太阳能电池工作原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、太阳能电池工作原理
1、光生伏打效应:
太阳能电池能量转换的基础是半导体PN结的光生伏打效应。 如前所述,当光照射到半导体光伏器件上时,能量 大于硅禁带宽度的光子穿过减反射膜进入硅中,在N区、 耗尽区和P区中激发出光生电子--空穴对。
耗尽区:光生电子--空穴对在耗尽区中产生后,立即
被内建电场分离,光生电子被送进N区,光生空穴则被推 进P区。根据耗尽近似条件,耗尽区边界处的载流子浓度 近似为0,即p=n=0。
2、杂质半导体
空穴
P型半导体:在纯净 的硅晶体中掺入三 价元素(如硼), 使之取代晶格中硅 原子的位置,就形 成了P型半导体。
空位
受主 原子
2、杂质半导体
由于杂质原子的最外层有三个价电子,所以当它 们与其周围硅原子形成共价键时,就产生了一个“空
位”,当硅原子的最外层电子填补此空位时,其共价
键中便产生一个空穴。因而P型半导体中,空穴为多 子,自由电子为少子。因杂质原子中的空位吸收电子,
1、本征半导体
定义: 将纯净的半导体 经过一定的工艺过程制 成单晶体, 即为本征半 导体。
晶体中的原子在空间形 成排列整齐的点阵,相 邻的原子 形成共价键。
共价键
1、本征半导体
晶体中的共价键具有极强的结合力,因此,在常 温下,仅有极少数的价电子由于热运动(热激发)获 得足够的能量,从而挣脱共价键的束缚变成为自由电 子。与此同时,在共价键中留下一个空穴。原子因失 掉一个价电子而带正电,或者说空穴带正电。在本征
并联电阻RSh
由于电池边沿的漏电和制作金属化电
极时在微裂纹、划痕等处形成的金属桥漏电等,使一 部分本应通过负载的电流短路,这种作用的大小可用 一个并联电阻RSh来等效。
⑵ 输出功率
当流进负载RL的电流为I,负载RL的端电压为U时,可得:
I I L I bk I Sh I L I 0 (e q (U IR s ) / AkT 1) I ( Rs RL ) Rsh
U IRL
I ( Rs RL ) q U IR s / AkT P IU I L I 0 e 1 U Rsh


I ( R s RL ) q U IR s / AkT I L I 0 (e 1) RL Rsh
这样,一个理想的PN同质结太阳能电池的等效电路 就被绘制成如图所示。


⑴ 等效电路

串联电阻RS:
由于前面和背面的电极接触,以及材
料本身具有一定的电阻率,基区和顶层都不可避免地 要引入附加电阻。流经负载的电流经过它们时,必然 引起损耗。在等效电路中,可将它们的总效果用一个 串联电阻RS来表示。

考虑串联电阻
P-N同质结太阳能电池等效电路
⑴ 等效电路

恒流源: 在恒定光照下,一个处于工作状态的太阳电 池,其光电流不随工作状态而变化,在等效电路中可 把它看做是恒流源。 暗电流Ibk : 光电流一部分流经负载RL,在负载两端 建立起端电压U,反过来,它又正向偏置于PN结,引 起一股与光电流方向相反的暗电流Ibk。
故称之为受主原子。
3、PN结
PN结:采用不同的
空穴 负离子
正离子
自由电子
掺杂工艺,将P型半
导体与N型半导体制 作在同一块硅片上, 在它们的交界面就形 成PN结。
P区
N区
空间电荷区
P区
ε
N区
3、PN结
扩散运动:物质总是从浓度高的地方向浓度低的
地方运动,这种由于浓度差而产生的运动称为扩 散运动。 当把P型半导体和N型半导体制作在一起时, 在它们的交界面,两种载流子的浓度差很大,因 而P区的空穴必然向N区扩散,与此同时,N区的 自由电子也必然向P区扩散,如图示。
1、光生伏打效应
P区 N区
内建电场ε
光生电场
1、光生伏打效应

光生电场除了部分抵消势垒电场的作用外,还使P区带正 电,N区带负电,在N区和P区之间的薄层就产生电动势, 这就是光生伏打效应。当电池接上一负载后,光电流就从 P区经负载流至N区,负载中即得到功率输出。

如果将P-N结两端开路,可以测得这个电动势,称之为开 路电压Uoc。对晶体硅电池来说,开路电压的典型值为 0.5~0.6V。
空穴对,与复合的自由电子和空穴对数目相等,故达
到动态平衡。
1、本征半导体
能带理论:

