我国海洋测量技术现状及发展趋势
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈我国海洋测量技术的现状及发展趋势
摘要:随着经济和社会的发展,近年来我国在卫星、通讯、计算机、数据处理等技术上取得了杰出的成就,海洋测量相继展现了自动化、智能化、集成化、数字化、多种作业平台、多种产品模式、多种技术融合、多种保障方式的特点。本文首先介绍我国海洋测量的现状,再分析未来海洋测量技术的进程。
关键词:海洋测量;测量技术;现状与展望
中图分类号:p229文献标识码:a文章编号:
引言:
海洋测量主要是为了精密测定和描述海洋几何场和物理场的重要参数,从而为人类开发海洋,利用海洋资源的活动服务。随着科学技术的进步,特别是卫星技术、电子技术、计算机技术及信息获取手段的改进和发展,海洋测量突破了传统单一的海道测量范围,相继出现了相对独立的海洋控制测量、海洋工程测量、海底地形测量、海洋重力测量、海洋磁力测量等。
1.海洋测量的现状
海洋测量按性质可划分为物理海洋测量和几何海洋测量两类。
1.1物理海洋测量
物理海洋测量是对海洋底部地球引力场和磁力场等物理场性质的测量。海洋测量必须以海洋物理知识作为基础,其主要测量方法有海洋地震测量、海洋重力测量、海洋磁力测量和海底热流测量4
种,此外,海洋电法测量和海底放射性测量尚处于试验阶段。物理海洋测量按照原理、技术和方法及其应用划分,包括海洋重力测量、海洋磁力测量及海洋水文测量。
1.1.1海洋重力测量
海洋重力测量是对海域重力加速度进行测定。在进行重力测量时,由于海水的不断运动,会产生各种干扰加速度,受到的主要扰动影响有:水平加速度和倾斜影响、垂直加速度的影响、交叉耦合效应的影响、厄缶效应的影响。近年来,各种高新技术在海洋测量中的应用,海洋重力测量的技术水平有了较大提高:重力仪测量系统的主体技术不断改进,消除了交叉耦合效应的影响;采用硅油阻尼代替空气阻尼,提高了仪器的抗震性和抗干扰性;
dgps(difference global positioning system,即差分全球定位系统)的广泛应用,提高了重力测量中的导航定位精度;光纤陀螺技术的使用,提高了平台的灵敏度、稳定性和使用寿命;卫星测高技术的不断推广,提高了重力测量资料的精度和分辨率;数字化控制重力弹簧或摆的调平、平台的调平,使仪器正在向小型、轻便和高效率的方向发展。
1.1.2海洋磁力测量
海洋磁力测量是对海上地磁要素进行测定。海洋磁力测量按照测量内容可分为海洋磁力仪和海洋磁力梯度仪。早期时,曾使用饱和式磁力仪,目前,多使用质子旋进磁力仪、光泵磁力仪及铯光泵磁力梯度仪和质子旋进式磁力梯度仪。光泵技术的使用,消除了日变
和海岸效应的影响,提高了测量的灵敏度、稳定性和可靠性;dgps、压力深度仪、超短基线定位系统、浪潮仪和adcp (acoustic doppler current profilers, 即声学多普勒流速剖面仪)等辅助设备的采用,提高了定位精度和环境噪声改正精度。
1.1.3海洋水文测量
海洋水文测量就是对海洋水文要素进行测量,为水下地形测量、水深测量以及定位提供必要的海水物理、化学特性参数。随着海洋科学的发展,在现代的海洋水文测量中,出现了多种新的观测手段及其相应的探测仪器。走航式温盐深计可以在动态海水里获取不同水层的温度和盐度,为研究海洋温度及盐度的分布规律提供了丰富的数据资料,突破了点测量的局限。透明度仪的使用提高了观测的精确度和准确度。遥报潮位观测和gps在航潮位测量方法的出现,在很大程度上提高了潮位观测的自动化和精确性。目前通过测站式或adcp测定海流的流速和流向,加快了测量速度,提高了测量精度。
1.2几何海洋测量
几何海洋测量是对海洋表面、海底及其相邻海岸的几何形状的测定。主要包括海洋大地测量、海洋定位测量、水深测量、海底地形地貌测量、海洋工程测量。
1.2.1海洋大地测量
海洋大地测量是研究海洋大地控制点(网),确定地球形状,研究海平面形状的科学。海洋大地测量的主要工作是建立海洋大地控
制网,为水面、水中、水底定位提供已知位置的控制点,海洋控制网包括海岸控制网、岛-陆、陆-岛控制网及海底控制网。海岸控制网的建立与常规的陆上控制网相同,可采用传统的边角网和gps控制网。卫星定位技术的出现,实现了陆-岛和岛-陆控制网的联测,也实现了远离大陆水域的水上定位和水下地形测量,并将其测量成果纳入与大陆相同的坐标框架内。海底控制网是通过声学方法建立的,一般布设为三角形或正方形结构,水下控制点为海底中心标石,其标志采用水下答应器(或称声标),水下答应器的位置通过船载gps接收机和水声定位系统联合测定,即双三角锥测量。
1.2.2海洋定位测量
海洋定位测量是海洋测绘和海洋工程的基础。随着电子经纬和高精度红外激光测距仪的发展,可按一方位一距离极坐标法可为近岸动态目标实现快速定位。全站仪由于自动化程度高,使用方便、灵活,当前在沿岸、港口、水上测量中使用日益增多。gps定位系统是目前海洋测量的主要定位手段。水下定位普遍采用声学定位系统,水声定位系统的工作方式很多,最基本的有长基线定位系统、短基线定位系统和超短基线定位系统。目前我国已经研发了水下dgps高精度定位系统用于水下定位,该设备首次利用gps解决水下设备导航和实时三维定位问题,并提供亚米级的定位结果。
1.2.3水下地形测量
海底地形测量,首先进行海岸或海底平面、高程控制测量,然后进行海底地物、地貌的探测。随着gps高精度定位技术在海洋测量
中的应用,水下地形测量的导航和定位精度得到了进一步改善。多波束测深系统具有测量范围大、速度快、精度高、自动化等诸多优点,将测深技术进一步发展到立体测图和自动成图。随着声学、干涉技术及计算机技术的发展,出现了高精度高分辨率侧扫声纳系统,使得海底地形地貌的勘察更加详细。遥感海底地形测量具有大面积、同步连续观测及高分辨率和可重复性等优点,遥感技术的应用使海底地形测量技术取得了重大进展。
2.对海洋测量的展望
海洋是地球的一个重要部分,而我国是一个海洋大国,我国海洋测量未来主要应向以下几个方面发展:
2.1服务对象将向全方位、多层次服务转化
20世纪海洋测量的服务对象主要是保障海面航行船只的安全,今后海洋测量的服务对象将不断扩充。海洋测量的基准面也将逐步与陆地地形测量基准面统一,建立以海洋大地水准面为基准面是势在必行的,因此,未来海洋测量技术的主攻方向是:继续研制新型精密的测量仪器设备;统一陆地和海洋地形基准面;精化海洋大地水准面。随着信息化技术的高速发展,多种海洋测量数字产品、数据库和地理信息系统将集成一体,为多学科的多种使用目的提供全方位服务。
2.2信息获取和表示将向集成综合式转化
未来无论是信息获取还是信息体现都会以多系统集成为主体。在信息获取领域,一个系统多种功能的集成和多个系统的有机集成是