第二章电化学反应热力学要点

合集下载

电化学的热力学和动力学

电化学的热力学和动力学

电化学的热力学和动力学电化学是研究电荷转移和化学反应之间相互关系的学科,是化学、物理、电工学、材料科学、环境科学等学科的交叉领域。

本文将介绍电化学中的热力学和动力学方面的内容,探讨它们的基本原理、应用和近年来的研究进展。

一、电化学热力学1. 基本原理电化学热力学是研究电化学系统中热力学性质和热力学过程的理论。

在电化学反应中,正负电荷之间的相互作用会释放能量,在热力学上相当于系统的内能发生了变化。

因此,电化学热力学主要研究电化学反应中的能量转移和变化机制,包括电势、电动势、电化学平衡和反应热等。

2. 应用电化学热力学是电化学分析和电化学加工的重要基础。

在电化学分析中,通过测量电极电势和电化学反应的热效应,可以快速、准确地确定化学物质的性质和浓度。

在电化学加工中,电化学反应中的热效应可以用于控制和调节反应过程,提高反应效率和纯度。

3. 进展近年来,随着电化学技术的发展和应用范围的拓展,电化学热力学研究也取得了一些新进展。

例如,在锂离子电池、柔性电子器件、人工光合成等领域,电化学热力学研究的应用越来越广泛。

此外,一些新型电化学催化剂和电极材料的研究也对电化学热力学的发展带来了一些新的思路和方法。

二、电化学动力学1. 基本原理电化学动力学是研究电化学反应速率和反应动力学的理论。

在电化学中,化学反应和电荷转移是同时进行的,因此反应速率不仅受到化学反应条件的影响,还受到电荷转移过程的影响。

电化学动力学研究的主要问题是如何确定电化学反应的速率、速率常数和反应机理等。

2. 应用电化学动力学研究是电化学催化、电池、腐蚀等方面的重要基础。

在电化学催化中,通过研究催化剂表面的电化学反应速率和反应动力学,可以优化反应条件、提高催化剂效率、研发新型高效催化剂等。

在电池领域,电化学反应速率和反应动力学的研究则有助于探究电池的容量、循环寿命和性能等。

3. 进展电化学动力学是电化学研究的重要方向之一,近年来也取得了一些新进展。

2第二章 化学热力学基础

2第二章 化学热力学基础
反应进度ξ 用以表示化学反应进行的程度
aA + bB dD + eE
定义:

nB (t ) nB (0)
nA
B


nB
B
(mol )
nE

A
nB
B

nD
D

E
15
反应进度 1mol
即nA A a
nB B b
按化学反应进行1mol反应 14
CH4 (g) 2O2 (g) CO2 (g) 2H 2 O(l)
(c) CH4 (g) 3 O 2 (g) CO(g) 2H 2 O(l)
2 3 (d) CH4 (g) O2 (g) CO(g) 2H 2 O(g) 2
25
(2)一个体系从环境得到了160J的功,其内 能增加了200J,则体系与环境交换的热量 为 。 (a)360J (b)-360J (c)40J (d)-40J
U1
Q W 13
பைடு நூலகம்
U2
ΔU= U2 - U1 = Q +W
注:① Q 、W正负号 ② Q 、W、 ΔU单位一致(J、kJ)
例.某一体系在变化过程中从环境吸收了50 kJ的热, 对环境 做功4 kJ , 则热力学能的变化为? ΔU=Q+W =50- 4=46 kJ
14
§2-2 化学反应的焓变
一.反应进度ξ
kJ
= ΔU + ΔnRT J kJ (×10-3)
23
例:使1molH2O(l)在373K, P 下变成1mol H2O(g)需要 提供40.68kJ的热量,求此过程做功W,ΔH及ΔU
解:

李狄版电化学原理-第二章__电化学热力学

李狄版电化学原理-第二章__电化学热力学

电池的表示方法
250C , (-) Zn|ZnSO4(αZn2+=1) || CuSO4(αCu2+=1) |Cu (+) 1、负极写在左边,正极写在右边,溶液写在中间。溶液中有关 离子的活度或浓度,气态物质的气体分压应注明 2、两相界面用单竖线“∣”或“,”隔开,两种溶液通过盐
桥连接,用双竖线“‖”表示盐桥。
形成原因:
不同的金属相中电子的电化学位不同,电子逸出金 属相的难易程度也不同。通常以电子逸出功来衡量电 子逸出金属的难易程度。
结果:
电子逸出功低
电子逸出功高
电子逸出功高的金属带 负电,电子逸出功低的金属 带正电;形成双电层的电位 差→金属接触电位。
2.1.3、电极电位
1 电极体系(简称电极) 如果在相互接触的两个导体相中,一个是电子导电相,另一个 是离子导电相,并且在界面上有电荷转移,这个体系就称为电 极体系(简称电极)。
E = M S - R + R M R =0 E(相对电位)= = M S + R M 实际上,相对电极电位不仅包括M S ,而且包括金属接触电
位 R M 。
3 绝对电位符号的规定
规定溶液深处电位为零,金属与溶液的内电位差看成是金属 相对于溶液的电位降。 金属一侧带正电, 溶液一侧带有负 电,M S 为正值 反之,: M S 为负值。
E ΔZn φS ΔSφCu ΔCuφ Zn
电极材料不变,Cu Zn是恒定值; 若S Cu 恒定,
E = ( Zn S ) 即:绝对电位的变化值是可求出的。
E有用,对不同电极测 量, E 的大小顺序与绝对 电位的大小顺序一致。 参比电极 能作为基准的,其电极电 位保持恒定的电极。

