常微分方程毕业论文

合集下载

(完整版)常微分方程初等解法及其求解技巧毕业论文

(完整版)常微分方程初等解法及其求解技巧毕业论文

目录摘要 (I)关键词 (I)Abstract (I)Key words (I)1.前言 (1)2.常微分方程的求解方法 (1)2.1常微分方程变量可分离类型解法 (1)2.1.1直接可分离变量的微分方程 (3)2.1.2可化为变量分离方程 (3)2.2常数变易法 (7)2.2.1一阶线性非齐次微分方程的常数变易法 (7)2.2.2一阶非线性微分方程的常数变易法 (8)2.3积分因子法 (12)3.实例分析说明这几类方法间的联系及优劣 (14)3.1几个重要的变换技巧及实例 (14)3.1.1变为 (14)3.1.2分项组合法组合原则 (15)3.1.3积分因子选择 (15)参考文献 (16)致谢 (17)常微分方程初等解法及其求解技巧摘要常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中.求解常微分的问题,常常通过变量分离、两边积分,如果是高阶的则通过适当的变量代换,达到降阶的目的来解决问题.本文就是对不同类型的常微分方程的解法及其求解技巧的系统总结:先介绍求解常微分方程的几种初等解法,如变量分离法,常数变易法,积分因子法等,在学习过程中,通过对不同类型的方程求解,揭示常微分方程的求解规律.然后介绍几类方程求解中的变换技巧及规律,并通过实例来分析这几类方法之间的联系及优劣,从而能快速的找到最佳解法.关键词变量分离法常数变易法积分因子变换技巧Elementary Solution and Solving Skills of OrdinaryDifferential EquationAbstractOrdinary differential equations are important components of calculus and used extensively for the studies on specific issues. Ordinary differential equations are often resolved by the means of variable separation and both sides integral. If they are higher-order ones, we can reduce their order by proper variable substitution to solve this problem. This essay aims at concluding systematically the methods of different types of differential equations and its resoling skills. First of all, I’d would like to introduce several basic resolutions of differential equations, such as variable separation, constant threats, points factor, etc. In the process of learning, I’d like to reduce the law of resolving ordinary differential equations by resolving different types of equations. Then, we describe several equations resolutions and for transformation techniques and its laws,and we also analyze the advantages and disadvantages and connections by using the examples of these methods to be able to find the best solution quickly.Key wordsVariable separation; constant threats; points factor; transform techniques1.前言数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程又是数学分析的心脏,它还是高等分析里大部分思想和理论的根源.人所共知,常微分方程从它产生的那天起, 就是研究自然界变化规律、研究人类社会结构、生态结构和工程技术问题的强有力工具.它的发展历史也是跟整个科学发展史大致同步的.现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性质的研究、化学反应稳定性的研究等.这些问题都可以转化为求常微分方程的解,或者化为研究解的性质的问题.常微分方程具有广泛的社会实践性,无论是在各类学科领域上,还是在实际生产生活中,都有举足轻重的作用.它所涉及范围之广,致使前人对它做了很深入的研究.应用常微分方程理论已经取得了很大的成就,但是,它现有的理论也还远远不能满足需要,还有待进一步的发展,使这门学科的理论更加完善.微分方程是表达自然规律的一种自然的数学语言.它从生产实践与科学技术中产生,而又成为现代科学技术中分析问题与解决问题的一个强有力的工具.人们在探求物质世界某些规律的过程中,一般很难完全依靠实验观测认识到该规律,反而是依照某种规律存在的联系常常容易被我们捕捉到,而这种规律用数学语言表达出来,其结果往往形成一个微分方程,而一旦求出方程的解,其规律则一目了然.所以我们必须能够求出它的解.常微分方程的初等解法,既是常微分方程理论中有自身特色的部分,也与实际问题密切相关;恰当对初等解法进行归类,能正确而又敏捷地判断一个给定的方程属于何种类型,从而能按照所介绍的方法进行分解.总之,常微分方程属于数学分析或基础数学的一个组成部分,在整个数学大厦中占据这重要位置,学好常微分方程基本理论与方法对进一步学习研究数学理论与实际应用均非常重要,因此本文对常微分方程的初等解法进行了简要归纳和分析,主要讨论变量分离方程,非恰当微分方程,线性微分方程,同时结合具体的实例,展示了初等解法在解题过程中的应用及其求解过程中的变换技巧和律.2.常微分方程的求解方法2.1常微分方程变量可分离类型解法定义1 如果一阶微分方程具有形式,则该方程称为可分离变量微分方程.若设,则可将方程化为.即将两个变量分离在等式两端.其特点是:方程的一端只含有的函数与,另一端只含有的函数与.对于该类程,我们通常采用分离变量的方法来处理。

