对偶法解不等式

合集下载

构造对偶式在数学解题中的应用(八种方法)

构造对偶式在数学解题中的应用(八种方法)

构造对偶式在数学解题中的应用(八种方法)构造对偶式在数学解题中的应用(八种方法)数学中的对偶关系是指形式相似,并具有某种对称关系的一对关系式。

在数学解题过程中,合理地构造形式相似,具有某种对称关系的一对对偶关系式,并通过对这对对偶关系式进行适当的和、差、积等运算,往往能使问题得到巧妙的解决。

一.和差对偶对于表达式u(x)?v(x),我们可构造表达式u(x)例1若02v(x)作为它的对偶关系式。

,且3sin??4cos??5,谋tan?的值。

解析:构造对偶式:3sin??4cos??y5?y?sin3sin??4cos??5?6则?,得3sin??4cos??y?cos??5?y?8?再由sin??cos??1,得:y??2275,?tan??34。

点评:这种构造对偶式的方法灵巧,富有创意,有助于培养学生的创新思维和创造能力。

例2已知:a,b,c,d?r,且a?b?c?d4442222?1,44澄清:(a?b)?(a?c)?(a?d)?(b?c)?(b?d)?(c?d)?6。

求解:设m?(a?b)?(a?c)?(a?d)?(b?c)?(b?d)?(c?d),构造对偶式:n?(a?b)?(a?c)?(a?d)?(b?c)?(b?d)?(c?d)4444444444444则存有:m?n?6(a?6(a4?b?b4?c?c4?d4?2ab222?2ac22?2ad22?2bc22?2bd22?2cd)22222?d)2?6又n?0,故m?6,即为原不等式设立。

基准3解方程:x2?8x?21?x?8x?21?10x?8x?21?a,再由原方程联立可解得:22求解:结构对偶式:x2?8x?21?1xx2?8x?21??8x?21?10?a210?a2,(1),(2)1222那么(1)?(2)得:2x?42?22(100?a),(3)8x52(1)?(2)得:16x?10a,即a?代入(3)中得:2x?42?整理得:925x2222,x),212(100?6425?4,Champsaur:x??103。

对偶式的八种构造方法

对偶式的八种构造方法

对偶式的八种构造方法对偶式是数学中一种很酷炫的构造方法呢!那对偶式的八种构造方法到底是啥玩意儿?咱一个个来看。

第一种方法,就像搭积木一样,把式子中的某些项进行对称变换。

比如说,有个式子A+B,那它的对偶式可以是A-B。

注意哦,这可不是瞎变,得根据具体情况来,要是不小心变错了,那可就糟糕啦!这种方法在解决一些代数问题的时候超管用,就好比有了一把神奇的钥匙,可以打开难题的大门。

比如在化简复杂的多项式时,用这种对偶式的构造方法,说不定就能柳暗花明又一村呢!第二种方法呢,有点像玩镜子游戏。

把式子中的变量取反。

比如原来有个式子x+y,对偶式可以是-x-y。

这可得小心,别搞混了。

这种方法在研究函数的性质时很有用哦!想象一下,就像从不同的角度看一座山,能发现更多的美景。

第三种方法,就像是给式子穿上一件新衣服。

在式子中加入一些特殊的符号,比如绝对值、倒数啥的。

比如式子a/b,对偶式可以是b/a。

哎呀,这可不能乱加,得考虑清楚后果。

这种方法在解决比例问题的时候很厉害呢!就像有了一个魔法棒,可以变出意想不到的结果。

第四种方法,像是在玩拼图游戏。

把式子拆分成几个部分,然后分别构造对偶式,再组合起来。

比如式子ab+cd,对偶式可以是(-a)(-b)+(-c)(-d)。

这可得有耐心,一步一步来。

这种方法在解决复杂的方程问题时很有用哦!就像把一个大难题拆成小问题,逐个击破。

第五种方法,有点像变魔术。

把式子中的指数进行变换。

比如式子a^2+b^2,对偶式可以是a^(-2)+b^(-2)。

哇塞,这可太神奇了!但也得小心,别把自己绕晕了。

这种方法在研究指数函数的时候很有帮助呢!就像有了一双翅膀,可以飞得更高更远。

第六种方法,就像是在走迷宫。

把式子中的变量进行替换,然后构造对偶式。

比如式子x^2+y^2,把x 换成y,y 换成x,对偶式就是y^2+x^2。

嘿嘿,这可得有敏锐的观察力。

这种方法在解决对称问题的时候很厉害哦!就像找到了一条秘密通道,可以快速到达目的地。

柯西不等式的对偶式及应用

柯西不等式的对偶式及应用

柯西不等式的对偶式及应用柯西不等式是一个重要的数学定理,它提供了一种有效的方法来证明函数的最大值和最小值。

它的对偶式也是一个重要的数学定理,它可以用来求解优化问题,并在经济学、运筹学、控制论等领域有广泛的应用。

柯西不等式的原式是:设f(x)是定义在区间[a,b]上的连续函数,则有:$$\int_{a}^{b}f(x)dx\geqslant\frac{1}{b-a}[f(a)+f(b)]$$柯西不等式的对偶式是:设f(x)是定义在区间[a,b]上的连续函数,则有:$$\frac{1}{b-a}[f(a)+f(b)]\geqslant\frac{1}{2}[f(\frac{a+b}{2})]$$柯西不等式的对偶式可以用来求解优化问题,即求解函数f(x)在区间[a,b]上的最大值和最小值。

具体的做法是:首先,将区间[a,b]分成n 个子区间,每个子区间的宽度为$\frac{b-a}{n}$,然后,在每个子区间上取一个点,使得函数f(x)在该点取得最大值或最小值,最后,将这些点代入柯西不等式的对偶式,即可求出函数f(x)在区间[a,b]上的最大值和最小值。

