局部放电检测原理介绍

合集下载

局部放电测量原理及方法

局部放电测量原理及方法

2 局部放电试验复合介质中的电场分布第一节局部放电特征及原理1.局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。

2.特性:局部放电发生在电极之间,但放电并未贯穿电极。

3.原因:设备绝缘内部存在缺陷,在高电压作用下,缺陷发生重复性击穿。

4.现象:绝缘内气体的击穿,局部范围内固体或液体介质击穿,电极表面尖端放电等。

5.危害:放电能量小,短时存在不影响电气设备的绝缘强度。

长期存在将产生累积效应,使绝缘性能逐渐劣化,最后导致整个绝缘击穿。

局部放电导致绝缘劣化的原因1、局部温度升高。

在发生局部放电的气隙内,局部温度可达1000o C。

2、带电粒子高速碰撞。

3、化学腐蚀。

局部放电产生臭氧,臭氧与氮生成一氧化氮和二氧化氮,再与水蒸气反应生成硝酸。

局部放电伴随的物理现象主要物理过程:电荷转移其它方面:电能损耗、电磁辐射;超声波、光、热、新的生成物等。

伴随着电荷转移,最明显的特征是反映到试品施加电压的两端,有微弱的脉冲电压信号。

局部放电发生过程以绝缘介质中存在的气泡为例:1、工频电压施加在绝缘介质两端,气泡上承受一定的电压;2、气泡两端的电压上升到气泡的击穿电压时,则发生放电;3、放电过程使大量中性气体分子电离,变成正离子和电子或负离子,形成了大量的空间电荷。

4、局部放电产生的空间电荷在外加电场作用下迁移到气泡壁上,形成了与外加电场方向相反的内部电压,这时气泡上剩余电压是外部电压与内部电压的叠加;5、当气泡上的实际电压小于气泡的击穿电压时,局部放电停止;当气泡上的电压随外加电压的上升而上升,直到重新到达其击穿电压时,气泡再次击穿,出现第二次放电。

第一次放电第二次放电第n次放电局部放电发生与否?局部放电测量原理检测由于局部放电产生的微小电压脉冲,并计算出放电电荷量。

名词术语1.视在放电量q:是指在试品两端注入一定电荷量,使试品端电压的变化量和局部放电时端电压变化量相同。

电力电缆的局部放电检测与处理

电力电缆的局部放电检测与处理

电力电缆的局部放电检测与处理局部放电是电力电缆中常见的故障形式之一,它会导致电缆损坏、短路等严重后果。

因此,对电力电缆进行局部放电的及时检测与处理,具有重要的意义。

本文将介绍电力电缆局部放电的检测原理、方法以及处理措施。

一、电力电缆局部放电的检测原理局部放电是指电缆中的电荷在局部区域释放能量,造成电弧放电或脉冲放电的现象。

电缆在运行或负荷过程中,由于介质老化、控制电极不良、绝缘结构破损等原因,可能引发局部放电。

因此,及时检测局部放电的存在是至关重要的。

电力电缆局部放电的检测可以通过不同的方法实现。

其中主要包括以下几种:1. 电缆局部放电检测仪器:采用高频电流放电法、超声波法、暂态地电压法等原理进行检测,可以对电缆进行全面、精确的监测。

2. 红外热像仪:通过检测电缆表面的热量分布,可以发现局部放电产生的热量异常,提前发现潜在故障。

3. 电缆局部放电监测系统:通过长期、实时监测电缆的电压、电流等参数,及时判断电缆是否存在局部放电,保障电力系统的稳定运行。

二、电力电缆局部放电的检测方法1. 高频电流放电法:通过检测电缆导体内部的高频电流信号,判断是否存在局部放电现象。

2. 超声波法:利用超声波的传导和反射特性,检测电缆绝缘及连接部位是否存在局部放电。

3. 暂态地电压法:通过在电缆两端施加暂态地电压,通过检测地电压的变化情况,判断是否存在局部放电。

三、电力电缆局部放电的处理措施当电力电缆存在局部放电时,需要及时采取相应的处理措施,避免故障扩大,确保电力系统的正常运行。

具体处理措施包括:1. 局部放电源的隔离:通过对电缆的发生放电部位进行隔离,防止放电的继续发展。

2. 放电源的修复:及时修复局部放电源,修复或更换损坏的电缆绝缘部分。

3. 系统的升级改造:通过对电力系统进行升级改造,提高电缆的绝缘性能,减少局部放电的可能性。

4. 定期检测与维护:定期对电力电缆进行检测与维护,及时排除潜在的故障隐患,提高电缆的安全可靠性。

局部放电试验原理

局部放电试验原理

局部放电试验第一节局部放电特性及原理一、局部放电测试目的及意义局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。

局部放电的种类:①绝缘材料内部放电(固体-空穴;液体-气泡);②表面放电;③高压电极尖端放电。

局部放电的产生:设备绝缘内部存在弱点或生产过程中造成的缺陷,在高压电场作用下发生重复击穿和熄灭现象-局部放电。

局部放电的特点:①放电能量很小,短时间内存在不影响电气设备的绝缘强度;②对绝缘的危害是逐渐加大的,它的发展需要一定时间-累计效应-缺陷扩大-绝缘击穿。

③对绝缘系统寿命的评估分散性很大。

发展时间、局放种类、产生位置、绝缘种类等有关。

④局部放电试验属非破坏试验。

不会造成绝缘损伤。

局部放电测试的目的和意义:确定试品是否存在放电及放电是否超标,确定局部放电起始和熄灭电压。

发现其它绝缘试验不能检查出来的绝缘局部隐形缺陷及故障。

局部放电主要参量:①局部放电的视在电荷q:电荷瞬时注入试品两端时,试品两端电压的瞬时变化量与试品局部放电本身所引起的电压瞬变量相等的电荷量,一般用pC(皮库)表示。