第二章 电化学热力学

第二章 电化学热力学
阳极(-) Zn片: Zn-2e = Zn2+
氧化反应
阴极(+) Cu片: Cu2+ + 2e = Cu 还原反应
c.偶极子层
溶液一侧
M
S
偶极子层
相间电位的形成原因及双电层种类
4、金属自身偶极子 的排列(金属表面因 各种短程力作用而形 成的表面电位差,例 如金属表面偶极化的 原子在界面金属一侧 定向排列所形成的双 电层)。
d.金属表面电位
金属一侧
M
S
金属表面电位
双电层的种类
双电层:由符号相反的两个电荷层构成的界
定义:相互接触的两个组成不同的电解质溶液之 间存在的相间电位。
形成的原因:由于两溶液相组成或浓度不同, 溶质粒子将自发的从高浓度向低浓度的相迁移, 就是扩散的作用。正负离子运动速度不同在相 界面形成的双电层,产生一定的电位差。
特点:相对稳定;无法测量;不可逆;尽量消除。 消除方法:在两种溶液之间接盐桥。
原电池 galvanic cells
原电池定义:凡是能将化学能直接转化为电能 的电化学装置。
原电池的重要特征之一是通过电极反应产生电 流供给外线路中的负载使用。如:
()Zn ZnSO4 Zn2 1 CuSO4 Cu2 1 Cu ()
原电池 Primary cell
它是由于电子在两种金属中化学位-电子逸出 功不同引起的。
电极电位
electrode potential
电极电位:电极体系中,两类导体接触界面所形 成的相间电位,金属/溶液之间的相间电位,即 电极材料和离子导体(溶液)的内电位差。
电极电位是稳定的:
M S M S ii e

第二章电化学腐蚀热力学要点

第二章电化学腐蚀热力学要点
• 上面介绍的是常见的三种宏观腐蚀电池。实际上 腐蚀现象往往是几种(包括下面将介绍的微电池) 类型的腐蚀电池共同作用的结果。
2.3.2微观腐蚀电池
• 在金属外表上由于存在许多极微小的电极 而形成的电池称为微电池。微电池是因金 属外表的电化学的不均匀性所引起的,不 均匀性的原因是多方面的。
图2.4 腐蚀电池
图2.5铜锌接触形成腐蚀电池示意图
图2.6铸铁形成腐蚀电池示意图
• 单个金属与溶液接触时所发生的金属溶解 现象称为金属的自动溶解。这种自溶解过 程可按化学机理进展,也可按电化学机理 进展。金属在电解质溶液中的自动溶解属 于电化学机理。
图2.7金属锌在稀酸溶液中的腐蚀
2.2.4金属腐蚀的电化学历程
• 金属腐蚀反响体系是一个开放体系。在反响过程 中,体系与环境既有能量的交换又有物质的交换。
金属腐蚀反响一般都是在恒温和恒压的条件下进 展的,用体系的热力学状态函数吉布斯(Gibbs)自
由能判据来判断反响的方向和限度较为方便。吉 布斯自由能用G表示,对于等温等压并且没有非
体积功的过程,腐蚀体系的平衡态或稳定态对应
• Zn2++ 2OH- → Zn(OH)2 ↓ • 这种反响产物称为腐蚀次生产物,也称腐蚀产物。某些情
况下腐蚀产物会发生进一步的变化。例如铁在中性的水中 腐蚀时Fe2+离子转入溶液遇到OH-离子就生成Fe(OH)2, Fe(OH)2又可以被溶液中的溶解氧所氧化而形成Fe(OH)3。
• 4 Fe(OH)2+O2+H2O→ 4Fe(OH)3: • 随着条件的不同(如温度、介质的pH及溶解的氧含量等)也
• 从上面讨论的腐蚀电池的形成可以看 出,—个腐蚀电池必须包括阴极、阳极、 电解质溶液和连接阴极与阳极的电子导体 等几个组成局部,缺一不可。这几个组成 局部构成了腐蚀电池工作历程的下三个根 本过程。