柯西不等式的对偶式在经济学、运筹学、控制论等领域有广泛的应用。

在经济学中,柯西不等式的对偶式可以用来求解最优化问题,如求解最优生产组合、最优投资组合等。

在运筹学中,柯西不等式的对偶式可以用来求解最短路径问题、最小生成树问题等。

在控制论中,柯西不等式的对偶式可以用来求解最优控制问题,如最优控制策略、最优控制结构等。

总之,柯西不等式的对偶式是一个重要的数学定理,它可以用来求解优化问题,并在经济学、运筹学、控制论等领域有广泛的应用。

对偶单纯形法例题详细步骤

对偶单纯形法例题详细步骤

对偶单纯形法例题详细步骤
对偶单纯形法是一种常用的解除线性规划问题的数学方法,由美国数学家鲍门士(George B. Dantzig)在1950年提出,早期更多用于研究管理科学问题,现在广泛用于线性规划问题的求解。

先来回顾一下线性规划的定义:给定线性约束条件和目标函数,要求寻找这样一组变量使目标函数极值化,称为线性规划问题,其中的线性约束条件主要可以分为等于约束和不等于约束,可以分为最大化型和最小化型。

由于线性规划问题本身涉及到多个变量约束严格,可能由于几何等原因不容易采取直接解决,而且有可能会涉及到多目标求解,因此对偶单纯形法是一种更为合理的求解方法。

该方法的目标是建立一个对偶问题,该问题只有一个变量,可以用单纯形法解决。

通过构建相应的对偶问题,将多个目标变量整合为一个,用一个变量来表示即可,这样只需解决一个线性规划问题,就可以根据对偶变量的极值情况,求出原始变量的最优解。

具体到此例来说,我们的目标就是要找出最优解。

我们先要把问题抽象为一个线性规划问题,它包括等式约束条件和不等式约束。

接下来我们可以根据问题性质来分析模型,确定问题的类型,然后找出原始最优解,剩余的就是利用对偶单纯形法求解,方法往往是把原始的规划问题转换为对偶的单纯形问题,求出对偶变量的最优解,再把它转换成原始问题的最优解。

