突破衍射极限的超高分辨率成像技术发展 (修改)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结课论文
题目突破衍射极限的超高分辨率成像的技术进展
学生
学号
学院
专业
班级
二〇一五年十二月
一引言
1.1选题意义
光学显微成像具有极为悠久的历史,但一直以来,光学成像一直受到衍射极限的限制而分辨率无法突破200 nm。后来虽然有了电子显微镜、核磁共振显像、
x光衍射仪等微观观测或者显像设备,但是使用光学显微镜可以在活体状态下观察生命体使得其在生物、医学观察方面仍有巨大优势。值得庆贺的是近年来,超高分辨率显微技术的发展使得光学显微成像分辨率达到了20 nm以下。其中德国科学家Stefan Hell、美国科学家Eric Betzig和William Moerner因其在超高分辨率显微技术方面的突出贡献获得了2014年的诺贝尔化学奖。在这篇文章中,我们就简要介绍一下超高分辨率显微技术的发展和应用,并对诸位大师致以敬意。
1.2技术指标
显微技术成像优劣一般通过X-Y平面分辨率与Z轴分辨率大小来判定,分辨率越高数值越小。下表是各种显微成像技术的分辨率指标。
二衍射极限
2.1 衍射极限
我们能看到什么?看到多小的围?看得有多清楚?几百年来,依靠不断进步的科学手段,微观世界正一层层揭开面纱,让人们可以看得越来越“小”,进而可以进行研究。
人的肉眼能分辨0.1毫米尺度的物体,再小,就要借助工具。1665年,英
国科学家罗伯特·虎克制造了第一台用于科学研究的光学显微镜,用它观察薄薄的软木塞切片。虎克看到了残存的植物细胞壁,它们一个个像小房间一样紧挨在一起,这就是“细胞”一词的由来。
此后,显微镜制造和显微观察技术的迅速发展,帮助科学家第一次发现了细菌和微生物。那么,光学显微镜是否可以无止境地“放大”下去,让我们想看到多小就能看到多小?科学家为此做了很多尝试,最终发现,存在一道法逾越的“墙”—衍射极限。
1873年,德国科学家阿贝提出了衍射极限理论:光是一种电磁波,由于存
在衍射,一个被观测的点经过光学系统成像后,不可能得到理想的点,而是一个衍射像,每个物点就像一个弥散的斑,如果这两个点靠得很近,弥散斑就叠加在一起,我们看到的就是一团模糊的图像。
阿贝提出,分辨率的极限近似于入射光波长的二分之一(d=λ/2)。可见光的波长通常在380~780纳米之间,根据衍射极限公式,光学显微镜的分辨率极限就在200纳米(0.2微米)左右。如果物体小于0.2微米,你仍旧看到的是一个模糊的光斑。这就是很长一段时间,光学显微镜的分辨极限——衍射极限。
2.2 突破衍射极限
为了更深入的观察世界,后来有了电子显微镜、核磁共振显像、x光衍射仪等微观观测或者显像设备,人们借助它们可以看得更“细”。但是这些设备依然没有突破衍射极限,他们依然遵循着阿贝衍射极限。这些设备使用的是电子束等
波长非常短的入射光,自然,它们的分辨率就高。比如电子显微镜,分辨率可以
达到0.5埃(一埃等于十分之一纳米),这样就可以看到一粒一粒的原子。
由于生物学、医学方面的研究,更希望在生命体存活的自然状态下进行观察,
在这方面,光学显微镜有它不可比拟的优势。因此,光学显微镜的研发还是世界
科学家的研究热点。突破性的进展发生在本世纪初,近年来,随着新的荧光探针
和成像理论的出现,研究者开发了多种实现超出普通共聚焦显微镜分辨率的三维
超分辨率成像方法。较成熟的有基于单分子成像的超分辨率显微成像方法,包括
光激活定位显微技术 (photoactivated localization microscopy, PALM) 和随
机光学重构显微技术 (stochastic optical reconstruction microscopy,
STORM)。以及两大类通过改造光源的点扩散函数来提高成像分辨率的方法,分别
是受激发射损耗显微技术(stimulated emission depletion, STED)和饱和结构
照明显微技术。
(参考文献:吕志坚,陆敬泽.几种超分辨率荧光显微技术的原理和近期进展) 以上这些进展,都让光学显微镜突破了衍射极限,我们称之为“超分辨成像
技术”。美国光学学会把它列为21世纪光学五大研究计划之首。
三超高分辨率显微技术
3.1光激活定位显微技术PALM
当显微镜需要分辨两个或者更多点光源的时候,很难突破光学分辨率的极限来进行精确定位.而当显微镜的物镜视野下仅有单个荧光分子的时候,通过特定的算法拟合,此荧光分子位置的精度可以很容易超过光学分辨率的极限,达到纳米级.
如上所述,尽管单分子的定位精度可以达到纳米级,但它并不能提高光学显微镜在分辨两个或者多个点光源时的分辨率.2002 年, Patterson 和Lippincott-Schwartz首次利用一种绿色荧光蛋白(GFP)的变种(PA-GFP)来观察特定蛋白质在细胞的运动轨迹.这种荧光蛋白 PA-GFP 在未激活之前不发光,用 405 nm 的激光激活一段时间后才可以观察到 488 nm 激光激发出来的绿色荧光.德国科学家 Eric Betzig 敏锐地认识到,应用单分子荧光成像的定位精度,结合这种荧光蛋白的发光特性,可以来突破光学分辨率的极限.2006 年 9 月,Betzig和 Lippincott-Schwartz 等首次在 Science 上提出了光激活定位显微技术( photoactivated localization microscopy, PALM) 的概念.其基本原理是用PA-GFP 来标记蛋白质,通过调节 405 nm 激光器的能量,低能量照射细胞表面,一次仅激活出视野下稀疏分布的几个荧光分子,然后用 488 nm 激光照射,通过高斯拟合来精确定位这些荧光单分子.在确定这些分子的位置后,再长时间使用 488 nm激光照射来漂白这些已经定位正确的荧光分子,使它们不能够被下一轮的激光再激活出来.之后,分别用 405 nm 和 488 nm 激光来激活和漂白其他的荧光分子,进入下一次循环.这个循环持续上百次后,我们将得到细胞所有荧光分子的精确定位.将这些分子的图像合成到一图上,最后得到了一种比传统光学显微镜至少高 10 倍以上分辨率的显微技术,如图 1 所示。PALM 显微镜的分辨率仅仅受限于单分子成像的定位精度,理论上来说可以达到 1 nm 的数量级。2007 年, Betzig 的研究小组更进一步将PALM 技术应用在记录两种蛋白质的相对位置,并于次年开发出可应用于活细胞上的PALM 成像技术来记录细胞黏附蛋白的动力学过程。
(参考文献:Patterson G H, Lippincott-Schwartz J. A photoactivatable GFP for