第二章电化学热力学

第二章电化学热力学

根据电位差公式,可得:
则有: 可把与参比电极有关的第二项看成是参比电极的相对电 位,把与被测电极有关的第一项看成是被测电极的相对 电位,上式可简化为: 如果规定参比电极的相对电位为零,则: 而且有:
2.2.3 绝对电位的符号规定
根据绝对电位的定义,通把溶液深处看作是距离金属溶 液界面无穷远处,认为溶液深处的电位为零,把金属与 溶液的内电位差看成是金属相对于溶液的电位降。
2.1.2 出现相间电势的原因 界面层中带电粒子或偶极子的非均匀分布,导致一侧有过剩的 正电荷,另一侧有过剩的负电荷,形成双电层。 (1)剩余电荷层:由于带电粒子(电子或离子)在两相间转移, 导致两相中都出现了剩余电荷,这些剩余电荷或多或少地集中 在界面两侧,就形成了双电层; ( 2)吸附双电层:带有不同符号电荷的粒子(阳离子和阴离子) 在表面层中的吸附量不同,因而在界面层与溶液本体中出现了 符号相反的电荷; (3)偶极子层:偶极分子在界面层中的定向排列; (4)金属表面电位:金属表面因各种 短程力作用而形成的表 面电位差。
相间:两相界面上不同于基体性质的过度层。
相间电位:两相接触时,在两相界面层中存在 的电位差。
产生电位差的原因:荷电粒子(含偶极子) 的非均匀分布 。
2.1.1 相间电势差
两相接触时,由于种种 原因,在两相之间的界 面上,就会产生电势差: (1)金属接触电势 (2)金属-溶液间电势 (电极电势) (3)液体接界电势 (扩散电势) (-) Cu(s) Zn(s)ZnSO4(aq) , CuSO4(aq) Cu(s)Cu(s) (+) 金属-金属 溶液-溶液 金属-溶液
2.1.5 粒子的逸出功(Wi) 将该粒子从实物相内部逸出至表面近处真空中所需要作的 功.逸出功的数值和实物相以及脱出粒子的化学本质有关。 粒子逸出功: 电子逸出功:

第二章 热力学第二定律(简明教程物理化学)

第二章 热力学第二定律(简明教程物理化学)

§2.1 热力学第二定律的经典表述
1. Clausius说法:不可能把热从低温物体传到高温物 体而不引起其它变化。 2. Kelvin & Plank说法:不可能从单一热源吸热使之 完全变为功而没有任何其它变化。 3.第二类永动机是不可能造成的。 第二类永动机乃是一种能够从单一热源吸热,并 将所吸收的热全部变为功而无其他影响的机器。 强调说明: 1. 第二类永动机是符合能量守恒原理的; 2. 热可以完全变为功,注意其限制条件; 3. 可以判断过程进行的方向。
T2
2.卡诺热机的效率只与热源温度有关,而与工作 介质无关。 卡诺定理告诉人们:提高热机效率的有效途径是加 大两个热源之间的温差。 单一热源:T1=T2, = 0,即热不能转化为功。
证明卡诺定理1:
反证法 假定I > R , 则|W’ | > | W |
高温热源T2
吸热Q2 吸热 Q 22 放热 Q
* 不同种理气 (或理想溶液)的等温混合过程,并 V 符合分体积定律,即 xB B
V总
1mol A,T,V
1mol B,T,V
n=nA + nB T, 2V
mix S R nB ln xB
B
二、定容或定压变温过程
定容
S
T2
T1

Qr
T
nCV ,m
T1
T2
若CV,m为常数
第二章 热力学第二定律
不可能把热从低温 物体传到高温物体, 而不引起其它变化
化学与材料科学学院
§2.1 自发过程的共同特征
自发过程:能够自动发生的过程。
经验说明:自然界中一切自发过程都是有方向和限度的。
如: 方向 热: 高温低温 电流:高电势低电势 气体:高压低压 钟摆:动能热

第二章-电化学腐蚀热力学

第二章-电化学腐蚀热力学


24
测量Zn的标准电极电位
25
2.2.4 非平衡电极电位
水合金属离子能够回到金属中去,水合-金属化过程速率 相等且又可逆-平衡电极电位 在实际中,与金属接触的溶液大部分不是金属自身离子 的溶液,所以涉及的电极电位大部分都是非平衡电极电 位 当金属和电解质溶液建立的双电层的电极过程为不可逆 时,其电极电位成为非平衡电极电位
j
R-理想气体常数 F-法拉第常数 T-热力学温度
20

对数项前取“+”号,反应式中含电子一侧的所有物质活 度乘积为分子,另一侧物质为分母。如果反应式中某物 质前有系数则该系数作为该物质活度的指数。 纯固体活度被规定为1。反应中浓度保持恒定的物质, 如:溶液中水的活度也规定为1。气体物质活度等于其 逸度,常压下近似等于大气压(atm)为单位的该气体分压。 能斯特方程反应了平衡电极电位与温度、参与反应的各 物质活度和压强间的关系。 能斯特方程只能用于计算平衡电极电位。
t:电流持续时间,s
在电极反应中,当1mol的氧化体转化为还原体,前者 需要从电极取得n个法拉第常数的电量的电子;而当1mol 还原体转化为氧化体时,电极从还原体得到数值等于n个 5 法拉第常数的电量的电子。
(6) 电极:电极系统中的电子导体相 阳极:发生氧化反应的电极 阳极反应:失去电子的反应 阴极:发生还原反应的电极 阴极反应:得到电子的反应 原电池产生电流:两电极之间的电位差引起 ——电极反应的驱动力:电池的电位差 阴极电位高:正极;阳极电位低:负极
8