数学与应用数学毕业论文-高阶常微分方程的解法

数学与应用数学毕业论文-高阶常微分方程的解法
3.1.1特征根只有单根的情形
设 , , , 是特征方程的 个互不相等的根,则相应地方程(3)有如下 个解: .由于
而最后一个行列式是著名的范德蒙德行列式,它等于 ,由于假设 ,故此行列式不等于零,从而 ,于是解组 线性无关,即 在区间 上线性无关,从而构成方程的基本解组。
如果 均为实数,则方程(3)的通解可表示为
由于一阶常系数齐次线性微分方程 ,有形如 的解,且它的通解就是 .因此,我们对于方程(3)也去试求指数函数形式的解 其中 是待定常数,可以是实数,也可以是复数.
将 代入方程(3)中,有
= ,
其中 是 的n次多项式.可得, 为方程(3)的解的充要条件是 是代数方程 的根.我们称它为方程(3)的特征方程,它的根就称为特征根.下面根据特征根的不同情况分别进行讨论.
根据非齐次线性微分方程的叠加原理,方程 与 的解之和必为方程(3)的解.
4.2拉普拉斯变换法
常系数线性微分方程还可以应用拉普拉斯变换法进行求解,
由积分 所定义的确定复平面 上的复变数 的函数 ,称为函数 的拉普拉斯变换法,其中 在 有定义,且满足 ,里 为某两个正常数,我们将称 为原函数,而 称为像函数.
签名:日期:
论文使用授权说明
本人完全了解长治学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文.
签名:日期:
指导教师声明书
本人声明:该学位论文是本人指导学生完成的研究成果,已经审阅过论文的全部内容,并能够保证题目、关键词、摘要部分中英文内容的一致性和准确性.
我们讨论如下的 阶线性微分方程
(1)
其中 及 都是区间 上的连续函数.这样的方程我们称它为 阶非齐次线性微分方程,简称非齐次线性微分方程.

常微分论文——精选推荐

常微分论文——精选推荐

论文题目:常微分方程的最大值原理及应用班级:信计10-1班**:***学号:**********微分方程的最大值原理及应用摘要最大值原理是微分方程研究中应用最广而且最为人们熟知的工具之一,它在物理、力学和工程技术中有着广泛的应用。

简要地说,微分方程最大值原理就是对于某些类型的微分方程的解必在所定义的空间或时间边界上取得最大值。

常微分方程、椭圆型偏微分方程和抛物型偏微分方程相关的定解问题的解在一定条件下通常都满足最大值原理。

因此,研究最值原理在何种情况下成立是一个十分具有理论价值和应用价值的重要问题。

微分方程最大值的讨论主要包括常微分方程、抛物偏微分方程、椭圆偏微分方程的最大值原理。

本文主要讨论微分方程中有关常微分方程的最大值原理。

讨论常微分方程的最大值原理,它涉及到二阶常微分方程,并在此基础上深入讨论了广义最大值原理,给出了六个与最大值原理有关的定理和一些简单的推论。

常微分方程的最大值原理及应用1一维最大值原理我们知道,闭区间[,]a b 上连续的函数()u x 必在该区间的某一点处取得它的最大值。

容易发现以下事实:如果函数()u x 在区间[,]a b 上有连续的二阶导数,而且存在(,)c a b ∈,使得()u x 在点c 处取得最大值,则有'()0,u c = ''()0u c ≤, (2.1)假设在开区间),(b a 内,()g x 是有界函数,且函数()u x 满足[]''()()'()0L u u x g x u x ≡+>,(2.2) 的微分不等式,那么,在),(b a 中的任何点c 关系式(2.1)不能成立。

因此满足微分不等式(2.2)的函数()u x 在闭区间[,]a b 的最大植必在区间的边界(端点)处取得。

这一事实为常微分方程的最大值原理最简单的情形。

在(2.2)中要求不等式严格成立,在微分方程的研究和应用中,这样的要求太强了。

常微分方程的发展史毕业论文

常微分方程的发展史毕业论文

常微分方程的发展史毕业论文常微分方程(Ordinary Differential Equations,ODE)是描述自变量只有一个的函数与其导数之间关系的数学方程。