单个原子中的电子在绕核运 动时,在各个轨道上的电子 都各自具有特定的能量; 越靠近核的轨道,电子能量 越低;
根据能量最小原理电子总是 优先占有最低能级;
能带理Βιβλιοθήκη Baidu解释本征激发


1、本征半导体
能带理论:

价电子所占据的能带称为价带;
⑵ 输出功率
调节负载电阻RL到某一值Rm时,在曲线上得到 一点M,对应的工作电流Im和工作电压Um之积最大, 即: Pm=ImUm 一般称M点为该太阳能电池的最佳工作点(或称 最大功率点),Im为最佳工作电流,Um为最佳工作电
按掺入的杂质元素不用,可形成N型半导体和P型
半导体;控制掺入杂质元素的浓度,就可控制杂质半
导体的导电性能。
2、杂质半导体
N型半导体: 在纯净 的硅晶体中掺入五价 元素(如磷),使之
自由 电子
取代晶格中硅原子的
位置,就形成了N型半
施主 原子
导体。
2、杂质半导体
由于杂质原子的最外层有五个价电子,所以除了 与其周围硅原子形成共价键外,还多出一个电子。多 出的电子不受共价键的束缚,成为自由电子。N型半 导体中,自由电子的浓度大于空穴的浓度,故称自由 电子为多数载流子,空穴为少数载流子。由于杂质原 子可以提供电子,故称之为施主原子。
基本原理
基本原理

制造太阳电池的半导体材料已知的有十几种,
因此太阳电池的种类也很多。目前,技术最成
熟,并具有商业价值的太阳电池要算硅太阳电
池。下面我们以硅太阳能电池为例,详细介绍
太阳能电池的工作原理。
一、太阳能电池的物理基础
1、本征半导体
物质的导电性能决定于原子结构。导体一般为低价元 素,它们的最外层电子极易挣脱原子核的束缚成为自由电 子,在外电场的作用下产生定向移动,形成电流。高价元 素(如惰性气体)或高分子物质(如橡胶),它们的最外 层电子受原子核束缚力很强,很难成为自由电子,所以导 电性极差,成为绝缘体。常用的半导体材料硅(Si)和锗 (Ge)均为四价元素,它们的最外层电子既不像导体那 么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束 缚的那么紧,因而其导电性介于二者之间。
进行。
3、PN结
漂移运动:在电场力作用下,载流子的运动称为漂移
运动。 当空间电荷区形成后,在内建电场作用下,少子 产生飘移运动,空穴从N区向P区运动,而自由电子从 P区向N区运动。 在无外电场和其它激发作用下,参
与扩散运动的多子数目等于参与漂移运动的少子数目,
从而达到动态平衡,形成PN结,如图示。 此时,空 间电荷区具有一定的宽度,电位差为ε =Uho,电流为 零。

如果半导体内存在P—N结,则在P型和N型交界面两 边形成势垒电场,能将电子驱向N区,空穴驱向P区, 从而使得N区有过剩的电子,P区有过剩的空穴,在 P—N结附近形成与势垒电场方向相反光的生电场。
基本原理

若分别在P型层和N型层焊上金属引线,接通负载, 则外电路便有电流通过。如此形成的一个个电池元件, 把它们串联、并联起来,就能产生一定的电压和电流, 输出功率。
2、太阳能电池材料的光学性质
⑵ 本征吸收
在原子图像中,硅的本征吸收可以理解为一个硅 原子吸收一个光子后受到激发,使得一个共价电子
变成了自由电子,同时在共价键断裂处留下一个空
穴。 实验发现,只有那些
h 大于禁带宽度Eg的光
子,才能产生本征吸收。
⑵ 本征吸收
显然入射光子必须满足

式中
0 --刚好能产生本征吸收的光的频率(频率吸限);
1、光生伏打效应
P区 N区
内建电场ε
1、光生伏打效应
在N区中:光生电子--空穴对产生以后,光生空穴便
向P-N结边界扩散,一旦到达P-N结边界,便立即受到内 建电场作用,被电场力牵引作漂移运动,越过耗尽区进入
P区,光生电子(多子)则被留在N区。
在P区中:的光生电子(少子)同样的先因为扩散、 后因为漂移而进入N区,光生空穴(多子)留在P区。如 此便在P-N结两侧形成了正、负电荷的积累,使N区储存 了过剩的电子,P区有过剩的空穴。从而形成与内建电场 方向相反的光生电场。