②局部放电试验电压:按相关规定施加的局部放电试验电压,在此电压下局部放电量不应超过规定的局部放电量值。

③规定的局部放电量值:在规定的电压下,对给定的试品,在规程或规范中规定的局部放电参量的数值。

④局部放电起始电压Ui:试品两端出现局部放电时,施加在试品两端的电压值。

⑤局部放电熄灭电压Ui:试品两端局部放电消失时的电压值。

(理论上比起始电压低一半,但实际上要低很多5%-20%甚至更低)二、局部放电机理:内部放电:绝缘材料中含有气隙、油隙、杂质等,在电场的作用下会出现介质内部或介质与电极之间的放电。

等效原理图:Ua Ug Cg放电局部放电放电的产生与介质内部电场分布有关,空穴与介质完好部分电压分布关系如下:介质总电容:设空穴与其串联部分介质的总电容Cn:因为介质电容充电电荷q=UC C=εS/dEg:空穴电场强度εg:空穴介电常数Eb:与空穴串联部分电场强度εb: 与空穴串联部分介电常数设qn为空穴充电电荷Ug=qn/Cg空穴电场强度Eg= Ug/dg=q/dgCgdg:空穴距离 db:串联部分完好介质厚度介质中平均场强εg=1空穴大多为空气εb>1所以空穴的E高于完好介质,同时,完好介质的临界场强远高于空气,如环氧树脂Ec=200-300(kV/cm),而空气为25-30(kV/cm),当外施电压达一定值时空穴首先击穿,其它介质完好,形成局部放电。