它是应用数学中的重要分支,广泛应用于物理、工程、生物等领域。

本文将介绍常微分方程的发展史,并探讨其在数学和应用方面的重要性。

常微分方程的历史可以追溯到17世纪。

当时,牛顿的《自然哲学的数学原理》(Principia Mathematica)的出版,为微分方程的研究奠定了基础。

著名的数学家欧拉和拉普拉斯也做出了许多对微分方程的重要贡献。

19世纪,微分方程的研究取得了突破性进展。

拉格朗日、拉普拉斯和普朗克等学者提出了一些重要的微分方程理论。

其中,拉普拉斯将微分方程的理论发展为一个完整的科学,提供了定义、分类和解法。

此外,阿贝尔、亥姆霍兹和斯托克斯等学者对微分方程的特殊类型进行了深入研究。

20世纪初,随着数值计算和计算机的发展,微分方程的研究进入了一个新的阶段。

数值方法的出现使得人们能够求解更加复杂的微分方程。

例如,飞机设计需要解决空气动力学方程,而人们使用数值方法来模拟空气流动。

另一个重要的进展是变分法和泛函分析在微分方程研究中的应用,使得人们能够处理更加一般的微分方程。

随着数学和应用领域的发展,常微分方程的研究也取得了新的进展。

例如,关于常微分方程的稳定性和周期性解的研究,为深入理解动力系统的稳定性提供了理论基础。

人们还将常微分方程的方法推广到偏微分方程的研究中,为更多实际问题的建模和求解提供了工具。

在应用方面,常微分方程广泛应用于物理学、工程学和生物学等领域。

物理学中的力学、电磁学和量子力学等问题都可以用微分方程来描述。

工程学中,微分方程被用于建模和控制系统的研究与设计。

而生物学中,微分方程被用于描述生物体内的生物化学反应、人口增长和疾病传播等问题。

总之,常微分方程作为数学的重要分支,在数学理论和应用研究上都有着重要的地位。

它的发展史见证了人类对于自然界的认识和技术能力的提升,为解决复杂实际问题提供了有力的工具。

二阶常微分方程的解法及其应用本科毕业论文

二阶常微分方程的解法及其应用本科毕业论文

毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。

据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。

对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。

作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。

有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。

学校可以公布论文(设计)的全部或部分内容。

保密的论文(设计)在解密后适用本规定。

作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。

图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它目录1 引言........................................................................................................................................ - 7 -2 二阶常系数常微分方程的几种解法 ............................................................................ - 7 - 2.1特征方程法 ...................................................................................................................... - 7 - 2.1.1 特征根是两个实根的情形 ..................................................................................... - 8 - 2.1.2 特征根有重根的情形 .............................................................................................. - 8 - 2.2常数变易法 .................................................................................................................... - 10 -2.3拉普拉斯变换法 ........................................................................................................... - 11 -3 常微分方程的简单应用................................................................................................. - 12 - 3.1 特征方程法 ................................................................................................................... - 13 - 3.2 常数变易法 ................................................................................................................... - 15 -3.3 拉普拉斯变换法 .......................................................................................................... - 16 -4 总结及意义........................................................................................................................ - 17 - 参考文献................................................................................................................................. - 18 -二阶常微分方程的解法及其应用摘要:本文主要介绍了二阶常系数微分方程的三种解法:特征方程法、常数变异法和拉普拉斯变换法,并着重讨论了特征方程根为实根、复根及重根的情形。

毕业论文《某些非线性常微分方程的常数变易法》

毕业论文《某些非线性常微分方程的常数变易法》

湖北工程学院本科毕业论文某些非线性常微分方程的常数变易法年级: 大四学号: 111114109姓名:胡博专业: 数学与应用数学指导老师: 樊自安2014年12 月毕业设计(论文)任务书班级1111141 学生姓名胡博学号111114109发题日期:2014 年9月10日完成日期:2015 月01 日题目某些非线性常微分方程的常数变易法1、本论文的目的、意义:本论文的主要目在于通过对常微分方程的深入分析,分别对一阶非线性常微分方程和二阶非线性常微分方程的性质、解法进行系统地分析、比较、归纳、总结,并深入探讨两类方程的解法。

最后,利用两类方程的理论知识去分析和解决某些特殊的非线性常微分方程,并给出相关应用的例子。

将常数变易法可以运用到一些物理或者化学一些其他学科的问题解决中,对于其中的那些非线性常微分方程进行求解,使得问题更加简便化。

2、学生应完成的任务1、通过查阅相关资料,进一步掌握常数变易法的背景,意义及研究现状;2、掌握有关常数变易法和非线性常微分方程的基础知识;3、分析并总结两类非线性常微分方程的性质及求解方法;4、举例说明两类非线性常微分方程的解法;5、检查论文中的内容是否有错误;6、做好相关的英文文献翻译工作;3、论文各部分内容及时间分配:(共15 周)第一部分参阅相关书籍和利用网上有关资料,掌握常数变易法的背景,意义等基础知识; (2 周) 第二部分探讨,分析并总结一阶非线性常微分方程的性质和解题方法; (2 周)第三部分探讨,分析并总结二阶非线性常微分方程的性质和解题方法; (3周)第四部分举例说明两类非线性常微分方程的解法; (3 周)第五部分检查论文的内容是否有错误; (2 周)第六部分完成英文翻译工作和论文的修改。