2、太阳能电池材料的光学性 质 太阳能电池的光学性质,常常决定着太阳能电池的极限效率,
而且也是工艺设计的依据。 ⑴ 吸收定律
当一束光谱辐照度为I0的光正交入射到半导体表面上 时,扣除反射后,进入半导体的光谱辐照度为I0(1-R),在 半导体内离前表面距离为x处的光谱辐照度Ix由吸收定律 决定:

如果将外电路短路,则外电路中就有与入射光能量成正比 的光电流流过,这个电流称为短路电流Isc。
1、光生伏打效应
影响光电流的因素:

通过光照在界面层产生的电子-空穴对愈多,电流愈大。

界面层吸收的光能愈多,界面层即电池面积愈大,在太阳 电池中形成的电流也愈大。
太阳能电池的N区、耗尽区和P区均能产生光生载流子; 各区中的光生载流子必须在复合之前越过耗尽区,才能对 光电流有贡献,所以求解实际的光生电流必须考虑到各区 中的产生和复合、扩散和漂移等各种因素。
半导体中,自由电子与空穴是成对出现的,即自由电
子与空穴数目相等。
1、本征半导体
本征激发: 半导体在
光照或热辐射激发 下产生自由电子和 空穴对的现象称为 本征激发。
空穴 自由 电子
1、本征半导体
复合: 自由电子在运动的过程中如果与空穴相遇就 会填补空穴,使两者同时消失,这种现象称为复合。
在一定的温度下,本征激发所产生的自由电子与
h h 0 E g hc hc Eg 0
0 --刚好能产生本征吸收的光的波长(波长吸收限)。
可以认为,硅对于波长大于1.15μm的红外光是透明的。
3、太阳能电池等效电路、输出功率和填充因数
⑴ 等效电路
为了描述电池的工作状态,往往将电池及负 载系统用一个等效电路来模拟。
不考虑串联电阻

价带的上面有一个禁带,禁带中不存在为电子所占据 的能级;
禁带之上则为导带,导带中的能级就是价电子挣脱共 价键束缚而成为自由电子所能占据的能级; 禁带宽度用Eg表示,其值与半导体的材料及其所处的 温度等因素有关。
T=300K时,硅的Eg=1.1eV;锗的Eg=0.72eV。


2、杂质半导体
杂质半导体:通过扩散工艺,在本征半导体中掺入少 量杂质元素,便可得到杂质半导体。
式中的P就是太阳能电池被照射时在负载RL上得到的输出功率。
2
⑵ 输出功率
当负载RL从0变到无穷 大时,输出电压U则从0变 到U0C,同时输出电流便从 ISC变到0,由此即可画出 太阳能电池的负载特性曲 线。曲线上的任一点都称 为工作点,工作点和原点 的连线称为负载线,负载 线的斜率的倒数即等于RL, 与工作点对应的横、纵坐 标即为工作电压和工作电 流。
数量会剧增,导电能力随之增强,这就是半导 体的光敏特性。
基本原理

当太阳光照射到半导体上时,其中一部分被表面反射 掉,其余部分被半导体吸收或透过。被吸收的光,当 然有一些变成热,另一些光子则同组成半导体的原子 价电子碰撞,于是产生电子—空穴对。这样,光能就 以产生电子—空穴对的形式转变为电能。
基本原理
3、PN结
由于扩散到P区的自由电子与空穴复合,而扩散 到N区的空穴与自由电子复合,所以在交界面附近多 子的浓度下降,P区出现负离子区,N区出现正离子区, 它们是不能移动的,称为空间电荷区,从而形成内建 电场ε 。 随着扩散运动的进行,空间电荷区加宽,内建电 场增强,其方向由N区指向P区,正好阻止扩散运动的
第三章 太阳能光伏发电技术
3.1.太阳能光伏发展历史和现状
3.2 太阳能电池工作原理
3.3 太阳能电池制造工艺
3.4 太阳能光伏发电系统设备构成
3.5 独立光伏发电系统 3.6 并网光伏发电系统
第二节 太阳能电池工作原理
太阳能电池工作原理
基本原理
太阳能电池发电的原理主要是半导体的光电
效应,即一些半导体材料受到光照时,载流子
⑴ 吸收定律
I x I 0 (1 R)e
反射率
x
吸收 系数
进入半导体的光到达x 处的光谱辐照度。
⑴ 吸收定律:
当薄片厚度为d时,我 们可以得到关于透射率更 完整的近似表达式。
I2 T (1 R) 2 e d I0
单晶硅、砷化镓和一些重要 太阳能电池材料的吸收系数 与波长的关系如图所示。
相关文档
最新文档