Zn本来是电中性的,因离子进入溶液 而把电子留在金属上,这时金属Zn带 负电;在Zn2+进入溶液的同时破坏了 溶液的电中性,使溶液带正电
金属上过剩的负电荷吸引溶液中过剩 的阳离子,使之靠近金属表面,形成 带异号电荷的离子双电层,在两相界 面上产生一定的电位差

《电化学原理第二章》PPT课件

《电化学原理第二章》PPT课件

溶液(1)
§2.2 电化学体系
电化学体系有三类 1.原电池:电化学反应自发进行并能对外做功,自发将电流送到外电 路中做功。 2.电解池:与外电源组成回路,强迫电流在电化学体系中通过并促使 电化学反应发生。 3.腐蚀电池:电化学反应自发进行,但不对外做功,仅起金属破坏作 用。
16:23:07
一、 原电池
例2: 2Ag + Hg2Cl2 2Hg + AgCl
阳极:Ag + Cl- - e → AgCl 阴极:Hg2Cl2 + 2e → 2Hg + 2Cl原电池表示为: Ag∣AgCl(s), Cl-(α1)‖Cl-(α2), Hg2Cl2(s)∣Hg(
16:23:07
例3:
H2 (P1) + Cl2 (P2)
阳极
16:23:07
E
电池电动势:
E = c - a+液接 = 右 - 左+液接
阴极
例1: Zn + CuSO4(α2) ZnSO4(α1)+Cu
阳极 Zn – 2e → Zn2+ 阴极 Cu2+ + 2e → Cu 原电池表示: Zn∣ZnSO4(α1)‖CuSO4(α2)∣Cu
16:23:07
16:23:07
二、金属接触电位
相互接触的两金属相之间的外电位差称为金属接触电位。 不同金属对电子亲和力不同,故在不同金属相中电子的电化学位不相等,电子逸出难易不同。 电子逸出功:金属电子离开金属逸出真空中所需要的最低能量来衡量电子逸出金属的难易程度,这一能量 叫电子逸出功。 其电子逸出功不同,相互逸入的电子数目将不等,故在界面形成双电子层结构。电子逸出功高的相带负 电,电子逸出功低的相带正电。两相间双电子层的电位差即为金属接触电位。

第二章 基础化学热力学要点

第二章  基础化学热力学要点
第二章 基础化学热力学
热力学 解决两个问题
(1)能量如何转化
(2)方向、限度
动力学:反应如何进行及其速率大小
• 第一节 常用名词 • 体系:被研究的对象
• • •
敞开体系 三种体系 封闭体系 • 孤立体系 • 敞开体系:体系与环境之间既有能量交换,又有物质 交换。 • 封闭体系:体系与环境之间只有能量交换,没有物质 交换。
• 关键点:状态函数的改变量“Δ ” 决定于过程的始终态,与途径无 关。
第二节 热力学第一定律
一、热和功 热力学中能量的传递方式:热和功
1、热( Q):是系统与环境间存在温度差而引起的 能量传递。单位:J
正负规定:体系从环境吸热为正,Q 0;
体系向环境放热为负,Q 0 。
2、功(W):在热力学中,除热以外的其他的 能量传递形式称为功。单位:J 正负规定:体系对环境作功为负,W 0; 体系从环境得功为正,W 0 。 体积功:是体系体积变化反抗外力所作的 功。 W体= -p外 V 非体积功:电功、机械功、表面功等。
o m
1
若反应写成2HI(g)= H2(g) + I2(g),则 o • r H m = _________kJ·mol-1。若反应写成 • 1/2H2(g) + 1/2I2(g)= HI(g) , 则 • H o = ___________kJ·mol-1。
r m
热力学依据:由第一定律知:定压时, H= QP ;而H是状态函数,只与反应的始、 终态有关,而与分几步反应的途径无关。
六、生成焓
• 由元素稳定单质生成1 mol某物质时的热效应。
• f H m • 例如: C(石墨)+ O2(g)= CO2 (g)