总之,对偶单纯形法是一种非常灵活有效的求解线性规划问题的数学方法,其安全可靠性被广泛应用于解决众多线性规划问题。

最优控制问题的对偶方法

最优控制问题的对偶方法

最优控制问题的对偶方法最优控制问题是研究如何设计控制策略使得系统在给定约束条件下实现最优性能的一门学科。

对于复杂的控制问题,常常采用对偶方法来求解。

对偶方法以约束条件对应的拉格朗日乘子为基础,通过求解对偶问题来得到原问题的最优解。

本文将详细介绍最优控制问题的对偶方法。

一、最优控制问题基本概念最优控制问题是研究如何选择控制变量和系统参数,以使得系统在某种性能指标下达到最优的问题。

最优性能可以通过最小化或最大化某个性能指标来度量,例如最小化系统能量消耗或最大化系统输出效果。

二、拉格朗日乘子法拉格朗日乘子法是一种解决约束优化问题的方法,对于最优控制问题同样适用。

拉格朗日乘子法通过引入拉格朗日乘子,将带约束的最优化问题转化为无约束的最优化问题,然后通过求解对偶问题来得到最优解。

三、最优控制问题的对偶方法最优控制问题的对偶方法是基于拉格朗日乘子法的。

首先,将原问题的约束条件引入拉格朗日函数,并引入拉格朗日乘子。

然后,通过最小化或最大化拉格朗日函数来得到对偶问题。

最后,通过求解对偶问题来得到原始问题的最优解。

四、对偶问题的求解对偶问题往往是原始问题的凸优化问题,可以通过凸优化的方法进行求解。

最常用的方法是KKT条件,它是判断凸优化问题最优解的必要条件。

KKT条件包括原问题的约束条件、对偶问题的不等式约束、变量非负约束以及拉格朗日乘子的非负性等。

通过求解KKT条件可以得到对偶问题的最优解,从而得到原问题的最优解。

五、最优控制问题的应用最优控制问题的对偶方法在众多领域有着广泛的应用。

例如,在工程控制中,对偶方法可以用于设计最优的控制策略,减少系统的能量消耗。

在经济学中,对偶方法可以用于优化资源分配,提高经济效益。

在交通控制中,对偶方法可以用于优化交通流量,减少交通拥堵。

六、最优控制问题的挑战与展望尽管最优控制问题的对偶方法在实际应用中取得了很多成果,但仍然存在一些挑战。

首先,由于最优控制问题往往是非凸的,求解过程中容易陷入局部最优。

用对偶单纯形法求对偶问题的最优解

用对偶单纯形法求对偶问题的最优解

用对偶单纯形法求对偶问题的最优解(共7页)-本页仅作为预览文档封面,使用时请删除本页-用对偶单纯形法求对偶问题的最优解摘要:在线性规划的应用中,人们发现一个线性规划问题往往伴随着与之配对的另一个线性规划问题.将其中一个称为原问题,另一个称为对偶问题.对偶理论深刻揭示了原问题与对偶问题的内在联系.由对偶问题引申出来的对偶解有着重要的经济意义.本文主要介绍了对偶问题的基本形式以及用对偶单纯形法求解对偶问题的最优解.关键词:线性规划;对偶问题;对偶单纯形Using Dual Simplex Method To Get The Optimal Solution Of TheDual ProblemAbstract:In the application of the linear programming, people find that a linear programming problem is often accompanied by another paired linear programming problem. One is called original problem. Another is called the dual problem. Duality theory reveals the internal relationsbetween the dual problem and the original problem. The solution of the dual problem is of a great economic significance. In this paper,we mainly discuss the basic form of the dual problem and how to use dual simplex method to get the optimal solution of the dual problem. Key words: linear programming;dual problem;dual simplex method1 引言首先我们先引出什么是线性规划中的对偶问题.任何一个求极大化的线性规划问题都有一个求极小化的线性规划问题与之对应,反之亦然,如果我们把其中一个叫原问题,则另一个就叫做它的对偶问题,并称这一对互相联系的两个问题为一对对偶问题.每个线性规划都有另一个线性规划(对偶问题)与它密切相关,对偶理论揭示了原问题与对偶问题的内在联系.下面将讨论线性规划的对偶问题的基本形式以及用对偶单纯形法求最优解.在一定条件下,对偶单纯形法与原始单纯形法相比有着显著的优点.2 对偶问题的形式对偶问题的形式主要包括对称形对偶问题[]3和非对称性对偶问题.对称形对偶问题设原线性规划问题为Max1122...n nZ c x c x c x =+++()11112211211222221122...............0.1,2,...,n n n n m m mn n nj a x a x a x b a x a x a x b a x a x a x bx j n +++≤⎧⎪+++≤⎪⎪⎨⎪+++≤⎪≥=⎪⎩()则称下列线性规划问题 Max 1122...m m W b y b y b y =+++()11112211211222221122...............0.1,2,...,n n n n m m mn n nj a y a y a y c a y a y a y c a y a y a y cy j m +++≤⎧⎪+++≤⎪⎪⎨⎪+++≤⎪≥=⎪⎩()为其对偶问题,其中(1,2,...,)i y i m =称其为对偶变量,并称()和()式为一对对称型对偶问题.原始对偶问题()和对偶问题()之间的对应关系可以用表2-1表示.这个表从横向看是原始问题,从纵向看使对偶问题.用矩阵符号表示原始问题()和对偶问题()为 CX Z =max原问题 ⎩⎨⎧≥≤0X b AX ()Yb W =min对偶问题 ⎩⎨⎧≥≤0Y C YA () 其中()12,,...,m Y y y y =是一个行向量. 非对称对偶问题线性规划有时以非对称形式出现,那么如何从原始问题写出它的对偶问题,我们从一个具体的例子来说明这种非对称形式的线性规划问题的对偶问题的建立方法.例1 写出下列原始问题的对偶问题43214765max x x x x Z ++-=⎪⎪⎩⎪⎪⎨⎧=≥-≥++--≤-+--=--+)4,3,2,1(032417281473672432143214321j x x x x x x x x x x x x x j解: 第一约束不等式等价与下面两个不等式约束724321-≤--+x x x x 724321≤++--x x x x 第二个约束不等式照写147364321≤-+-x x x x 第三个不等式变成32417284321≤--+x x x x以 121123,,,y y y y 分别表示这四个不等式约束对应的对偶变量,则对偶问题为 32211131477min y y y y W +++-= ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--+-≥-++--≥+--≥++-0,,,427746173225286322111322111322111322111322111y y y y y y y y y y y y y y y y y y y y令 12111y y y =-,则上式的对偶问题变为:3213147min y y y W ++-=12312312312323162852317647724,0,y y y y y y y y y y y y y y y ++≥⎧⎪-+≥-⎪⎪-+-≥⎨⎪---≥⎪≥⎪⎩无符号限制一般可以证明,若原问题中的某个变量无非负限制,则对偶问题中的相应约束为等式. 3 对偶单纯形法对偶问题求解具有重要的意义,有多种方法解决对偶问题.下面介绍用对偶单纯形法来解决线性规划的对偶问题.先介绍以下几个线性规划的基本概念[]6:基: 已知A 是约束条件的m n ⨯系数矩阵,其秩为m .若B 是A 中m m ⨯阶非奇异子矩阵(即可逆矩阵),则称B 是线性规划问题中的一个基.基向量:基B 中的一列即称为一个基向量.基B 中共有m 个基向量. 非基向量:在A 中除了基B 之外的一列则称之为基B 的非基向量. 基变量:与基向量相应的变量叫基变量,基变量有m 个.非基变量:与非基向量相应的变量叫非基变量,非基变量有n m -个. 由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m 元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解.首先重新回顾一下单纯形法的基本思想,其迭代的基本思路是:先找出一个基可行解,判断其是否为最优解,如果不是,则转换到另一更优的基可行解,并使目标函数值不断优化,直到找到最优解为止.我们可以用另一种思路,使在单纯形法每次迭代的基本解都满足最优检验,但不一定满足非负约束,迭代时使不满足非负约束的变量个数逐步减少.当全部基变量都满足非负约束条件时,就得到了最优解,这种算法就是对偶单纯形法.因此,单纯形法是从一个可行解通过迭代转到另一个可行解,直到检验数满足最优条件为止.对偶单纯形法是从满足对偶可行性条件出发通过迭代逐步搜索出最优解.在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失.现把对偶单纯形法的基本步骤总结如下[3]:第一,把所给的线性规划问题转化为标准型;第二,找出一个初始正则基0B ,要求对应的单纯形表中的全部检验数0j σ≤,但“右边”列中允许有负数;第三,若“右边”列中各数均非负,则0B 已是最优基,于是,已求得最优解,计算终止.否则转为第四步;第四,换基:“右边”列中取值最小(即负的最多)的数所对应的变量为出基变量.计算最小比值θ.最小比值出现在末列,则该列所对应的变量即为进基变量,换基后得新基1B ,以出基变量的行和进基变量列交点处的元素为主元进行单纯形迭代,再转入第三步.下面用一个例子具体说明用对偶单纯形法求线性规划问题最优解的步骤: 例1 求解线性规划问题 min 12315511W y y y =++;1231231233225524,,0y y y y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩添加松弛变量以后的标准型 min 12315511W y y y =++12341235123453225524,,,,0y y y y y y y y y y y y y ++-=⎧⎪++-=⎨⎪≥⎩ 将每个等式两边乘以-1,则上述问题转化为 min 12315511W y y y =++;12341235123453225524,,,,0y y y y y y y y y y y y y ---+=-⎧⎪---+=-⎨⎪≥⎩如果取()045,B Y y y =作为初试基变量,有如下初试单纯形表(表)由此可见,两个基变量45,y y 均取负值,所以,0B 所确定的基本解不是基可行解,从而也就不能用单纯形法求解.下面我们用一种新的方法对偶单纯形法求解此题,并通过例题来说明方法步骤.对偶单纯形法的基本思想:是保证检验数行全部非正的条件下,逐步使得“右边”一列各数变成非负.一旦“右边”一列各数均满足了非负条件(即可行性条件),则就获得最优解.现在,0B 不是可行基(称为正则基),为保证上述方法的实现,可按下面的方法确定出基变量和进基变量.出基变量的确定 可以取任意一个具有负值的基变量(一般可取最小的)为出基变量.在上例中,两个基变量()45,y y 都取负值,且45y =-最小,故 4y 为出基变量.现在考虑出基变量所对应的负所有元素 0ij a <,对每个这样的元素作比值jija σ',令 30min 0j ij j n ij ija a a σσθ≤≤⎧⎫⎪⎪'=≤=⎨⎬''⎪⎪⎩⎭ () 则 3x 为进基变量.在表2-4中,基变量 4y 所在的行有三个ij a '取负值,其值分别为-3,-2,-2.它们对应的检验数分别为-15,-5,-11. 于是212155115min ,,3222a σθ---⎧⎫===⎨⎬---⎩⎭ 由此可知, 2y 为进基变量.主元素为 2ija '=-,对表2-1进行一次迭代便得表2-2,在表2-2的(1)中,基变量 3y 所取之值 2302b '=-<,故 3y 为出基变量.又21215561522min ,,711722a σθ⎧⎫--⎪⎪-===⎨⎬'-⎪⎪--⎩⎭故 3y 是进基变量;,主元为 2172a '=-.对(1)再作单纯形变换,得表3-1之(2).由于它的“右边”已列出全部非负,故它就是最优表.最优解为:137y '=,2137y '=, 3450y y y '''===;最优值 1107w '=.然而在有些问题中,我们很容易找到初始基本解,因此使用对偶单纯形法求解线性规划问题是有一定条件的,其条件是:(1) 单纯形表的b列中至少有一个负数.(2) 单纯形表中的基本解都满足最优性检验.对偶单纯形法与原始单纯形法相比有两个显著的优点:(1) 初始解可以是不可行解,当检验数都非正时,即可进行基的变换,这时不需要引入人工变量,因此简化了计算.(2) 对于变量个数多于约束方程个数的线性规划问题,采用对偶单纯形法计算量较少.因此对于变量较少、约束较多的线性规划问题,可以先将其转化为对偶问题,然后用对偶单纯形法求解.对变量多于约束条件的线性规划问题,用对偶单纯形法进行计算可以减少计算的工作量.因此对变量较少,而约束条件很多的线性规划问题,可先将此问题转化为对偶问题,然后用对偶单纯形法求解.用对偶单纯形法求解线性规划问题的标准型,要求初始单纯形表检验数行的检验数必须全部非正,若不能满足这一条件,则不能运用对偶单纯形法求解.对偶单纯形法的局限性主要是,对大多数线性规划问题来说,很难找到一个初始可行基,因此这种方法在求解线性规划问题时,很少单独应用.参考文献:[1] 吴祈宗.运筹学学习指导及习题集[M] .北京:机械工业出版社,2006.[2] 孙君曼,冯巧玲,孙慧君,等.线性规划中原问题与对偶问题转化方法探讨[J].郑州:工业学院学报(自然科学版),2001,16(2):44~46.[3] 何坚勇.运筹学基础.北京:清华大学出版社,2000.[4] 周汉良,范玉妹. 数学规划及其应用.北京:冶金工业出版社.[5] 陈宝林.最优化理论与算法(第二版) .北京:清华大学出版社,2005.[6] 张建中,许绍吉. 线性规划. 北京:科学出版社,1999.[7] 姚恩瑜,何勇,陈仕平.数学规划与组合优化.杭州:浙江大学出版社,2001.[8] 卢开澄.组合数学算法与分析.清华大学出版社, 1982.[9] Even. Shimon. Algzithmic Combinatorial. The Macmillan Company, New York, 1973.[10] J.P.Tremblay, R.Manohar.Discrete Mathematical Structures with Applications to Computer Science, 1980.[11] 李修睦.图论.华中工学院出版社, 1982.[12] Pranava R G.Essays on optimization and incentive contracts[C].Massachusetts Institute of Technology, Sloan School of Management: Operations Research Center, 2007: 57- 65.[13] Schechter,M.A Subgradient Duality Theorem,J.Math Anal Appl.,61(1977),850-855.[14] Maxims S A. Note on maximizing a submodular set function subject to knap sack constraint[J]. Operations Research Letters,2004, 32 (5) : 41 - 43.[15] Schechter,M.More on Subgradient Duality,J.,71(1979),251-262.[16] Nemhauser GL, Wolsey L A, Fisher M L.An analysis of approximations formaximizing submodular set functionsII[J].Math.Prog.Study, 1978, 8: 73 - 87.[17] SviridenkoM.A note on maximizing a submodular set function subject to knap sack contraint[J].Operations Research Letters,2004, 32: 41 - 43.[18] 卢开澄.图论及其应用.北京:清华大学出版社,1981.[19] 张干宗.线性规划(第二版).武汉:武汉大学出版社,2007.[20] 周维,杨鹏飞.运筹学.北京:科学出版社,2008.[21] 宁宣熙.运筹学实用教程(第二版).北京:科学出版社发行处,2009.。