GIS局部放电检测方法及原理

GIS局部放电检测方法及原理

GIS局部放电检测方法及原理局部放电(Partial Discharge,PD)是指在绝缘材料内部或表面的缺陷处产生的电气放电现象。

对于高压设备来说,局部放电是一种常见的故障现象,它会导致设备的绝缘性能下降,甚至引起设备的损坏和故障。

因此,准确地检测和定位局部放电对于高压设备的正常运行和维护至关重要。

GIS(Gas Insulated Switchgear)是一种常用于高压电力系统中的绝缘开关设备,它采用SF6(六氟化硫)气体作为绝缘介质。

局部放电检测对于GIS设备尤为重要,因为SF6气体中的水分和杂质会导致局部放电的发生和发展。

局部放电检测方法主要可以分为以下几种:1.电流法:通过测量设备中的电流来检测局部放电。

当局部放电发生时,会产生很小的电流信号,可以通过高灵敏度的电流传感器进行检测。

电流法检测的优点是简单、直接,可以实现在线监测,但其对放电的定位能力有限。

2.光纤法:利用光纤传感器对局部放电进行检测。

光纤传感器可以将放电信号转化为光信号,通过光纤传输到检测系统进行分析。

光纤法的优点是高灵敏度、抗干扰能力强,且可以实现多点监测和远程监控。

3.超声法:通过检测局部放电产生的超声波信号来确定放电源的位置。

超声波可以通过绝缘材料传播,当局部放电发生时,会产生高频的超声波信号。

超声法的优点是对放电的定位能力强,可以准确地确定放电源所在的位置。

4.热像法:通过红外热像仪对设备进行检测,通过测量设备表面的温度分布来判断是否存在局部放电。

局部放电会产生热量,导致设备表面温度的升高,可以通过热像法进行检测。

热像法的优点是对设备进行非接触式检测,可以实现远程遥测和实时监测。

局部放电检测的原理主要包括以下几个方面:1.电场效应:局部放电的发生和发展会引起绝缘材料内部或表面电场的变化。

通过对电场分布和变化进行监测和分析,可以检测到局部放电的存在。

2.微波效应:局部放电会产生高频的电磁波信号,可以通过检测和分析这些信号来判断放电源的位置和强度。

局部放电试验方法

局部放电试验方法

局部放电试验方法1. 引言局部放电试验是一种常用的电力设备故障预警和健康评估手段。

本文介绍了局部放电试验的基本原理、试验设备和试验方法。

2. 基本原理局部放电是在电器设备绝缘系统中出现的一种电击穿放电现象。

通过监测和分析局部放电信号,可以判断设备绝缘的健康状况。

局部放电试验基于以下两个基本原理:- 电压波形检测:通过施加一定的电压波形,监测设备绝缘系统中是否发生局部放电。

常用的电压波形包括直流、交流等。

- 放电信号分析:通过分析局部放电信号的特征,判断放电的类型和位置。

常用的分析方法包括时间域分析、频谱分析等。

3. 试验设备进行局部放电试验需要以下基本设备:- 发生器:用于产生所需的电压波形。

- 电流传感器:用于监测局部放电产生的电流信号。

- 放电检测器:用于检测和记录局部放电信号,并对信号进行分析。

- 数据分析软件:用于对局部放电信号的特征进行分析和判别。

4. 试验方法局部放电试验一般按照以下步骤进行:1. 确定试验对象:选择需要进行局部放电试验的电器设备。

2. 准备试验设备:根据试验对象的特点和试验要求,配置相应的发生器、电流传感器、放电检测器和数据分析软件。

3. 设置试验参数:根据试验要求,设置合适的电压波形和试验时长。

4. 进行试验:按照设定的试验参数,施加电压波形,并监测和记录局部放电信号。

5. 数据分析:利用数据分析软件对采集到的局部放电信号进行分析和判别,评估设备绝缘的健康状况。

6. 结果报告:根据分析结果,撰写局部放电试验的结果报告,并提出相应的建议和措施。

5. 结论局部放电试验是一种有效的电力设备故障预警和健康评估手段。

通过合理选择试验方法和设备,并对局部放电信号进行准确的分析,可以提高设备绝缘的检测和评估能力,确保设备运行的安全可靠。

参考文献:- 张三, 李四. 局部放电试验方法及应用研究. 电力设备管理, 2020, 20(3): 12-17.。

局放测试的原理

局放测试的原理

局放测试的原理局放测试(Partial Discharge Testing)是一种用于测量电器设备中电击放电(Partial Discharge)活动的方法。

电击放电是指在绝缘体表面或其内部存在的缺陷处,当电场强度超过该区域的击穿强度时,会发生电击放电现象。

局放测试可以检测和评估绝缘系统中可能存在的缺陷,并提供准确的故障诊断和维护建议,以确保电器设备的正常运行和安全性。

一、电击放电的原理和特征电击放电是绝缘体内部或表面的局部电击放电现象。

当电压施加到绝缘体上时,如果存在缺陷或损伤,如气泡、异物、裂纹等,电击放电便会发生。

电击放电可以通过测试设备来检测并记录下来,以便进行后续分析和判断。

电击放电的特征主要表现为以下几个方面:1. 脉冲现象:电击放电以脉冲的形式出现,通过测试设备可以获得电击放电的脉冲波形图。

2. 频率范围:电击放电的频率范围通常在几十千赫兹至几百千赫兹之间,不同设备和缺陷类型会产生不同频率的电击放电。

3. 幅值和能量:电击放电幅值和能量的大小与缺陷的类型和程度相关,通过测试设备可以获取电击放电的幅值和能量参数,用于评估缺陷的严重程度。

4. 位置识别:通过对电击放电的位置和特征的分析,可以确定缺陷的位置和类型,从而进行精确的故障诊断和修复。

二、局放测试的原理基于电击放电现象对电场强度的响应,通过测量和分析电击放电信号,可以识别和评估绝缘系统中的缺陷。

1. 测试设备:局放测试需要使用专门的测试设备,包括高压发生器、电容耦合传感器(Capacitive Coupling Sensor)、信号放大器、数据采集系统等。

2. 测试方法:局放测试可以在实验室环境中进行,也可以在现场进行。

测试时,将电容耦合传感器安装在待测试设备的绝缘部分上,通过高压发生器提供相应的测试电压。

测试设备会采集和记录电击放电信号,并通过数据采集系统进行分析和处理。

3. 信号分析:测试设备会将采集到的电击放电信号进行放大和滤波处理,然后通过特定的算法进行数据分析和判断。

局部放电试验原理

局部放电试验原理
局部放电的种类:
①绝缘材料内部放电(固体-空穴;液体-气泡);
②表面放电;
③高压电极尖端放电。
局部放电的产生:设备绝缘内部存在弱点或生产过程中造成的缺陷,在高压电场作用下发生重复击穿和熄灭现象-局部放电。
局部放电的特点:
①放电能量很小,短时间内存在不影响电气设备的绝缘强度;
②对绝缘的危害是逐渐加大的,它的发展需要一定时间-累计效应-缺陷扩大-绝缘击穿。
其他非电检测方法光检测法透明介质电缆芯水介质光电倍增管观察热检测法严重放电放电产物分析法分解气体局部热效应热电偶测温升分析化学生成物推断放程度第三节脉冲电流测量原理及方法局部放电电测法
局部放电试验
第一节 局部放电特性及原理
一、局部放电测试目的及意义
局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。
试验加压:1.2Um/√3=1.2×40.25/1.732=27.89 kV
2.电压互感器局部放电测量回路
相对相:在电压1.2 Um放电量:在交接时不大于20Pc。试验时一次、二次不应短路,试验应作两次,AX对调,放电量取大的为最后结果。采用直接加压法,如励磁电流过大,应采用3倍频电源。
第五节 电力变压器局部放电试验
2.依照制造厂技术条件;
3.依据有关标准,如:JB/DQ2628-90,《树脂绝缘干式变压器质量分等》标准规定放电量应小于50pC。
加压方法:低压施加相对相1.5Um预加电压,持续30s,然后降至1.1Um相对相电压,持续3min读数。
低压施加3相倍频电源。
试验方法:测量A相,B、C分别接地,其他两相同理。判定时取最大值。试验时铁心接地。
1.测试接线:
并联法试品一端接地,

特高频局部放电检测技术知识讲解

特高频局部放电检测技术知识讲解

特高频局部放电检测技术知识讲解电力设备的局部放电是一种常见的电气现象,它预示着设备的绝缘状况可能出现问题。

特高频局部放电检测技术是一种先进的检测技术,能够有效地检测和识别电力设备的局部放电。

本文将详细介绍特高频局部放电检测技术的原理、应用及优势。

一、特高频局部放电检测技术原理特高频局部放电检测技术主要利用局部放电产生的电磁波进行检测。

当电力设备发生局部放电时,放电产生的电流会激发出电磁波,这些电磁波的频率通常在数吉赫兹到数百吉赫兹之间。

特高频局部放电检测设备能够捕捉到这些特高频电磁波,并对其进行处理和分析。

二、特高频局部放电检测技术的应用特高频局部放电检测技术在电力设备检测中具有广泛的应用。

例如,它可以用于变压器、电缆、断路器等电力设备的检测。

通过对特高频电磁波的分析,可以判断出设备的绝缘状况,发现潜在的故障,从而预防设备故障的发生。

三、特高频局部放电检测技术的优势特高频局部放电检测技术相比传统的检测方法具有以下优势:1、高灵敏度:特高频局部放电检测技术对局部放电产生的电磁波非常敏感,可以检测到非常微弱的放电信号,从而能够发现潜在的设备故障。

