对于一个函数, 如果把自变量 与函数的每对对应值分 别作为点的横、纵坐标,那么坐标平面 内由这些点组成的图形,就是这个函数 的图象。
上图中的曲线即为函数 s x2 (x>0)的图象.
函数图象可以数形结合地研究函数,给我们带来便利。
y
2.5
y=x+0.5
从函数图象可以看出,
直线从左到右上升,
1.5
即当x由小到大时,
y=x+0.5随之增大.
0.5
-1
O -0.5
12x
自己动手画一画 画出函数(2)y 6 x 0 的图象
x
(2)y 6 x 0
列表:
x
x … 0.5 1 1.5 2 2.5 3 3.5 4 5 6 …
S/m
S/m
s1
s2
X/s
O
O
s1 s2
S/m X/s
O
S/m
s1
s1
s2
s2
X/s
X/s
O
A
B
C
D
回归问题
问题:观察下图,你能大致描述男女孩平均身高 在平均身高之上还是之下?你能估计自己18岁时 的身高吗?
八年级 数学
第十一九章 函数的图象
一个思想————数学结合思想 两个关系———应用函数图象研究实际 问题时,注意自变量与函数的对应关系
S=x2
…
(x>0) 0 0.25 1 2.25 4 6.25 9
如果我们在直角坐标系中,将你所填表格 中的自变量x及对应的函数值S当作一个点的 横坐标与纵坐标,即可在坐标系中得到一些点。
八年级 数学
第十一九章 函数的图象
函数的图象
你记住了吗?
对于一个函数, 如果把自变量 与函数的每对对应值分 别作为点的横、纵坐标,那么坐标平面 内由这些点组成的图形,就是这个函数 的图象。
上图中的曲线即为函数 s x2 (x>0)的图象.
函数图象可以数形结合地研究函数,给我们带来便利。
y
2.5
y=x+0.5
从函数图象可以看出,
直线从左到右上升,
1.5
即当x由小到大时,
y=x+0.5随之增大.
0.5
-1
O -0.5
12x
自己动手画一画 画出函数(2)y 6 x 0 的图象
x
(2)y 6 x 0
列表:
x
x … 0.5 1 1.5 2 2.5 3 3.5 4 5 6 …
S/m
S/m
s1
s2
X/s
O
O
s1 s2
S/m X/s
O
S/m
s1
s1
s2
s2
X/s
X/s
O
A
B
C
D
回归问题
问题:观察下图,你能大致描述男女孩平均身高 在平均身高之上还是之下?你能估计自己18岁时 的身高吗?
八年级 数学
第十一九章 函数的图象
一个思想————数学结合思想 两个关系———应用函数图象研究实际 问题时,注意自变量与函数的对应关系
S=x2
…
(x>0) 0 0.25 1 2.25 4 6.25 9
如果我们在直角坐标系中,将你所填表格 中的自变量x及对应的函数值S当作一个点的 横坐标与纵坐标,即可在坐标系中得到一些点。
人教版初中数学九年级上册精品教学课件 第22章 二次函数 22.2 二次函数与一元二次方程
2
3
4
5
6
7
7.利用二次函数的图象求方程1
1 2
x +x+2=0的近似解(精确到0.1).
2
解: 函数 y=-2x2+x+2 的图象如图.
1 2
设-2x +x+2=0
的两根分别为 x1,x2,且 x1<x2,观察图象可知
-2<x1<-1,3<x2<4.
1
因为当 x=-1 时,y=-2×(-1)2-1+2=0.5>0,
的交点个数是3.故选A.
A
解析
关闭
答案
快乐预习感知
1
2
3
4
5
6
7
3.已知二次函数y=x2-2ax+a2-2a-4(a为常数)的图象与x轴有交点,且
当x>3时,y随x的增大而增大,则a的取值范围是(
)
A.a≥-2
B.a<3
C.-2≤a<3
D.-2≤a≤3
关闭
D
答案
快乐预习感知
1
2
3
4
5
6
7
4.(2023·浙江宁波中考)已知二次函数y=ax2-(3a+1)x+3(a≠0),下列说
1
时,y=-2×(-1.5)2-1.5+2=-0.625<0,
当 x=-1.5
所以-1.5<x1<-1.
因为当 x=3
1 2
时,y=-2×3 +3+2=0.5>0,当
1
时,y=- ×3.52+3.5+2=-0.625<0,
人教版初中八年级数学下册第19章《一次函数》复习ppt课件
(1)李华出发时与张强相距 千米. (2)李华行驶了一段路后,自行车发生1故0 障,进行修理,
所用的时间是 小时.