16.对偶理论(三)对偶单纯形法

16.对偶理论(三)对偶单纯形法

16.对偶理论(三)对偶单纯形法⼉童节快乐呀这⼀部分我们考虑原问题是标准型的问题,并且介绍对偶单纯形法。

在上⼀节的强对偶定理的证明中,对标准型问题使⽤单纯形法,定义了对偶变量p为p T=c T B B−1。

然后由原问题最优性条件c T−c T B B−1A≥0T得到了等价表达的对偶可⾏性条件p T A≤c T。

那么我们之前介绍的单纯形法可以看作是在保证原问题可⾏的前提下去寻找对偶可⾏的解。

那么反过来,我们也可以从对偶可⾏的前提下去寻找原问题可⾏的解,这种算法称为对偶算法。

在接下来,将介绍对偶单纯形法。

并且说明这个算法事实上求解了对偶问题,更近⼀步,它是从对偶问题的⼀个基本可⾏解移动到另⼀个。

对偶单纯形法考虑⼀个标准型的线性规划问题,假设矩阵A是⾏满秩(为什么这个假设具有⼀般性,可参考线性规划中的⼏何(三))。

记B为基本矩阵,它包含了矩阵A的m个线性⽆关的列。

考虑下表(与之前介绍的单纯形法中的表⼀样)更详细的有不过,在这⾥不再要求B−1b是⾮负的,那就说明此时的解是⼀个原问题的基本解但不⼀定是可⾏解。

但是,我们要求¯c≥0成⽴,也相当于p T A≤c T成⽴(具体见上⼀节强对偶定理证明)。

这说明现在有了⼀个对偶问题的可⾏解,并且对偶问题的⽬标函数值为p T b=c T B B−1b=c T B x B,这恰好就是上表中的左上⾓元素的相反数。

如果不等式B−1b≥0也成⽴,那么这个解也将是⼀个原问题的可⾏解,并且⽬标函数值相同,这说明我们找到了原问题和对偶问题的最优解。

如果不等式B−1b≥0并不成⽴,那么我们将寻找下⼀个基矩阵。

找到满⾜x B(l)<0的l,考虑表中的第l⾏为pivot ⾏(x B(l)),v1,⋯,v n),其中v i为B−1A i的第l个元素。

对于满⾜v i<0的所有i(如果存在的话),我们计算⽐率¯c i/|v i|,然后记j为这些⽐率中最⼩的那个的下标(为什么这么选呢,后⾯会说),也就是说v j<0且¯cj|v j|=min{i∣v i<0}¯ci|v i|.称v j为pivot 元素。