2、宽频带:特高频局部放电检测设备具有宽频带的接收能力,可以接收到的电磁波频率范围很广,从而能够获得更全面的设备信息。

3、抗干扰能力强:特高频局部放电检测技术对噪声的抑制能力较强,可以有效地避免干扰信号对检测结果的影响。

4、非接触式检测:特高频局部放电检测技术可以采用非接触式的方式进行检测,无需接触设备,从而不会对设备的正常运行产生影响。

四、结论特高频局部放电检测技术是一种先进的电力设备检测技术,具有高灵敏度、宽频带、抗干扰能力强和非接触式检测等优势。

通过对电力设备的特高频电磁波进行检测和分析,可以有效地发现潜在的设备故障,预防设备故障的发生。

在未来的电力设备检测中,特高频局部放电检测技术将会发挥越来越重要的作用。

随着电力系统的不断发展,人们对电力设备的安全与稳定性要求越来越高。

GIS局部放电检测方法及原理

GIS局部放电检测方法及原理

GIS局部放电检测方法及原理GIS(气体绝缘开关设备)是一种常用于电力系统中的高压设备,它采用气体作为绝缘介质,用于控制和隔离电力系统中的高压设备。

在GIS 设备中,局部放电(Partial Discharge,简称PD)是一种重要的故障指标,可以用于评估设备的绝缘性能是否正常。

本文将详细介绍GIS局部放电检测的方法及其原理。

1.GIS局部放电检测方法目前,常用的GIS局部放电检测方法主要包括以下几种:(1)超声波检测法:利用超声波在气体中传播的特性,通过检测局部放电产生的声波信号来实现局部放电的检测。

这种方法无需拆卸设备,能够在运行状态下进行检测,具有非侵入性和实时性的优势。

(2)电磁波检测法:利用电磁波在空气中传播的特性,通过检测局部放电产生的电磁波信号来实现局部放电的检测。

这种方法具有高灵敏度和高分辨率的优势,能够检测到较小的局部放电缺陷。

(3)紫外光检测法:利用紫外光在放电过程中产生的光辐射特性,通过检测紫外光信号来实现局部放电的检测。

这种方法具有高灵敏度和高精度的优势,可以检测到微弱的局部放电信号。

(4)红外热像检测法:利用红外热像仪检测设备在放电过程中产生的热量分布,通过检测温度异常来实现局部放电的检测。

这种方法可以实现在线、快速、大面积的局部放电检测。

(5)电流及电压检测法:通过测量设备上的电流和电压信号来检测局部放电。

这种方法可以实现实时监测,但对设备的侵入较大,需要在设备上安装传感器。

(6)脉冲幅值检测法:利用局部放电产生的脉冲信号的幅值变化来检测局部放电。

这种方法具有高灵敏度和高分辨率的优势,可以实时监测设备的绝缘状态。

2.GIS局部放电检测原理局部放电是指电气设备中的绝缘缺陷在电场作用下产生的局部放电现象。

其原理主要包括以下几个方面:(1)电压应力作用下的击穿:当GIS设备中绝缘缺陷的电场强度超过断电场强度时,就会发生击穿放电,形成局部放电。

(2)暂态电容器作用:GIS设备中存在着许多构成暂态电容器的绝缘缺陷,当电压变化时,这些暂态电容器会发生充放电过程,形成局部放电。

局部放电检测原理及一般试验技术

局部放电检测原理及一般试验技术
高压端部电晕放电的抑制,主要是选用合适的无晕环(球)及无晕导电杆作为高压连线。不同电压等级设备无晕环(球)的尺寸举例,见下表。高压无晕导电杆建议采用金属圆管或其它结构的无晕高压连线。110kV及以下设备,可采用单环屏蔽,其圆管和高压无晕金属圆管的直径均为50mm及以下。
电压等级kV
无晕件
双球形mm
内部放电 ---在介质内部或介质与电极之间的放电。这种放电的特性与介质的特性和气屑的形状、大小、位置以及气屑中气体的性质有关。
表面局部放电---在沿介质表面的电场强度达到击穿场强时所发生的局部放电。在电机绕组、电缆、套管等绝缘结构的端部,从导体到介质表面经常会出现这种局部的放电。
电晕放电---在气体中,高电压导体周围所产生的局部放电称为电晕。如高压传输线、高压变压器等高压电气设备,因高压接线端暴露在空气中,都有可能产生这种局部放电。
球形mm
圆管形直径mm
d
H
D
D
220
150
1050
810
750
100
500
2Hale Waihona Puke 012001600
1800
250
750
­
­
­
2500
300
01
抑制干扰的措施 ----接地干扰的抑制
抑制试验回路接地系统的干扰,唯一的措施是在整个试验回路选择一点接地。
02
通常情况下局部放电试验现场干扰的处理的注意事项
02
什么是局部放电?
局部放电产生的原因
局部放电对于高压电工产品往往是很难避免的,这是由于绝缘材料和绝缘结构在制造过程中常会含有比固体绝缘容易击穿的小气泡或油膜,在电场的作用下,会产生内部放电。绝缘材料和绝缘结构中电场分布不均匀,也会产生局部放电(如针尖电极、电极表面上的毛刺、或者是金属屑异物)。

局部放电检测原理介绍

局部放电检测原理介绍

局部放电检测原理介绍超声波检测法GIS设备局部放电的超声波检测法是利用安装在GIS外壳上的超声波传感器接收局部放电产生的振动信号以达到检测内部局部放电的目的。

在GIS中,除局部放电产生的声波外,还有微粒碰撞绝缘子或外壳、电磁振动、操作引起的机械振动等也会发出的声波.气体和液体中只传播纵波,固体中传播的声波除纵波外还有横波。

故在GIS中沿SF6气体传播的声波和在变压器油中一样只有纵波,但其传播速度很慢,要比油中低10倍,衰减也大,且随频率的增加而增大。

测量超声波信号的传感器主要有加速度和声发射两种.当采用加速度传感器时,要采用高通滤波器以消除较低频率的背景干扰;声发射传感器的原理是利用谐振方式,其频率特性中已经包含了高通特性,因此无需另外附加相应的滤波器件.由于声音的传播速度比电磁波慢很多,时间差更容易进行测量,定位更加准确,并且定位后还可通过敲击GIS外壳的方法进行验证,所以在放电定位方面,声学检测法比电学的方法更优越,加之超声波传感器与GIS设备的电气回路之间无任何联系,抗电磁干扰性较好,因此人们对超声法的研究较为深入,技术手段较为成熟。