(3)李华出发后 小时与张强相遇.
1
C
(4)若李华的自行车不发3生故障,保持出发时的速度前
进, 小时与张强相遇,相遇点离李华的出发点
千米.在图中表示出这个相遇1 点C.
15
探究1
重庆市2013年7月1日开始实行电价阶梯收 y
____.
4
5.直线l1: y1 k与1x直 线b l2:
所示,则关于x的不等式
的解集为 x<,-方2 程组
为
x 2.
y3
在y同2 一平k面2x直角坐标系中,图象如图 k2xk1xb
的kk 12解x b
y1, y2
如图,l1、l2分别表示张强步行与李华骑车在同一路 上行驶的路程s与时间t的关系.
(2)性质:当k>0时,直线y= kx经过第一,三象限,从左向右上升, 即随着x的增大y也增大;当k<0时,直线y= kx经过第二,四象限,从 左向右下降,即随着 x的增大y反而减小.
5.一次函数的图象及性质. (1)一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的 __________.
第十九章 一次函数
本章知识结构图
某些现实问题中相互联系 建立数学模型 的变量之间
函数
应用
一次函数 y=kx+b(k≠0)
再认识
一元一次方程 一元一次不等式 二元一次方程组
图象:一条直线
性质: k>0,y随x的增大而增大; k<0,y随x的增大而减小.
1. 一次函数的概念.
正比例函数 第一课时 PPT课件(数学人教版八年级下册)
这时,列车尚未到达距离始发站 1100km的南京南站.
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(3)乘京沪高铁列车从北京南站出发2.5 h后,是否 已经过了距始发站1 100 km 的南京南站?
解:(3)高铁从北京南站出发2.5 h 的行程,是当t 2.5 是函数 y 300t 的值, 即 y 300 2.5 750 (km),
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(1)乘京沪高铁列车,从始发站北京南站到终点站 上海虹桥站,约需多少小时(结果保留小数点后一位)?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
数学初中 正比例(第一课时)
认真观察这四个函数解析式,说说这些函数有什么共同点.
l 2r
m 7.8V h 0.5n T 2t
一般地,形如 y kx ( k 是常数, k 0 )的函数,叫做正比例函数, 其中k 叫做比例系数.
数学初中 正比例(第一课时)
例1 下列式子中,哪些表示y 是x 的正比例函数? (1)y=2x ; (2) y=- x ; (3)y=x2 ;
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题3 1 这个问题中得到的函数解析式有什么特点? 2 函数值与对应的自变量的值的比有什么特点?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(3)乘京沪高铁列车从北京南站出发2.5 h后,是否 已经过了距始发站1 100 km 的南京南站?
解:(3)高铁从北京南站出发2.5 h 的行程,是当t 2.5 是函数 y 300t 的值, 即 y 300 2.5 750 (km),
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
(1)乘京沪高铁列车,从始发站北京南站到终点站 上海虹桥站,约需多少小时(结果保留小数点后一位)?
数学初中 正比例(第一课时)
问题2 2011年开始运营的京沪高速铁路全长1 318 km. 设列车的平均速度为300 km/h.考虑以下问题:
数学初中 正比例(第一课时)
认真观察这四个函数解析式,说说这些函数有什么共同点.
l 2r
m 7.8V h 0.5n T 2t
一般地,形如 y kx ( k 是常数, k 0 )的函数,叫做正比例函数, 其中k 叫做比例系数.
数学初中 正比例(第一课时)
例1 下列式子中,哪些表示y 是x 的正比例函数? (1)y=2x ; (2) y=- x ; (3)y=x2 ;
最新人教版初中八年级下册数学【第十九章一次函数 19.2.1 正比例函数】教学课件
回答
按道理来说,只要落在函数图象上的任意两点都能确定这条直线.但是为了便捷,我们一般选用原点 (0,0),另一个点可以选择在坐标系中容易标记的.
y1x 3
x …0 3… y …0 1…
y 6
5
4
3
y1x
2
3
1
–4 –3 –2 –1 O –1 –2 –3 –4 –5 –6
1 2 3 4 5x
回答
自变量的取值范围一旦不是全体实数,那函数图象就不是整一条直线,我们就要根据自变量的取值范 围来确定函数图象了.