电化学原理第二章

电化学原理第二章

23:40:27
原电池表示法: (1)负极在左边,正极在右边,中间溶液。注明活度、浓度、 分压等物态 (2)两相用“|”或“,”表示;盐桥用“||” (3)注明惰性金属种类 (4)上述写法可注明电池反应温度,电极正、负极性,且自发 进行时电池电动势为正值。
• (-) 电极a 溶液(a1) 溶液(a2) 电极b (+) • 阳极 E • 电池电动势: 阴极
ф称为M相的 内电位
23:40:27
(2)为克服试验电荷与组成M相的物质之间的短程力作用 (化学作用)所作化学功。 进入M相的不是单位正电荷,而是1摩尔带电粒子,其 所做化学功为其在M相中的化学位 i。若该粒子荷电量为 ne0,则一摩尔粒子所做电功为nF ф ,F为法拉第常数,则 有
i i nF
在298.15 K 时,以水为溶剂,当氧化态和还原态的活度等 于1 时的电极电位称为:标准电极电位。
23:40:27
23:40:27
标准电极电势表
利用上述方法,可以测得各个电对的标准电极电势,构成 标准电极电势表。
电 对
电 极 反 应
电极电势(V)
K+/K K++e- K Zn2+/Zn Zn2++2e- Zn H2 H+/H 2H++2eCu2+/Cu Cu2++2e- Cu F2/F F2+2e- 2F23:40:27
-2.931 -0.7618 0.0000 +0.3419 +2.866
23:40:27
五、液体接界电位与盐桥
液体接界电位:在两种不同离子的溶液或两种不同浓度的溶 液接触界面上,存在着微小的电位差,称之为液体接界电 位。 液体接界电位产生的原因:正、负离子不同的扩散速度使 界面处形成双电层,产生一定电位差, 液界电位也可叫做扩 散电位。用符号j表示,见图。

第二章电化学反应热力学

第二章电化学反应热力学

第二章电化学反应热力学第一节电化学体系一、两类电化学装置镀锐是重要电化学工业之一,其装置示意图如图2.1所示镀锐溶液(主要成分为NiS04,还有缓冲剂、添加剂等)电解槽或电解池:把两个电极与直流电源连结,使电流通过体系的装置原电池或化学电源:在两电极与外电路中的负载接通后自发地将电能送到外电路的装置。

上述两类电化学装置,也称为电化学体系。

® 2.1镀锐装置示意原电泡与电解池的两个电极之间存在着电位差,电位较高的电极称为正极,电位较低的电极称为负极。

在自发电池中,电流(习惯上指正电荷)自正极经外电路流向负极。

电解池的正、负极分别与外电源的正、负极相连。

事实上,在外电路传送的电荷都是电子,电子流动方向与习惯上认为的电流方向相反。

人为规定使正电荷由电极进入溶液的电极称为阳极,使正电荷由溶液进入电极的电极称为阴极,在阳极上进行氧化反应,在阴极上进行还原反应。

在电解时,正极是阳极,负极是阴极。

在原电池中负极是阳极,正极是阴极。

用正、负极名称是按电位高低来区分,用阴、阳极名称是按电极进行还原或氧化反应来区分。

也有用氧化极、还原极来称呼电极的,前者即阳极、后者为阴极。

电流通过电化学体系,必须有两类导体:电子导体和离子导体,以及在这两类导体的界面上进行电化学反应。

因此,电化学的研究对象应当包括三部分:电子导体、离子导体、两类导体的界面及其上发生的一切变化。

电子导体届丁物理研究的范围,在电化学中一般只引用它们所得的结论。

离子导体包括电解质溶液、熔融盐和固体电解质。

经典电化学的主要内容:电解质溶液理论。

近代电化学的主要内容:两类导体的界面性质及界面上所发生的变化,涉及化学热力学和化学动力学的许多问题。

电化学包括的基本内容为电解质溶液理论,电化学平■衡和电极对程动力学能量的转换:电解池,把电能转变为化学能;化学电源,使化学能转变为电能。

电化学主要是研究化学能和电能之间相互转化以及和这过程有关的定律和规则的科学。

第二章 热力学第一定律

第二章  热力学第一定律

热力学能是状态函数,用符号U表示,具有广延性质。
U=U2-U1
U=U(T, V)
U U dU ( )V dT ( )T dV T V
6. 第一定律的文字表述
热力学第一定律是能量守恒与转化定律在热现
象领域内所具有的特殊形式,说明热力学能、 热和功之间可以相互转化,但总的能量不变。
系统(System)
作为研究对象的那部分物质或空
间。在科学研究时必须先确定研 究对象,把一部分物质与其余分 开,这种分离可以是实际的,也 可以是想象的。这种被划定的研 究对象称为系统。
环境(surroundings) 与体系密切相关、有相互作用或 影响所能及的部分称为环境。
系统与环境之间的相互影响包括两个方面:
也可以表述为:第一类永动机是不可能制成的。
第一定律是人类经验的总结。
第一类永动机 (first kind of perpetual motion mechine)
一种既不靠外界提供能量,本身也不减少能量,却可以不
断对外作功的机器称为第一类永动机,它显然与能量守恒 定律矛盾。
历史上曾一度热衷于制造这种机器,均以失败告终,也就
§2.3 恒容热、恒压热与焓(enthalpy)
工业生产中或科学研究的化学反应,一般是在恒容或恒
压条件下进行的,下面我们将要讨论的是恒容热和恒压 热。 热效应—只做体积功时系统吸收或放出的热
上述方法是解决热力学问题的最基本方法。
热力学第一定律应用于特殊过程
隔离系统: 恒容过程:
Q0 W 0 U 0
V 0 W 0 故:U Q W Q
循环过程: U 0 绝热过程: Q 0
Q W