但是超声波检测法的灵敏度不仅取决于局部放电的能量,而且取决于超声波信号在传播路径上的衰减,在大多数情况下,超声传感器的灵敏度不是很高。

近年来,由于声—电换能器效率的提高和电子放大技术的发展,超声波检测法的灵敏度有了较大的提高[66—77],但是超声传感器的有效检测范围仍然较小,完成一个较大规模GIS变电站的检测通常需要数天的时间,检测效率不高。

特高频法特高频法(Ultra High Frequency,简称UHF) 是近年发展起来的一种新的GIS设备局部放电的检测技术。

它是利用装设在GIS内部或外部的天线传感器接受局部放电辐射出的300~3000MHz频段的特高频电磁波信号进行局部放电的检测和分析[56~63]。

运行中的GIS内部气体,其绝缘强度和击穿场强都很高.当局部放电在很小的范围内发生时,气充有高气压SF6体击穿过程很快,将产生很陡的脉冲电流,并向四周辐射出特高频电磁波。

局部放电检测原理及一般试验技术

局部放电检测原理及一般试验技术

局部放电检测原理及一般试验技术局部放电检测是指通过检测高压设备内的局部放电现象,以评估设备的绝缘状况。

局部放电是电气设备的一种常见的故障形式,它通常是由于设备内部存在着绝缘材料缺陷或引起绝缘材料部分击穿导致的。

局部放电检测技术可以及早发现绝缘问题,防止设备发生故障,提高设备的可靠性和安全性。

局部放电检测的原理是利用高频电压激励绝缘系统,当绝缘系统中存在局部放电时,这些放电会产生脉冲信号,可以通过电流传感器或电压传感器检测到。

通过分析局部放电信号的特征,可以确定绝缘材料的缺陷类型和位置,评估设备的绝缘状况。

1.直流高压法:将直流高压施加在被测设备上,通过检测绝缘系统上的泄漏电流和泄漏电压来评估设备的绝缘状况。

这种方法适用于绝缘材料较好的设备,但对于绝缘材料较差的设备可能会导致击穿。

2.脉冲电压法:施加脉冲电压激励在被测设备上,通过检测局部放电产生的脉冲电流和脉冲电压来评估设备的绝缘状况。

这种方法可以检测到微弱的局部放电信号,适用于各种绝缘材料的设备。

3.交流电压法:施加交流电压激励在被测设备上,通过检测局部放电产生的交流电流和交流电压来评估设备的绝缘状况。

这种方法可以模拟实际工作条件下的电压变化,适用于绝缘材料受到交流电压影响的设备。

4.高频电流法:施加高频电压激励在被测设备上,通过检测局部放电产生的高频电流来评估设备的绝缘状况。

这种方法可以提高局部放电信号的灵敏度,适用于检测高频设备和纤维材料。

在局部放电检测中,还可以采用数字信号处理和频谱分析等技术,对局部放电信号进行进一步的处理和分析。

通过分析局部放电信号的幅值、频率、相位等特征,可以判断绝缘系统的缺陷类型和严重程度。

总之,局部放电检测通过对绝缘系统中局部放电信号的检测和分析,可以评估设备的绝缘状况,及早发现绝缘问题,提高设备的可靠性和安全性。

不同的试验技术可以根据被测设备的特点和需要进行选择和应用。

局部放电试验原理

局部放电试验原理
3.电晕放电:在电场极不均匀的情 况下,导体表面的电场强度达到附 近气体的击穿场强发生的放电。电 晕放电大多发生在电极边缘、导体 尖端周围,电晕放电一般发生在负 半周。
三、放电量与各参数间的关系
一个脉冲真实放电量qr,Ug Ur等参数在实际试品中是不可知的,同时绝缘缺陷各不相同,
故真实放电量是不可以直接测量的。
3规定的局部放电量值:
在规定的电压下,对给定的试品,在规程或规范中规定的局部放电参量的数值。
4局部放电起始电压Ui:
试品两端出现局部放电时,施加在试品两端的电压值。
5局部放电熄灭电压Ui:
试品两端局部放电消失时
的电压值。(理论上比起始电
压低一半,但实际上要低很多
5%-20%甚至更低)
二、局部放电机理:
局部放电试验
第一节局部放电特性及原理
一、局部放电测试目的及意义
局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体 附近,也可发生在其它位置。
局部放电的种类:
1绝缘材料内部放电(固体-空穴;液体-气泡);
2表面放电;
3高压电极尖端放电。
局部放电的产生:设备绝缘内部存在弱点或生产过程中造成的缺陷, 重复击穿和熄灭现象-局部放电。
1.校正方法:注入qO=UN.Cq
试品的电容Cx为 已知,Cx两端的 电荷:qO=UN CxCq/Cx+Cq Cq<< Cx所以qO~UN.Cq一般Cq为固定值,调节UN得到不同的qO值。不论采用何种接线, 校准信号 必须从试品两端注入。
直测法。
仪器测得的信号Uf=Ua-Ub
检测阻抗:
测量阻抗Zm测量阻抗是一个四端网络的元件,它可以是电阻R或电感L的单一元件,也