解不等式的方法归纳

解不等式的方法归纳

解不等式的方法归纳在数学中,不等式是一种表示数值之间关系的数学语句。

解不等式是指找到使不等式成立的数值范围。

解不等式的方法主要包括图像法、代数法和数轴法。

在本文中,我们将对这些方法进行归纳和总结。

一、图像法图像法是一种直观的解不等式方法,通过在坐标平面上绘制不等式的图像,可以很清楚地找到使不等式成立的数值范围。

当不等式是一次函数时,我们可以使用图像法解决。

例如,对于线性不等式3x + 4 < 7,我们可以绘制出线性函数y = 3x + 4的图像,并找到y坐标小于7的x的范围。

图像法特别适用于一次函数和简单的几何图形。

二、代数法代数法是一种基于代数运算的解不等式方法。

通过代数运算,我们可以将不等式转化为等价的形式,并找到使等价不等式成立的数值范围。

代数法非常灵活,适用于各种类型的不等式。

例如,对于二次不等式x^2 - 3x > 2,我们可以将其转化为等价不等式x^2 - 3x - 2 > 0,然后通过求解方程或利用二次函数的性质找到x的范围。

三、数轴法数轴法是一种基于数轴的解不等式方法。

通过在数轴上标记出关键点,并结合区间的概念,可以清晰地找到使不等式成立的数值范围。

数轴法尤其适用于一元一次不等式和绝对值不等式。

例如,对于一元一次不等式2x + 5 ≤ 9,我们可以在数轴上标记出x = 2的位置,并确定 x 的范围在闭区间[2, 9] 内。

综上所述,解不等式的方法可以根据具体情况选择使用图像法、代数法或数轴法。

其中图像法适用于一次函数和几何图形,代数法适用于各种类型的不等式,而数轴法则适用于一元一次不等式和绝对值不等式。

不同方法的应用取决于不等式的形式和具体求解的目标。

在实际解题过程中,我们可以根据问题的要求选择合适的方法以求得准确的解答。

通过掌握这些解不等式的方法,并在实践中不断应用,我们可以提高解题的效率和准确性。

同时,对于解不等式的方法归纳和总结,有助于我们更深入地理解不等式的性质和求解方法,为解决更复杂的问题打下坚实的基础。

拉格朗日乘数法在条件不等式证明中的应用

拉格朗日乘数法在条件不等式证明中的应用

拉格朗日乘数法在条件不等式证明中的应用拉格朗日乘数法是代数学中的重要方法之一,在条件不等式证明中也有着重要的作用。

1. 简介拉格朗日乘数法也称拉格朗日对偶理论,是来源于18度世纪法国数学家安东尼·拉格朗日,它通过对问题建立对偶形式来求解最优化问题,这是一个针对最优化性质、约束机会,采用增加一组不等式的方法,其优势在于它的灵活性和可扩展性,以满足最优化问题的求解要求。

2. 应用场景①条件不等式证明中,当有方程如 $y=Ax$ 和二次限制不等式$c_{1}≦x≦c_{2}$,我们可以采用拉格朗日乘数法,求线性规划函数的最大最小值。

②在计算积分时,可以通过拉格朗日乘数法,把计算积分转换成一个相应的最大值问题,实现计算积分的快捷性。

③在线性规划中,如果函数有一些约束条件,就可以用拉格朗日乘数法先把约束条件当做不等式求解出相应的乘数,然后代入函数求解即可。

3. 解答流程拉格朗日乘数法在条件不等式证明中的解答流程如下:①构造函数:设原函数为$max(f(x))$,构造等价的函数:$L(x,\lambda)=f(x)-\lambda\cdot g(x)$;②求解临界点:求函数$ L(x,\lambda)=f(x)-\lambda\cdot g(x)$的极值,其中$g(x)$为约束条件,$\lambda$为拉格朗日乘数;③代入求解:把第二步求得的极值$x^*$ 代入原函数,获取最优解;④相应结果求解出临界点,即可得出原函数的最大值和最小值。

4. 优势拉格朗日乘数法在求解条件不等式证明中有很大的用处,它有以下优势:①具有灵活性:拉格朗日乘数法可以把很多运筹学问题,如最大值、最小值、等值点,转换成对偶形式,以满足不同最优化问题求解的要求;②易于解答:拉格朗日乘数法采用增加不等式的思想,使得待求问题变得简单,易于解答;③易于扩展:拉格朗日乘数法可以根据实际应用的需要增加或减少变量,使得变量的类型和数量不受限制,具有良好的可扩展性。