腐蚀与防护-第二章电化学腐蚀热力学资料

腐蚀与防护-第二章电化学腐蚀热力学资料
微观腐蚀电池是造成潮湿大气中洁净金属表 面腐蚀的主要原因。特点:尺寸小,间距近。
由于几方面的不均匀性造成。
① 材料本身相的不均匀性
化学成分、组织结构、物理状态、表面膜的不 完整性 ② 液相的不均匀性 ③ 系统外界条件的不均匀性
温度、光能
微观腐蚀电池
• 化学成分不均匀性。如:金属中杂质。 • 杂质的组成、性质不同于基体,有的相对
2.1 电池过程
➢原电池
把化学能转化为电能的装置
原电池的组成
(c) 电极: 电池中发生 氧化还原反 应的场所。
(a)外电路:负载, 电流的外部通路
(b)盐桥: 电流的内 部通路
()Zn ZnSO4(水溶液) CuSO4(水溶液)Cu()
阳极反应: Zn Zn2 2e 阴极反应: Cu2 2e Cu 总反应: Zn Cu2 Zn2 Cu
电位、位于不同位置; (2)阳极和阴极之间要有电性连接(电子导体
通道);
(3)阳极与阴极均处于有导电能力的腐蚀环 境内(离子导体通道)。 总之,要有两种电极(阳极、阴极)和 两种通道(电子通道、离子通道)。
以锌在酸溶液中腐蚀为例,腐蚀电池工作过 程如图2-1所示。
• 腐蚀电池的工作历程 (电化学腐蚀的过程)
(1)以(+)表示原电池的正极,正极总是写在右边;以(-)表示原电池的 负极,负极总是写在左边。
(2)正、负极中总是有一种导电的物质,如Zn、Cu、Ag、等还原态物质可 作为电极导体,导体总是写在紧邻(+)、(-)的最旁边的位置。如果 电对中的还原态物质不是导体,如Fe3+/Fe2+、 H+/ H2 、Cl2/Cl- 等,就需 要加惰性电极,如:C(石墨)、Pt等。
构成温差电池。

大学化学第二章电势和电池热力学课件

大学化学第二章电势和电池热力学课件

E S nF ( T ) p
E ( T ) p E ( T ) p
电池的温度系数
>0 电池放电时从环吸收热量 =0 电池放电时与环境无热交换 <0 电池放电时向环境放出热量
RT lnK = -∆G θ = nFE θ E HG TS
nF
T

T
R
体系对外所做的最大非体积功等于体系自由能的减少
TS 0 lim QC 43kJ
R
-G = W非 = nFE
可逆电池热效应
(3) 实际的可逆性
因为所有真实过程都有一定的速度,所以 它们不可能具有严格的热力学上的可逆性。然 而,实际上它们可以以这样一种方式进行,以 至于在所期望的某一准确度下,一些热力学方 程式可以适用。在这种情况下,可以称这些过 程为可逆过程
可逆电池 = 化学可逆 + 热力学可逆
等温可逆
等压可逆 等容可逆
2、可逆性和吉布斯(Gibbs)自由能
体系自由能的减少等于体系对外所做的 最大非体积功。
可逆时体系对外所做的非体积功最大
-G = W非 = W电 = nFE 实例 反应 Zn + 2 AgCl → Zn2+ + 2Ag + 2 Cl- 以三种不同方式进行
充电: 阳极
阴极:
PbSO4 2H2O PbO2 4H SO42 2e PbSO4 2e Pb SO42
Zn│H+ , SO42-│Pt
电池放电时
负极: Zn → Zn2+ + 2 e
正极: 2 H+ + 2 e → H2 电池反应是: Zn + 2H+ → H2 + Zn2+ 电池充电时 负极: 2 H2O → O2 + 4H+ + 4e(在铂电极上)

第二章 电化学热力学

第二章 电化学热力学

E
2t
RT F
ln
a' a"
25℃时,0.1mol/dm3AgNO3和0.01mol/dm3AgNO3溶液 中Ag+离子的平均迁移数为0.467。试计算(1)两个电 池在25℃时的电动势
a)Ag|AgNO3(0.01mol/dm3) ‖ AgNO3(0.1mol/dm3) |Ag b)Ag|AgNO3(0.01mol/dm3) | AgNO3(0.1mol/dm3) |Ag
GiAB iB iA 0
即: iB iA
带电粒子:
将单位正电荷从无穷远处移至实物相内部所做的功
将单位正电荷e从无穷远处移至距良导体球体M104~10-5cm处所做的功等于球体所带净电荷在该处所 引起的全部电位,即M相(球体)的外电位,用 表示:
W1=
从10-4~10-5cm处越过表面层到达M相内所作的电功, 称为M相的表面电位。
两相接触时,带电粒子在两相中建立平衡的条件 就是带点粒子在两相中的化学电位相等。即
iB iA
相间电位的类型
外电位差(伏打电位差): B- A
直接接触的两相之间的外电位差又称为接触电位 差,用符号B A。它是可以直接测量的参数。
内电位差(伽尔伐尼电位差): B- A
直接接触或通过温度相同的良好的电子导电性材
料连接的两相间的内电位差可以用B A表示。
电化学位差:i B i A
2.1.2 金属接触电位
电子逸出功:电子离开金属逸入真空中所需要
的最低能量。用来表征电子溢出金属的难易程度。
金属接触电位:当两种金属相互接触时,由于
电子逸出功不等,相互逸入得电子数目将不等, 因此,在界面层形成了双电层结构:在电子逸出 功高的一侧电子过剩,带负电;在电子逸出功低 的一侧电子缺乏,带正电。这一相间双电层的电 位差就是金属接触电位。