局部放电检测原理及一般试验技术课件

局部放电检测原理及一般试验技术课件

06
局部放电检测案例分析
案例一:GIS的局部放电检测
01
02
03
04
GIS(Gas-Insulated Substation)是一种高压电 气设备,其内部结构紧凑, 运行电压高,因此局部放电 检测对于保障GIS的安全运行
至关重要。
GIS的局部放电检测通常采用 电测法,通过测量GIS内部产 生的电信号来判断是否存在
局部放电检测原理及一般 试验技术课件
• 局部放电检测原理 • 局部放电检测方法 • 局部放电检测设备 • 局部放电试验技术 • 局部放电检测标准与规范 • 局部放电检测案例分析
01
局部放电检测原理
局部放电定义
局部放电是指在绝缘介质中,由于电 场的作用,在导体间或导体与介质间 产生的非常短暂的、局部的、非贯穿 性的电荷释放现象。
企业标准与规范
企业标准Q/GDW 1522006
这是国家电网公司制定的关于高压开关设备 局部放电检测的企业标准,适用于国家电网 公司系统内的高压开关设备的局部放电检测 。
企业规范Q/GDW 1532006
这是国家电网公司制定的关于高压电缆局部 放电检测的企业规范,适用于国家电网公司
系统内的高压电缆的局部放电检测。
这些带电粒子在电场作用下又会撞击更多的气体或液体分子,产生连锁反应,最终 导致局部放电。
局部放电的电气特征
局部放电的电气特征主要包括: 放电时产生的电流脉冲、电磁 波、声波等。
其中,电流脉冲是局部放电最 直接的表现形式,其大小和波 形取决于放电的类型和程度。
电磁波和声波可以通过专门的 传感器进行测量,是检测局部 放电的重要手段。
结果处理
对检测数据进行处理和分析,如计算放电强度、放电位置等,并评估 其对设备的影响。

局部放电原理及检测方法

局部放电原理及检测方法

(3)悬浮电位物体放电波形特征:
在电压峰值前的正负半周两个象限里出现,幅值、脉冲数和位置均相同,有时成对 出现,放电可移动,但它们间的相互间隔不变,电压升高时,根数增加,间隔缩小,但幅 值不变,有时电压升到一定值时会消失,但降至此值又重新出现。原因:金属间的间隙产 生的放电,间隙可能是地面上两个独立的金属体间也可能在样品内,例如屏蔽松散。
(4)外部尖端电晕(见图19 a),波形特征:起始放电仅出现在试验电
压的一个半周上,并对称地分布峰值两侧。试验电压升高时,放电脉冲数急 剧增加,但幅值不变,并向两侧伸展(如图19 b所示)。原因:空气中高压
尖端或边缘放电。如果放电出现在负半周,表示尖端处于高压,如放电出现 在正半周则表示尖端处于地电位。
局部放电原理及检测方法
什么是局部放电
尚未导致绝缘系统贯穿性击穿的放电叫做局部放电 局部放电是指绝缘结构中由于电场分布不均匀,局部场强过高而导致的绝缘 介质中局部范围内的放电或击穿现场,是造成绝缘劣化的主要原因,也是 劣化的重要征兆和表现形式,与绝缘材料的劣化和击穿密切相关,因此, 对局部放电的有效检测对电力设备的安全稳定运行具有重要意义。
变压器检测局部放电原理:
电力变压器主要采取油·纸绝缘结构,由电工纸层和绝缘油交错组成,大型变压器结 构复杂·绝缘分布很不均匀,设计不当时容易造成局部场强过高,或由于工艺不良等因 素造成内部缺陷时,在变压器内部,必然会产生局部放电现象,并逐渐发展,最后造成 变压器损坏。
变压器局部放电形式
1、带有绝缘屏障的油间隙放电
(5)液体介质中的尖端电晕波形特征:
放电出现在两个半周上,对称地分布在电压峰值两则。每一组放电均为等 间隔,但一组幅值较大的放电先出现,随试验电压升高而幅度增大,不一定等 幅值:一组幅值小的放电幅值相等,并且不随电压变化。原因:绝缘液体中尖 端或边缘放电,如一组大的放电出现在正半周,则尖端处于高压;如它出现在

局部放电测量原理

局部放电测量原理

局部放电测量原理
局部放电测量原理是通过检测目标物体中发生的局部放电现象来判断其绝缘性能的一种方法。

局部放电是指在绝缘材料中由于局部缺陷或电场强度过高而产生的电击穿放电现象。

测量局部放电的原理是利用局部放电产生的电磁波和声波来进行检测。

当局部放电发生时,电流会产生高频电磁波和声波,这些电磁波和声波可以通过传感器进行捕捉和测量。

传感器可以是电磁感应传感器或压电传感器。

在测量过程中,传感器会将捕捉到的电磁波和声波信号转化为相应的电信号,并将其传输给信号处理系统。

信号处理系统会对信号进行放大、滤波和分析处理,以获得有关局部放电的相关参数。

这些参数可以包括放电的能量、频率、位置和强度等。

通过测量局部放电的参数,可以评估绝缘材料的质量和性能,并及时发现和定位可能存在的缺陷。

这对于预防设备的局部放电损坏以及事故的发生具有重要的意义。

因此,局部放电测量在电力设备、变压器、发电机、绝缘子等领域中得到广泛应用。

总之,局部放电测量原理是通过检测局部放电产生的电磁波和声波来评估绝缘材料性能的一种方法。

这种测量方法具有高灵敏度、无损测量和定位准确等优点,在电力行业和高压设备检测中具有重要的应用价值。

GIS局部放电检测方法及原理

GIS局部放电检测方法及原理

GIS局部放电检测方法及原理GIS(Gas Insulated Switchgear)是一种广泛应用于电力系统中的高压开关设备,其内部充满绝缘气体,具有良好的绝缘性能和小型化特点。

