压电陶瓷性能参数解析.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。
根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,
ε
11S,ε
11
S。
(2)介质损耗
介质损耗是包括压电陶瓷在内的任何介质
材料所具有的重要品质指标之一。在交变电场下,
介质所积蓄的电荷有两部分:一种为有功部分(同
相),由电导过程所引起的;一种为无功部分(异
相),是由介质弛豫过程所引起的。介质损耗的异
相分量与同相分量的比值如图1-1所示,Ic为同相
分量,IR为异相分量,Ic与总电流I的夹角为δ,
其正切值为
(
1-4)
式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。
处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。
(3)弹性常数
压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的应变为S,则根据胡克定律,应力T与应变S之间有如下关系S=sT
(1-5)
T=cS
(1-6)
式中,S为弹性顺度常数,单位为m2/N;C为弹性劲度常数,单位为N/m2。
但是,任何材料都是三维的,即
当施加应力于长度方向时,不仅在长
度方向产生应变,宽度与厚度方向上
也产生应变。设有如图1-2所示的薄
长片,其长度沿1方向,宽度沿2方
向。沿1方向施加应力T1,使薄片在
1方向产生应变S1,而在方向2上产
生应变S2,由(1-5)式不难得出
S1=S11T1(1-7)
S
2=S12T1(1-8)
上面两式弹性顺度常数S
11和S12之比,称为迫松比,即
(1-9)
它表示横向相对收缩与纵向相对伸长之比。
同理,可以得到S
13,S21,S22,其中,S22=S11,S12=S21。极化过的压电陶瓷,其独立的弹性顺度常数只有5个,即S11,S12,S13,S33和S44。
独立的弹性劲度常数也只有5个,即C
11,C12,C13,C33和C44.
由于压电陶瓷存在压电效应,因此压电陶瓷样品在不同的电学条件下具有不同的弹性顺度常数。在外电路的电阻很小相当于短路,或电场强度E=0的条件下测得的称为短路弹性顺度常数,记作S E。在外电路的电阻很大相当于开路,或电位移D=0的条件下测得的称为开路弹性顺度常数,记作S D。由于压电陶瓷为各向异相性体,因此共有下列10个弹性顺度常数:
S E 11,S E
12,S
E
13,S
E
33,S
E
44,S
D
11,S
D
12,S
D
13,S
D
33,S
D
44。
同理,弹性劲度常数也有10个:
C E
11,C E
12,C
E
13,C
E
33,C
E
44,C
D
11,C
D
12,C
D
13,C
D
33,C
D
44。
(4)机械品质因数
机械品质因数也是衡量压电陶瓷的一个重要参数。它表示在振动转换时材料内部能量消耗的程度。机械品质因数越大,能量的损耗越小。产生损耗的原因在于内摩擦。机械品质因数可以根据等效电路计算而得:
(1-10) 式中,R1为等效电阻,ωS为串联谐振角频率,C1为振子谐振时的等效电容,其值为
(1-11) 其中,ωp为振子的并联谐振角频率,Co为振子的静电容。以此值代入式1-10,得到
(1-12)
(1-13)
当△f=fp-fs很小时,式1-13可简化为
(1-14) 不同的压电陶瓷元器件对压电陶瓷的Qm值有不同的要求,多数陶瓷滤波器要求压电陶瓷的Qm要高,而音响元器件及接收型换能器则要求Qm要低。
(5)压电常数
对于一般的固体,应力T只引起成比例的应变S,用弹性模量联系起来,即T=YS;
压电陶瓷具有压电性,即施加应力时能产生额外的电荷。其所产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,用介质电位移D(单位面积的电荷)和应力T (单位面积所受的力)表示如下:
D=Q/A=dT (1-15)
式中,d的单位为库仑/牛顿(C/N)
这正是正压电效应。还有一个逆压电效应,既施加电场E时成比例地产生应变S,
其所产生的应变为膨胀或为收缩取决于样品的极化方向。
S=dE (1-16)
式中,d的单位为米/伏(m/v)。
上面两式中的比例常数d称为压电应变常数。对于正和逆压电效应来讲,d在数值上是相同的,即有关系
(1-17)对于企图用来产生运动或振动(例如,声纳和超声换能器)的材料来说,希望具有大的压电应变常数d。
另一个常用的压电常数是压电电压常数go,它表示内应力所产生的电场,或应变所产生的电位移的关系。常数g与常数d之间的关系如下:
g=d/e (1-18)
对于由机械应力而产生电压(例如留声机拾音器)的材料来说,希望具有高的压电电压常数g。
此外,还有不常用的压电应力常数e和压电劲度常
数h;e把应力T和电场E联系起来,而h把应变S和电场
E联系起来,既
T=-eE
(1-19)
E=-hS
(1-20)
与介电常数和弹性常数一样,压电陶瓷的压电常数
也与方向有关,并且也需考虑“自由”,“夹持”、“短
路”、“开路”等机械的和电学的边界条件。因此,也有许