不等式的几种证明方法及其应用

不等式的几种证明方法及其应用

不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。

不等式的性质与证明方法

不等式的性质与证明方法

不等式的性质与证明方法不等式是数学中常见的一种数对关系,描述了数值之间的大小关系。

在不等式中,我们关注的是不同数值之间的相对大小,而不是它们的具体数值。

本文将介绍不等式的一些基本性质以及一些常用的证明方法。

一、不等式的性质1. 传递性在不等式中,如果a>b,且b>c,那么有a>c。

这个性质叫做不等式的传递性。

传递性是不等式证明中常用到的性质,可以通过多次使用传递性来推导出一些复杂的不等式。

2. 反身性在不等式中,对于任何一个数a,都有a≥a。

这个性质叫做不等式的反身性。

即一个数总是大于等于自身。

3. 反对称性在不等式中,如果a≥b且b≥a,那么有a=b。

这个性质叫做不等式的反对称性。

反对称性表示如果两个数既大于等于彼此又小于等于彼此,则这两个数应该相等。

4. 加法性和减法性在不等式中,如果a≥b,那么有a+c≥b+c;如果a≥b,那么有a-c≥b-c。

这个性质叫做不等式的加法性和减法性。

加法性和减法性表示在不等式两边同时加或减一个常数,原不等式的大小关系仍然成立。

5. 乘法性和除法性在不等式中,如果a≥b且c>0,那么有ac≥bc;如果a≥b且c<0,那么有ac≤bc。

这个性质叫做不等式的乘法性和除法性。

乘法性和除法性表示在不等式两边同时乘或除一个正数(或负数),原不等式的大小关系仍然成立,但需要注意,当乘或除一个负数时,不等号的方向会颠倒。

二、证明方法1. 直接证明法直接证明法是最常见的证明方法之一,也是最简单的一种方法。

这种方法通过对不等式进行一系列的推导和化简,最终直接得出结论。

例如,对于不等式a+b≥2√(ab),可以利用乘法性、加法性和反身性进行证明。

2. 对偶证明法对偶证明法是一种证明方法,通过将不等式中的符号进行翻转,然后利用已知的性质或定理进行证明。

例如,对于不等式a+b≥2√(ab),可以对偶后得到4ab≥(a+b)²,然后再利用乘法性和加法性进行证明。

(运筹学大作业)单纯性法与对偶单纯性法的比较

(运筹学大作业)单纯性法与对偶单纯性法的比较

对偶单纯形法与单纯形法对比分析1.教学目标:通过对偶单纯形法的学习,加深对对偶问题的理解2.教学内容:1)对偶单纯形法的思想来源 2)对偶单纯形法原理3.教学进程:1)讲述对偶单纯形法解法的来源:所谓对偶单纯形法,就是将单纯形法应用于对偶问题的计算,该方法是由美国数学家C.莱姆基于1954年提出的,它并不是求解对偶问题解的方法,而是利用对偶理论求解原问题的解的方法。

2)为什么要引入对偶单纯形法:单纯形法是解线性规划的主要方法,对偶单纯形法则提高了求解线性规划问题的效率,因为它具有以下优点: (1)初始基解可以是非可行解, 当检验数都为负值时, 就可以进行基的变换, 不需加入人工变量, 从而简化计算; (2)对于变量多于约束条件的线性规划问题,用对偶单纯形法可以减少计算量,在灵敏度分析及求解整数规划的割平面法中,有时适宜用对偶规划单纯形法。

由对偶问题的基本性质可以知道,线性规划的原问题及其对偶问题之间存在一组互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题的变量;这些互相对应的变量如果在一个问题的解中是基变量,则在另一问题的解中是非基变量;将这对互补的基解分别代入原问题和对偶问题的目标函数有z=w 。

据此可知,用单纯形法求解线性规划问题时,在得到原问题的一个基可行解的同时,在检验数行得到对偶问题的一个基解,并且将两个解分别代入各自的目标函数时其值相等。

我们知道,单纯形法计算的基本思路是保持原问题为可行解(这时一般其对偶问题为非可行解)的基础上,通过迭代,增大目标函数,当其对偶问题的解也为可行解时,就达到了目标函数的最优值。

那么对偶单纯形法的基本思想可以理解为保持对偶问题为可行解(这时一般原问题为非可行解)的基础上,通过迭代,减小目标函数,当原问题也达到可行解时,即达到了目标函数的最优值。

其实对偶单纯形法本质上就是单纯形法, 只不过在运用时需要将单纯形表旋转一下而已。

不等式技巧对偶

不等式技巧对偶

不等式技巧对偶同学们,今天咱们来唠唠不等式技巧对偶这个事儿。

这就像是数学里的一对小翅膀,能让你在解决不等式问题的时候飞得更高更远。

1. 啥是对偶呢?对偶可不是什么神秘的魔法,在不等式里,它就像是一种巧妙的对应关系。

比如说,咱们有一个不等式 a + b≥2√(ab),这就是一个基本的不等式形式。

那它的对偶形式呢?咱们可以通过一些规则找到。

这就好比是给这个不等式找了个“双胞胎”,不过这个“双胞胎”有着自己独特的地方。

对偶的意义可大了去了。

它能帮助我们从不同的角度去看待不等式。

就像你看一个东西,从正面看是一种样子,从对偶的角度看又是另一种样子。

这两个角度加起来,就能让我们对这个不等式理解得更透彻。

2. 对偶技巧的运用在证明不等式的时候,对偶技巧有时候能起到意想不到的效果。

比如说,我们要证明一个比较复杂的不等式,直接证可能很麻烦。

但是如果我们能找到它的对偶形式,说不定就柳暗花明了。

就像走迷宫,你从一个入口进去很难找到出口,但是你从出口对应的那个地方(对偶的角度)开始看,可能就更容易找到路了。

具体怎么做呢?假设我们有不等式A,我们要先找出它可能的对偶形式B。

这就需要我们对不等式的结构有比较深入的了解。

比如说,如果A是关于和与积的不等式,那B可能也是类似结构的,但是和与积的元素可能会有一些变化。

然后呢,我们可以通过证明B来间接证明A。

这就好比是我们要爬上一座山,直接爬很陡很难,我们就从山的背面(对偶形式)绕一下,说不定就能轻松登顶了。

3. 一些常见的对偶类型加法与乘法的对偶。

就像我们前面提到的 a + b≥2√(ab)这个不等式,左边是加法,右边涉及到乘法(积的形式)。

这种加法和乘法之间的转换在对偶中是很常见的。

还有关于变量顺序的对偶。

比如说,我们有不等式关于x和y,x在前y在后,那它的对偶形式可能就是y在前x在后,当然结构也会有相应的调整。

这就像是把两个人的位置换了一下,但是他们之间的关系还是有一定的规律的。

微微对偶不等式

微微对偶不等式
在 % 中%第一行变为"/!&!.#%第二行变为".!/! &#%第三'第四行不动%得 %'易得("%#%("%#%即"*#'
值得注意的是%若-89; 中%&%.%/ 是三边长%-是半周 长% 是面积%则由此可得"-0&#)&"-0.#)&"-0/#)% "'事实上%左边%"-0&#"-0.#"-0/#*-$"'
7#(
!"&# $&! $ & $&!#
'.%# .%! & .%!)
&&# &! & &!( %(
'.! .!5! & .#)
!"&# $&! $ & $&!%.! %.!5! % & %.##
!
" # &*.!5*' *##
因此%所需时间少的坐席收来报量多的城市的报最好'
例$!若-8!8"8( 三边长为 &*%相应高为 :*"*$!%
'& . /)
'. / &)
&& . /(
&& . /(
&./
# # & . / %!% #
'
&./
'. / &)
'& . /)
!!微微对偶不等式
****
易知!
!!("!#%(""#%即"!#$ !!)""#%)"!#%即""#$ !!("!#%("##%即"(#$ !!)"##%)"!#%即")#'