然而,在长期运行中,GIS设备可能会出现局部放电现象,这不仅会影响设备的安全可靠运行,还可能造成设备的损坏甚至事故。

因此,对GIS设备进行局部放电检测是非常重要的。

本文将介绍GIS局部放电检测的方法及原理。

1.离线检测离线检测是指在GIS设备停机维护时进行的放电检测。

常用的离线检测方法包括:超声波检测、红外热像检测、高频电压法等。

(1)超声波检测:利用超声波传感器接收放电信号的超声波波形,分析波形频谱特征来判断是否存在放电现象。

超声波检测可以发现放电位置,但只能检测到比较强的放电信号。

(2)红外热像检测:通过红外热像仪观察GIS设备表面的温度分布情况,当有局部放电时,放电部位会产生局部温升,从而形成热像。

红外热像检测可以直观地显示放电位置,但对放电信号强度的测量能力较弱。

(3)高频电压法:利用高频电压传感器检测GIS设备内部的高频信号,通过分析信号频谱特征来判断是否存在放电现象。

高频电压法可以检测到局部放电信号,但对信号的定位能力较弱。

离线检测方法具有操作简便、设备可靠等优点,但需要停机维护,无法对设备进行长期实时监测。

2.在线检测在线检测是指在GIS设备运行时通过安装传感器实时监测放电信号,常用的在线检测方法包括:超声波检测、电磁波检测、紫外光检测等。

(1)超声波检测:通过在GIS设备周围安装超声波传感器,实时监测放电信号的超声波波形,通过分析波形频谱特征来判断是否存在放电现象。

超声波检测具有实时性强的优点,可以对设备进行长期监测。

(2)电磁波检测:通过在GIS设备周围安装电磁波传感器,实时监测放电信号的电磁波信号,通过分析信号频谱特征来判断是否存在放电现象。

电磁波检测可以对设备进行长期实时监测,对放电信号的定位能力较强。

局部放电检测原理及一般试验技术课件

局部放电检测原理及一般试验技术课件

技术要求
对局放信号的灵敏度、时间分 辨率和探针的分辨率均有高要 求
应用领域
磁力共振成像技术和局部放电 检测技术的结合,可广泛应用 于医学、化学、生命科学等多 个领域
局部放电检测在核磁共振成像技术中的应用
核磁共振成像技术是一种通过对原子核在外加磁场下发生共振从而获取影像的技术。局部放电检测技术在核 磁共振成像技术中也有广泛的应用。
检测范围
局部放电检测技术适用于不同类 型的高压绝缘子,如玻璃绝缘子、 瓷绝缘子、硅橡胶绝缘子、熔融 盐绝缘子等类型
局部放电检测在变压器内部绝缘中的应用
变压器是电力系统中最为重要的电力设备,其绝缘材料的老化或破损是导致其故障的主因之一。局部放 电检测技术在变压器内部绝缘得到了广泛应用。
原理
利用局放检测仪器对变压器绝缘进行定期检测,获取局部放电信号,分析其特征,确定故障发生位 置和程度
检测方法
应用领域
局部放电检测技术在核磁共振成 像技术中的应用主要是疾病诊断, 早期发现细胞化学改变,提高临 床诊断精度和准确性
通过对局放信号的监测、分析和 处理,结合核磁共振技术,可广 泛应用于医学、生命科学等领域
技术优势
局放检测技术在核磁共振成像技 术中的应用具有高敏感性、高分 辨率、非侵入性等优势
新材料
采用先进材料,提升设备的散 热性、强度和安全性
智能监控
引入人工智能、大数据分析等 技术,将实时监控和及时预警 结合起来
先进设备
引入先进的局放检测仪器,提 升检测效率和检测精度
局放检测技术的局限性
当前局部放电检测技术仍存在以下局限性:
不适用于全封闭电器
全封闭电器内部有隔离气室,这就使得局部放电检测不是很适用,需要选择其他方法

局部放电带电检测技术简介

局部放电带电检测技术简介
总结词:ቤተ መጻሕፍቲ ባይዱ功应用
详细描述:某变电站高压设备在运行过程中出现了局部放电现象,通过采用局部 放电带电检测技术,成功地检测到了放电位置和程度,为后续的故障诊断和修复 提供了有力支持。
案例二
总结词:高效准确
详细描述:某风电场变压器局部放电监测系统采用了先进的局部放电带电检测技术,能够高效准确地监测变压器的局部放电 情况,及时发现潜在故障,保障了风电场的稳定运行。
电介质局部放电的产生
介质不均匀
电介质内部的不均匀结构或杂质会导致电场集中, 引发局部放电。
电压作用
外加电压作用下,电场强度超过气隙的击穿场强, 使得气隙发生放电。
温度效应
温度变化引起介质材料性质改变,导致局部放电 的出现。
局部放电的特性
01
02
03
04
瞬态性
局部放电是瞬态的电气现象, 持续时间短,通常在纳秒级别
发展趋势与展望
发展趋势
未来,局部放电带电检测技术将朝着高精度、高可靠性和智能化的方向发展,不断提高检测的准确性 和效率。
展望
随着人工智能、大数据等新技术的应用,局部放电带电检测技术有望实现更高效、更精准的故障诊断 和预警,为保障电力系统的安全稳定运行提供有力支持。
05 案例分析
案例一:某变电站高压设备的局部放电检测
声测法
通过捕捉局部放电产生的声音 信号进行检测,常用于在线监 测。
化学分析法
通过检测局部放电过程中产生 的化学物质来进行检测,适用
于故障定位和原因分析。
03 局部放电带电检测技术应 用
在线监测与故障诊断
在线监测
局部放电带电检测技术可以在设 备运行时进行实时监测,及时发 现异常情况,为故障诊断提供依 据。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

局部放电检测原理介绍
超声波检测法
GIS设备局部放电的超声波检测法是利用安装在GIS外壳上的超声波传感器接收局部放电产生的振动信号以达到检测内部局部放电的目的。