第二章__热力学第一定律

第二章__热力学第一定律

(D) 系统的某一性质改变了,其状态必定发生 改变
11
状态函数特点:
状态改变,状态函数值至少有一个改变 异途同归,值变相等;周而复始,其值不变 系统状态的微小变化引起状态函数 X 的变化用 全微分 dX 表示。
按照热力学系统宏观性质的数值是否与物质的数量有关, 状态函数可分为:
状态函数分类
状态确定
所以,性质是状态的函数
状态函数(state function):鉴于状态与性质 之间的这种对应关系,所以系统处于平衡态
时的热力学性质(如 U、H、p、V、T 等)
称为状态函数。
下面说法错误的是
(
)
(A) 系统的同一状态可具有不同的体积
(B) 系统的不同状态可具有相同的体积
(C) 系统的状态改变了,可能所有的状态函数 都要发生改变
W= -pambV= - pV
δW= -pambdV= - pdV 由热力学第一定律可得:
Qp = U - W = U + pV δQp = dU + d(pV) = d(U + pV) (dp = 0,δW’=0)
3.焓的导出: δQp = d(U + pV)
定义 : H = U + pV 称H为焓,H为状态函数,广度量,单位J 将焓的定义式代入上式有:
35
热力学第一定律的其它表述方法:
要制造一种既产生功又不需消耗能量 的机器(第一类永动机)是不可能的。
隔离系统能量守恒。
3. 焦耳实验 焦耳于1843年进行了低压气体的自由膨胀实验:
温度计
气体
水浴
真空
37
利用热力学第一定律对焦耳实验过程进行分析 理想气体向真空膨胀:W=0;

应用电化学 第二章 电化学基础理论 第二节 电化学过程热力学

应用电化学 第二章 电化学基础理论 第二节 电化学过程热力学

r Gm RT ln K ,T , P a
r H m ZEF ZFT E
r S m ZF E


T

T

P
P
ห้องสมุดไป่ตู้
rU m QR W f ,max ZFT E
T

P
ZEF
7
W、Q不同,不可逆过程电功Wi,f为
Wi , f ZVF
5
体积功为0时,由热力学第一定律,得电池反应内能变化为:
rU m QR W f ,max ZFT E

T
P
ZEF
6
二、不可逆电化学过程的热力学
实际电化学过程有一定电流通过,为不可逆过程。等温、等压、反应进度 §=1mol时,不可逆电池的 rGm, rHm, rSm, rUm与可逆电池相同:
不可逆电解过程热效应:
Qi, rU m Wi, f ZFT E T ZF ( E V )
ZFT E



) T
P
P
可逆电解时吸收的热量;
-ZF(V-E)为克服电解过程各阻力放出的热量
实际电解过程中,体系放出热量,需移走热量、维持温度恒定。
9
EӨ标准电动势