解:(1)因为函数图象经过一、三象限;
y
所以3a-6>0
解得 a>2
Ox
1.已知正比例函数y=(3a-6)x. (2)当a为何值时,该函数图象经过点(2,6);
解:(2) 函数图象经过点(2,6) 即当x=2时,y=6, 因此6=2(3a-6) 解得a=3
1.已知正比例函数y=(3a-6)x.
(3)图象上有两点(1,y1),(-2,y2),且y1<y2 ,求a的取值范围.
方法一:图象法
y
从图象观察可得,
y2
y随x的增大而减小
所以3a-6<0
1
-2
O
y1
解得 a<2
方法二:代数法 点(1,y1),(-2,y2)在函数图象上 所以y1=3a-6,y2=-2(3a-6)
x
又因为y1<y2 所以3a-6<-2(3a-6)
解得 a<2
2.一个长方体的长为2cm,宽为1.5cm,高为xcm, 体积为ycm3. (1)求体积y与高x之间的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参加考试.下列图象中,能反映这一过程的是
( D ).
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
x/分 O 10 20 30 40 50
x/分 O 10 20 30 40 50
500
x/分 O 10 20 30 40 50
500
x/分 O 10 20 30 40 50
例1 画出函数y=x+0.5的图象
解: ①列表:
x -3 -2 -1 0 1 2 3 y=x+0.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5
试一试
例2 画出函数
y
6 x
的图象。
x … 1 2 3 4 5 6…
y6 x
…
6
3
2 1.5 1.2 1 …
从函数图象可以 看出,曲线从左 向右下降,即当 x由小变大时,y 的值随之减小。
A.
B.
C.
D.
2 .李华和弟弟进行百米赛跑,李华比弟弟跑得快,如果两
人同时起跑,李华肯定赢.现在李华让弟弟先跑若干米,图中,
分别表示两人的路程与李华追赶弟弟的时间的关系,由图中信
息可知,下列结论中正确的是( B ) .
A.李华先到达终点
B.弟弟的速度是8米/秒
C.弟弟先跑了10米
D.弟弟的速度是10米/秒
s/米
t/秒
2.甲,乙两同学骑自行车从A地沿同一条路到B地, 已知乙比甲先出发.他们离出发地的距离s/km和骑行 时间t/h之间的函数关系如图所示,给出下列说法: A.他们都骑了20km; B.乙在途中停留了0.5h; C.甲和乙两人同时到达目的地; D.相遇后,甲的速度小于乙的速度. 根据图象信息,以上说法正确的是
≥0 0 ≤ x ≤ 500
(3)汽车行驶200千米时,油箱中还有
多少汽油?
解:当x=200时,y=50-0.1×200=30.
学习小结
1.常量、变量、自变量、函数
2.辨析是否是函数的关键: (1)是否存在着两个变量。 (2)是否符合唯一对应性 。
谢谢大家
再见!
画函数图象的一般分为哪几步?
1、列表 2、描点 3、连线
80 x/分
1、 一天,亮亮发烧了,早晨他烧得厉害,吃过药后 感觉好多了,中午时亮亮的体温基本正常,但是下午他 的体温又开始上升,直到半夜亮亮才感觉身上不那么烫 了,如图所示的各图能基本反映亮亮这一天(0—24时)的 体温变化情况是( )
2、拖拉机开始工作时,油箱中有油40升,如果每小时耗油5升,那么工作 时,油箱中的余油量Q(升)与工作时间t(小时)之间的函数关系用图象可 表示为( )
16
20
24 时间(分钟
①汽车行驶了多长时间?它的最高时速是多少?
②汽车在哪段时间保持匀速行驶?时速分别是多少? ③出发后8分钟到10分钟之间可能发生了什么情况?
④用自己的语言大致描述这辆汽车的行驶情况?
问题并能迅速分辨问题中的变量与 常量
自学并讨论 变量与常量的定义:
在一个变化过程中,我们称数值发生变化的量 为_变__量_, 数值始终不变的量,我们称它们为_常__量___ 。
自变量、函数、函数值的定义是什么?
一般地,在 某一变化过程中,如
果有两个变量 X与y,并且对于x的 每一个
值,y都有 唯一确定的值与其对应,我 们就说x是自变量, y是x的函数。
如果当x=a时y=b,那么b•叫做当自 变量的值为a时的函数值.
• 思考题: 填表并回答问题:
x
1
4
y=± x 1和-1 2和-2
9
16
3和-3 4和-4
(1)对于x的每一个值,y都有唯一的 值与之对应吗?答: 不是 。
(2)y是x的函数吗?