在GIS 中,除局部放电产生的声波外,还有微粒碰撞绝缘子或外壳、电磁振动、操作引起的机械振动等也会发出的声波。

气体和液体中只传播纵波,固体中传播的声波除纵波外还有横波。

故在GIS中沿SF6气体传播的声波和在变压器油中一样只有纵波,但其传播速度很慢,要比油中低10倍,衰减也大,且随频率的增加而增大。

测量超声波信号的传感器主要有加速度和声发射两种。

当采用加速度传感器时,要采用高通滤波器以消除较低频率的背景干扰;声发射传感器的原理是利用谐振方式,其频率特性中已经包含了高通特性,因此无需另外附加相应的滤波器件。

由于声音的传播速度比电磁波慢很多,时间差更容易进行测量,定位更加准确,并且定位后还可通过敲击GIS外壳的方法进行验证,所以在放电定位方面,声学检测法比电学的方法更优越,加之超声波传感器与GIS设备的电气回路之间无任何联系,抗电磁干扰性较好,因此人们对超声法的研究较为深入,技术手段较为成熟。

但是超声波检测法的灵敏度不仅取决于局部放电的能量,而且取决于超声波信号在传播路径上的衰减,在大多数情况下,超声传感器的灵敏度不是很高。

近年来,由于声—电换能器效率的提高和电子放大技术的发展,超声波检测法的灵敏度有了较大的提高[66-77],但是超声传感器的有效检测范围仍然较小,完成一个较大规模GIS变电站的检测通常需要数天的时间,检测效率不高。

特高频法
特高频法(Ultra High Frequency,简称UHF) 是近年发展起来的一种新的GIS设备局部放电的检测技术。

它是利用装设在GIS内部或外部的天线传感器接受局部放电辐射出的300~3000MHz频段的特高频电磁波信号进行局部放电的检测和分析[56~63]。

运行中的GIS内部充有高气压SF6气体,其绝缘强度和击穿场强都很高。

当局部放电在很小的范围内发生时,气体击穿过程很快,将产生很陡的脉冲电流,并向四周辐射出特高频电磁波。

GIS设备的腔体结构相当于一个良好的同轴波导,非常有利于电磁波的传播。

特高频传感器的安装方式目前应用较为广泛的主要有两种:外置式和介质窗口式。

外置式传感器将传感器贴在GIS设备盆式或盘式绝缘子的外表面,依靠绝缘子表面电磁波的泄露进行UHF信号的检测,此方法可带电安装。

介质窗口式传感器是将传感器安装在检修手孔或CT端子箱处,此方法需停电安装或在设
备出厂时安装。

UHF检测的特点使其在局部放电检测领域具有其他方法无法比拟的优点,因而在近年来得到了迅速的发展和广泛的应用。

特高频法具有以下优点:
①抗干扰性好:现场普遍存在的电晕放电的频率范围通常在300MHz以下,并且在空气中传播时衰减很快,特高频传感器接收UHF频段信号,避开了电网中主要电磁干扰的频率,具有良好的抗电磁干扰能力;
②灵敏度高:GIS的同轴结构非常适合特高频电磁信号传播,能够实现良好的检测灵敏度;
③可实现放电定位:根据电磁脉冲信号在GIS内部传播具有衰减的特点,利用传感器接收信号的时差,可以进行故障定位;
④检测效率高:UHF传感器检测局部放电的有效检测范围较大,因此需要安装传感器的检测点较少,检测效率高。

特高频法虽然有以上诸多优点,但是也存在一定的不足:
①难以用特高频信号幅值表征局部放电严重程度:GIS设备局部放电脉冲电流信号辐射出的电磁波信号是宽频信号,越往低频能量越高。

对于每种类型的放电,特高频段信号的能量在整个电磁波信号的能量中所占的比例难以确定,因此,特高频信号幅值与视在放电量或实际放电量之间的关系难以确定,难以依据特高频信号幅值来表征设备绝缘状况;
②难以检测正在运行的罐式断路器内的局部放电故障:一般对于正在运行的GIS设备,可带电安装外置式传感器;但对于户外安装的罐式断路器,没有外露的绝缘子,只能将特高频传感器放置在套管底部进行测量,这就大大降低了检测的灵敏度与有效性;
③无法实现视在放电量的标定:目前大多数工程人员已经习惯于通过视在放电量来反映局局部放电的严重程度,IEC规定的GIS产品出厂标准中,其局部放电的指标也是通过视在局放量的阈值来规定的。

由于UHF法的测量机理与脉冲电流法不同,因此无法进行视在放电量的标定,即使在局放源到传感器之间的传播路径不变的情况下,脉冲电流法的视在放电量与特高频方法所测得的脉冲信号幅值之间也没有确定的对应关系[64-65],这就更加大了应用该方法进行局部放电实际放电量预估的难度。

高频电流法
脉冲电流法是研究最早、应用最广泛的一种局部放电检测方法。

其测量原理是:当局部放电发生时回造成电荷的移动,该移动电荷可在外围测量回路中产生脉冲电流,通过检测该脉冲电流便可实现对局部放电的测量。

该方法一般是检测脉冲电流信号的低频部分,通常为数kHz至数百kHz(至多为
数MHz)。

常规局部放电通常在回路中串入检测阻抗来对信号取样。

在线检测则常采用电流传感器获取被测脉冲电流信号。

目前,脉冲电流法广泛用于变压器型式试验、预防和交接试验、变压器局部放电实验研究等,其特点是测量灵敏度高、放电量可以标定等[7,8]。

但这种方法测量频率低,频带窄,包含信息量不足而且现场抗干扰能力差。

因此采用超宽带高频电流传感器取代传统电流传感器来接受脉冲电流信号成为这种检测方法的发展趋势,高频电流法通过罗氏线圈来耦合电气设备接地线处的高频电流信号来实现局部放电的检测,检测频带为几十K到几十MHz。

相关文档
最新文档