反演和对偶例题

反演和对偶例题

反演和对偶例题摘要:一、反演和对偶的基本概念1.反演2.对偶二、反演和对偶的应用1.数学问题2.逻辑推理3.语言表达三、反演和对偶的解题方法1.反演法2.对偶法四、反演和对偶的实战演练1.数学题例2.逻辑题例3.语言题例五、反演和对偶的总结与拓展1.解题技巧2.应用领域3.进一步研究正文:反演和对偶是数学、逻辑和语言学中常见的概念,它们在解决实际问题和理论研究中具有重要意义。

1.反演反演是指对于一个命题P,它的反演命题是“非P”。

例如,命题“今天下雨”的反演命题是“今天不下雨”。

反演命题是原命题的否定,但并非所有命题的否定都可以用反演表示。

2.对偶对偶是指对于一个命题P,它的对偶命题是“如果P,则Q”。

例如,命题“如果今天下雨,那么我会带伞”的对偶命题是“今天没下雨,所以我没带伞”。

对偶命题是原命题的另一种表达方式,常常用来表示条件关系。

二、反演和对偶的应用反演和对偶在数学、逻辑和语言表达中都有广泛应用。

1.数学问题在数学中,反演和对偶可以帮助我们解决一些复杂的问题。

例如,在求解方程时,我们可以将原方程进行反演或对偶,从而简化问题。

2.逻辑推理在逻辑推理中,反演和对偶可以用来证明或反驳一个命题。

通过反演或对偶,我们可以发现原命题的矛盾之处,从而证明或推翻它。

3.语言表达在语言表达中,反演和对偶可以使句子更加丰富、有趣。

例如,诗词中的对仗就是利用反演和对偶来实现的。

1.反演法反演法就是将原问题进行否定,从而转化为一个更容易解决的问题。

例如,求解不等式|x-3|>2,可以转化为求解两个不等式:x-3>2和x-3<-2。

2.对偶法对偶法就是将原问题转化为一个条件问题,从而简化问题。

例如,求解方程x^2=1,可以转化为求解条件问题:如果x^2=1,那么x等于多少?四、反演和对偶的实战演练1.数学题例求解方程|x-3|=2。

解:利用反演法,转化为两个方程:x-3=2和x-3=-2,解得x=5和x=1。

运筹学_第2章_对偶理论习题

运筹学_第2章_对偶理论习题

第二章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3无限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2无限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。

试用互补松弛定理求该线性规划问题的最优解。

解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。

又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。

故原问题的最优解为X*=(0,0,4,4)T2.4用对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。

对偶不等式的定义

对偶不等式的定义

对偶不等式的定义对偶不等式1. 定义•对偶不等式是数学中用来描述两个不等式之间关系的概念。

它与原始不等式满足一定的对偶关系,即原始不等式经过一系列的变换后可以得到对偶不等式。

•对于形如ax+by≤c的原始不等式,其对应的对偶不等式为−ax−by≥−c。

•在对偶不等式中,符号的改变是关键,原始不等式中的≤成为对偶不等式中的≥,同时系数的符号和常数项的符号也发生了变化。

2. 理由•对偶不等式是有广泛应用的一种数学工具,可以用来解决优化问题。

通过将原始问题转化为对偶问题,可以得到等价的求解方式。

•对偶不等式的应用在经济学、金融学、运筹学等领域都有涉及。

在经济学中,对偶不等式可用于描述供求关系、成本最小化等问题。

在金融学中,对偶不等式可用于描述资产定价、投资组合管理等问题。

在运筹学中,对偶不等式可用于描述线性规划、整数规划等问题。

•对偶不等式的研究有助于深入理解线性代数、优化理论等数学概念,对于培养数学思维和解决实际问题具有重要意义。

3. 书籍简介以下是一些与对偶不等式相关的经典著作:•《对偶性理论与应用》:作者 Tom M. Apostol,该书系统介绍了数学对偶性的基本概念和应用。

全书内容详细、思路清晰,适合作为对偶不等式的入门读物。

•《凸优化》:作者 Stephen Boyd 和 Lieven Vandenberghe,该书深入介绍了对偶性在凸优化中的应用。

对凸集、凸函数、凸优化等内容进行了全面的讲解,包括对偶问题的形式化表述和求解方法。

•《线性规划与网络流优化》:作者水泽清,该书囊括了线性规划和网络流优化两个方向的内容。

其中包含对偶模型的推导和运用,对线性规划和网络流问题的概念、算法和应用进行了详细的介绍。

以上著作都涵盖了对偶不等式的相关知识,可以作为进一步学习和研究的参考资料。

总之,对偶不等式作为一种重要的数学概念,具有广泛的应用领域和深远的理论意义。

通过研究对偶不等式,可以拓宽思维,提高问题的解决能力,并且为实际问题的求解提供了一种有效的方法。

八种方法解决高中数学不等式问题

八种方法解决高中数学不等式问题

八种方法解决高中数学不等式问题下面用八种方法解决高中数学常见的不等式问题: 例题:224x y ,求34x y 的最大值.【解法一】柯西不等式先备知识:柯西不等式(二维下的)解:3,4,,a b c x d y ,由柯西不等式得:222223434x y x y 所以:3410x y ,当且仅当34x y ,即68,55x y 时,取得最大值10.【总结】柯西不等式常用,建议理解记忆。

【解法二】线性规划解:令34x y t ,则344t y x (将t 看作是直线的截距,转化为求直线截距的范围) ,x y 满足直线方程344t y x ,也满足方程224x y ,因此:显然,由图像得: 2.5104t t .【总结】数形结合典型做法,但是线性规划新高考不考。