ln K zF

a
KӨ电池反应的平衡常数
温度系数
r H m zEF zFT E

T
P
4
电池短路时(不作电功,直接发生化学反应)热效应
QP r H m
r S m zF E

T
(电池反应的熵变)
P
等温可逆电池反应热效应:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 电化学反应热力学
第一节 电化学体系
一、两类电化学装置 镀镍是重要电化学工
业之一,其装置示意图 如图2.1所示镀镍溶液 (主要成分为NiS04,还 有缓冲剂、添加剂等)
图2.1 镀镍装置示意图
电解槽或电解池:把两个电极与直流电源连结, 使电流通过体系的装置
原电池或化学电源:在两电极与外电路中的负 载接通后自发地将电能送到外电路的装置。
Z|Z n 2 |n H | (a 1 )|H 2 ( 1 a)tP ,m t
E (Z n Z 2 ) n . (H H 2 ) (P tZ )n
E为锌电极相对标准氢电极的电极电位
电极反应
Zn 22eZn
则有:
2H2eH2
Zn Z2n
Z2n 2 F Zn
e(Z)n
e e FM
因电子带单位负电荷。溶液相:2F C2uC2u
S
平衡条件: Cu C2u 2e 0
C u C 2 u 2 e 2 F S 2 F M 0
Ms C2u2 F CuFe
电极反应平衡条件:根据测量值判断研究的 电极反应是否平衡或反应方向。
二、电极电位和能斯特方程式
电极反应:也是化学反应; ,但有别于普通化学反应。 包含有物质变化,电荷在两相之间转移。电极反应平 衡的能量条件包括化学能和荷电粒子的电能。
以下讨论一个相中电荷发生 变化时电能的变化:
例:一个单位正电荷从无穷远处移人相P内 部(图2.3)所需作的电功为多少? 解:设想这是一个只有电荷而没有物质的点 电荷,因而它进入相P内后会引起相P电能的 变化而不会使相P的化学能变化。
电化学位:电功与化学功,即
zF
电极反应: ( A ) A ( B ) B n e C C D D
平衡条件为
i i 0 l
电极反应自发进行
i i 0 l
例:铜片放在除氧的硫酸铜水溶液中,其电极反 应为 C2 u2eCu
该式两侧电化学位相等时电极反应达到平衡。
金属相中:Cu Cu 因Cu为原子不带电荷,即Z=0
电化学的研究对象:电子导体、离子导体、两类 导体的界面及其上发生的一切变化。电子导体属 于物理研究的范围,在电化学中一般只引用它们 所得的结论。离子导体包括电解质溶液、熔融盐 和固体电解质。
经典电化学主要内容:电解质溶液理论。 近代电化学主要内容: 两类导体的界面性质及界面上 所发生的变化, 涉及化学热力学和化学动力学的许多 问题。
• 电化学基本内容:电解质溶液理论,电化 学平衡和电极对程动力学。
• 能量的转换: 电解池,把电能转变为化学 能;化学电源,使化学能转变为电能。
• 电化学研究方向:主要研究化学能和电 能之间相互转化以及和这过程有关的定 律和规则的科学。
• 电池符号:表示电池的电化学体系,如
左边的锌电极:Zn=Zn2++2e,阳极(负极), 右边的铜电极:Cu2++2e=Cu,阴极(正极)。
上述两类电化学装置,也称为电化学体系。
电位差 正极(电位较高) 负极(电位较低)
电流的流向
电解池的正、负极,阴、阳极 原电池的正、负极 ,阴、阳极
阳极:正电荷由电极进入溶液的电极,氧化反应。 阴极:正电荷由溶液进入电极的电极,还原反应。
电化学体系:电子导体和离子导体,以及导体界 面上进行的电化学反应。
绝对电极电位: 电极材料相与溶液相
两相之间的伽尔伐尼
Ms
ii
i
nF
Fe
电位差
一个相的内电位或两个相内电位
之差的绝对值都是无法测得
相对电极电位 选择一个电极作为比较标准 水溶液中以标准氢电极为标准
图2.4电动势的测量
两个电极电位之差E
E ( M I s) (S M 2 ) (M 2 M 1 )

E o Zn2/Zn
Zon
o Zn
2F

E E Z o2 n /Z nR 2 F lT nZ2 n 2H 2 F H 2
H H oRlT n aH
其中
H 2 H o2RlT n aH 2
推广可得能斯特方程(Nernst)方程
E
i
1io
nF
RT nF
i
i
lnai
EEo
F
H
H 2
2 H 2
H
2F
e(P)t
F
Zn和Pt之间只有电子流动
故可认为
e(Zn)e(P)t
由此得 故有
e (Z ) n F Z n e (P ) t F Pt
Azn
e(P)t e(Z)n F
E Z o2 n R2 lF T n a Z2 n Z o n2H 2 F H 2
• 扩散电位:是非平衡的扩散过程在界面电位差 的作用下达到稳定状态的结果。
图2.2 三种类型扩散电位
第二节 电化学位和电极电位
一、内电位、外电位和电化学位
化学反应: ( A ) A ( B ) B L & c C D D L
若ΔG=0,则有 G1i
反应的平衡条件: ii 0
大小主要决定于各个相的性质、温度和压力等。 如,两种不同金属的界面有接触电位差,金属 与电解质溶液界面的电位差(化学电池中最重 要的电位差),两种不同溶液界面上的电位差 称为液体接界电位。 • 产生界面电位差的原因: (1) 两相间电荷的穿越(最普遍)。
(2)界面一侧选择性地吸附某种离子,界面 另一侧的物相对这离子没有穿透性。 (3)极性分子(溶质分子或溶剂分子)倾向 于在界面上定向排列。
图2.3 单位正电荷 加入到相P中
外电位
单位正电荷移近相P时,克服相P外 部电场的作用力所作的功。
表面电位
单位正电荷到相P表面附近后,穿过P表 面层所作的功。表面层分子定向排列。
内电位 将一单位正电荷从无穷远处移人相P内所
作的电功,即
化学功:带电荷的物质进入相P中,该物质需克服与相P内
的物质之间的化学作用而作的化学功。
ZnS04溶液与CuS04溶液之间存在液体接界电位, 以其间的竖线隔开;采用盐桥能消除液体接界电位, 则用双竖线。
• 电化学体系中存在的界面:金属与溶液的界面,两种不 同溶液的界面;若考虑到电极引线则有不同金属之间的 界面。
二、电化学体系的界面电位差 • 界面电位差:各种物质相界面上存在的电位差,
RTln nF i
aii
通常文献和数据表中的各种电极电位数值,除特 别标明者外,一般都是相对于标准氢电极的数值
相关文档
最新文档