答:不是,因为y的值不是唯一的。
思考?
议一议!
3 对函数y= x 来讲自变量x取任意
(D).
A.8时水位最高 B.这一天水位均高于警戒水位 C.8时到12时水位都在下降
D.P 点表示12时水位高于警戒水位0.6米
水位/米
1.0 0.8 0.6 0.4 0.2
0 4 8 12 16 20 24 时间/时
6.下图表示一辆汽车的速度随时间变化的情况:
速度(千米/时)
90
60
30
0
4
8
12
2xx1
x≥-
1 2
且x≠0
【规律总结】
求函数中自变量的取值范围时,主要看等式
右边的代数式:如果等式右边
1. 是整式,自变量取值范围为: 全体实数 2 是分式,自变量取为: 分母不为0的所有实数 3. 含有偶次方根,自变 量取值范围为:
被开方数大于等于0的所有实数 4. 既含有分式又含有偶次方根,自变量取 为:分母不为0且被开方数大于等于0的所有实数
Q 40
Q 40
o
Q 40
8t
(A)
O
8t
(C)
t
O
8
(B)
Q
40
t
O
8
(D)
1、在某高速公路上,一辆轿车和一辆货车沿相同路线从 A地到B地,所经过的路程y(千米)与时间x(小时)的函数关 系图像如图所示,试根据图像,回答下列问题:
(1)货车比轿车早出发_1_ _小时,轿车追上货车 时行驶了_1_5__0___千米。A地到B地的距离为_3_00 _千米。
20
乙
S/km甲
A.1个 C.3个
B.2个 D.4个
O 0.5 1
t/h
2 2.5
4.柿子熟了,从树上落下来,下面的哪一幅图可以大致刻画
出柿子下落过程中的速度变化情况?( C )
速度
速度
0 速度
A 时间
0
B 时间
速度
0
C
时间
0
D 时间
5.今年7月涪陵遭受百年不遇暴雨袭击,长江水位上 涨.小明以警戒水位为点,用折线统计图表示某一天江水水 位情况.请你结合折线统计图判断下列叙述不正确的是
例3 : 八年级(1)班到某景点秋游,速度为每小时a千米,走了一段 时间后,休息了一会,因道路变陡,又以每小时b千米(0<b<a)的速度到 达山顶。下列图象能反映这一情境的是( )
A
B
C
D
玉米地
y/千米
2 1.1
菜地
小明家
o 15 25 37 55
根据图象回答下列问题:
(1)菜地离小明家多远?小明走到菜地用了多少时间? (2)小明给菜地浇水用了多少时间? (3)菜地离玉米地多远?小明从菜地到玉米地用了多少时间? (4)小明给玉米地锄草用了多少时间? (5)玉米地离小明家多远?小明从玉米地走回家的平均速度是多少?
实数,都有对应的函数y?
答:当x=0时,函数 y= 3 没有意义,函数值不存在。x
因此,自变量取值范围是:
x≠0的实数
确定下列函数中自变量的取 值范围
(1)y=2x2-1
x全体_实__数________
(2) y=
1 x2
x≠2 _________
(3) y= 2 x
x≤2 —————
(4) y=
(2) 货车的速度是 2x-1的图象; (2)判断点A(-2.5,-4), B(1,3),C(2.5,4)是否 在函数y=2x-1的图象上。
1.小芳今天到学校参加初中毕业会考,从
家里出发走10分到离家500米的地方吃早餐,吃
早餐用了20分;再用10分赶到离家1000米的学校
【例】一辆汽车的油箱中现有汽油 50L,如 果不再加油,那么油箱中的余油量y(单 位:
L) 随行驶路程x(单位:km)的增加而减少,
平均耗油量为0.1L/km。
(1)写出表示y与x的函数关系式。
解:函数关系式为: y = 50-0.1x
(2)指出自变量取值范围。
解:{xy≥=050-0.1x
自变量的取证范围是:
第十九章 一次函数
19.1 函数 19.1.1 变量与函数
学习目标
1、能够发现函数的实例。 2、能分清实例中的常量和变量、自变量与函数, 理解函数的定义。 3、能应用方程思想列出实例中的 等量关系。 4、能够确定自变量的取值范围
学习要求
• 1、完成71页四个思考问题 • 2、弄清变量与常量的概念 • 3、小组讨论解决:自学中存在的