建议从数形结合角度理解。

【解法三】判别式法解:令34x y t ,则344t y x ,代入方程:224x y ,得: 223444t x x , 整理,得:222534016816t x tx ………………(*) 一元二次方程(*)有解,则:2232544081616t t210010t t . 【总结】常用方法之一,解决“条件极值”问题的常用手段。

【解法四】三角换元224x y 22144x y ,不妨令:cos ,sin 22x y x x . 则:34346cos 8sin 10cos sin 10sin 1055x y x x x x x,(3tan 4 ). 【总结】三角换元、参数法建议学有余力的同学适当了解。

【解法五】对偶式先备知识: 34x y 的对偶式为43x y2223492416x y x xy y (1)2224316249x y x xy y (2)(1)+(2),得:222234432525100x y x y x y223410043100x y x y .【总结】进阶方法,学有余力可了解。

【解法六】向量法(类似柯西不等式)34x y 可以看作向量 3,4,,a b x y 的数量积:34a b x y .所以:cos ,10a b a b a b.【总结】注意观察代数式的结构特征。

用kkt条件求不等式约束对应的对偶问题最优解

用kkt条件求不等式约束对应的对偶问题最优解

用kkt条件求不等式约束对应的对偶问题最优解好啦,今天咱们就来聊聊“用KKT条件求不等式约束对应的对偶问题最优解”这件事。

听起来是不是有点儿复杂?哎呀,别怕,咱们一步一步来,保证让你听得懂,懂了之后还觉得特别有趣。

毕竟,就算是数学题,咱也能聊得轻松点儿,不是嘛?首先呢,啥是KKT条件?其实它就是优化问题中一个特别有用的“武器”,帮助我们找最优解。

你可以把它当成一个万能钥匙,能打开很多复杂问题的门。

举个例子,就像你去买东西,商店里标的价格只是“原价”,如果想拿到最优惠的折扣,你就得找到合适的优惠券,这个优惠券就是KKT条件。

听着就有点儿像打开宝箱的感觉吧?然后呢,讲到不等式约束问题,你可以把它想象成,咱们有个“小伙伴”在旁边,时不时提醒你:“嘿,别超出这个范围啊!”这种情况就是有了不等式约束。

其实呀,它和等式约束有点儿不同。

等式约束就像你被拴在一条“绳子”上,不能往外跑,不等式约束就更像你在规定的范围内随便动,但不能跑太远。

这时候,咱们就得借助KKT条件来帮忙。

KKT条件可以让我们找到这个最优解,解决这个约束下的优化问题。

这个最优解不是一个简单的“随便解”,它必须满足一定的条件,就像是你做一道题时,标准答案必须满足公式和步骤,不能偷懒。

KKT条件就是确保你做对了每一步,找到了那个最靠谱的解。

好啦,现在进入正题。

我们知道,任何优化问题都离不开目标函数和约束条件,不等式约束就是咱们最常见的其中一种。

为了求解最优解,咱们先设定一个“对偶问题”,你可以把它当成原问题的“镜像”,它长得可能差不多,但其实是另外一种角度的看法。

对偶问题可不是一蹴而就的,它得经过一些“细致”操作才能从原问题转变过来。

这个过程呢,咱们就得用到KKT条件了。

KKT条件,它给了咱们三大步骤,大家一定要记住。

这三大步骤分明了,才能顺利求出最优解。

第一步,要保证原问题的目标函数是符合一定的条件,这个条件听起来很复杂,但简单来说就是目标函数在一定约束下,不能违反规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于不等式①, 设:
则 A > B > C > D , 于是有: A4>ABCD=4n+1
所以, A >
即:

可以类似证明, 不等式①, ②, ③可推广为以下更一般的不等式:
显然 A > B , 于是有: A2>AB= 所以,A>
即 对于不等式②, 设:
=2n+1
其中, k ∈ N , k ≥ 2
报, 2 0 0 0 , 4 .
则 A > B > C , 于是有: A3>ABC=
所以 A >
=3n+1
即 相对于命题组给的答案, 构造对偶法来解该题显然要简单得
科技资讯 SCIENCE & TECHNOLOGY INFORMATION
171
参考文献 [1] 徐和郁, 徐苏焦. 例谈配偶法解题[ J ] . 数学通报, 1 9 9 2 , 1 2 . [2] 周步骏, 文家金. 1 9 9 8 年高考第 2 5 题的推广[ J ] . 数学通报,
2000,2. [3] 李玉程, 林秀清. 巧用构造数列法, 妙解( 证) 三角题[ J ] . 数学通
巧用构造对偶法解决不等式问题是一种解题技巧, 它主要是 根据问题所涉及的数学式子 A 的特点, 给它配上一个合适的式子 B , 使 A ※ B (“※”表示某种数学运算, 如加法运算、乘法运算等) 成为对这个问题来说是容易处理的式子, 以便从中找到解题的突 破口, 使问题间接获解。下面, 我们就运用该方法, 来简单地解决 一道高考压轴题, 并由此得到一个更一般的结论。
科 技 教 育
科技资讯 2009 NO.06
SCIENCE & TECHNOLOGY INFORMATION
巧用构造对偶法 妙解高考压轴题
李永珊 ( 广西柳州畜牧兽医学校 广西柳州 5 4 5 0 0 3 )
摘 要: 构造法是解决数学问题的有效途径之一。在此, 通过构造对偶法来妙解一道高考题, 并由此得到另一个一般的形式。 关键词: 构造对偶法 妙解高考题 一般形式。 中图分类号: G 6 3 3 文献标识码: A 文章编号: 1 6 7 2 - 3 7 9 1 ( 2 0 0 9 ) 0 2 ( c ) - 0 1 7 1 - 0 1
1 9 9 8 年普通高等学校招生全国统一考试数学试题压轴题, 文、 理科第二小题, 最后可分别归结为证明以下不等式:
多了, 而且,பைடு நூலகம்由不等式①, ②容易得以下不等式: ③
要证明此不等式, 可仿照不等式①, ②的证明, 设:
文Ⅱ:

理Ⅱ:

对于这两个不等式的证明, 在命题组给出的答案中, 都统一采 用了数学归纳的方法, 这是比较麻烦的, 但如果我们采用对偶法, 该问题相对就要简单得多了, 具体如下:
相关文档
最新文档