(2 周) 评阅及答辩(1周)备注指导教师:年月日审批人:年月日摘 要常数变易法是求解微分方程的一种特殊方法,利用常数变易法在解决某些方程特解时简便易用。

列举了几种常数变易法区别于教材中的一些用法,并比较了此方法在某些方面的优劣。

《常微分方程的数值解法》论文

《常微分方程的数值解法》论文

《常微分方程的数值解法》论文《常微分方程的数值解法》常微分方程(ODE)是研究物理过程的重要工具,其伴随着极大的应用价值。

当一个物理系统被简化为一个常微分方程,它就可以用于描述物理学中的各种现象。

但是,大多数现实系统的常微分方程未能得到解析解,因此,数值解法就变得非常重要。

本文将研究并比较几种常见的常微分方程数值解法,诸如Euler法、奇异点法、Runge-Kutta法、前向差分法等,以便更好地提供协助解决常微分方程。

首先,Euler法是常用的数值解法之一,它主要用于解决常微分方程模型。

其核心思想是将微分方程通过采用不断变化的步长对状态量求近似值,并通过预测下一步的值来求解微分方程,从而达到求解常微分方程的目的,且操作简单、容易理解。

但是,由于其步长的不动性,往往使得其精度较低,因此,当遇到复杂环境时,Euler法的表现就有些不尽如人意。

此外,另一种常见的数值解法是奇异点法。

此法将一个微分方程情况分解成多个分段函数,每一段函数都可以精确求解,从而可以求解复杂的微分方程。

它的特点是分段的每一部分的精度和复杂度都较低,而且运行效率也较快,但是,奇异点法的精度需要在段间合理设定,然后再进行微调,以保证数值模拟的准确性。

其次,Runge-Kutta法是一种常用的数值解法,它可以有效地求解一些常微分方程,其原理是利用积分函数插值,然后利用积分函数求近似值,最后根据边界条件求取解析结果。

Runge-Kutta法的步长可以随着计算过程的进行而逐步变化,这样可以使得误差得到有效控制,而且可以有效地控制误差,保证算法精度,但是由于其计算效率较低,因此在求解复杂的常微分方程时,Runge-Kutta法的表现并不尽人意。

最后,前向差分法是一种求解常微分方程的数值解法,它利用求取未知函数的一阶导数和二阶导数的值,然后通过求解一次和二次中点差分的方式,从而得到数值解。

它的有点是能够得到较高的精确度,且即使步长变化时也可以控制误差,但前向差分法要求在微分方程中必须有高阶导数,这就要求微分方程是复杂的,除此之外,除了必须计算高次导数外,它的计算量也比较大。

常微分方程教学方法论文

常微分方程教学方法论文

常微分方程教学方法论文常微分方程教学方法论文常微分方程教学方法论文【1】摘要:作者结合常微分方程课程的特点主要从教学内容、教学方法和培养学生的创新能力等方面提出了看法.关键词:常微分方程教学方法能力培养常微分方程是一门应用型课程,它在自动控制、弹道的计算,导弹飞行和习机的稳定性的研究、生物物种模型的研究等学科上有着广泛的应用,因此对常微分方程的教学研究有着重要的意义.1.提高学生对常微分方程类型的识别能力,对具体问题进行具体分析.在微分方程的学习过程中,首先要分清微分方程的类型,针对不同的类型的方程应用不同的解法,如:首先要分清方程的类型,它不是恰当方程,就不能直接用求恰当方程的方法计算,那么就要寻找方程的积分因子,使其转化为恰当方程,但由于同一种类型的方程可以用多种解法求解,因此如何选择快捷、简便方法求解方程,是学生应该认真思考的问题.如:例2:求解方程ydx+(y-x)dy=0.方法2简便快捷,通过本例可知学生在解方程过程中,不能思想僵化,机械地采用常规解法解题,应该掌握问题的共性的同时发现它的特性,做到具体问题具体分析.2.注重培养学生的逻辑推理、归纳能力.3.开设实践课,培养学生的应用能力.由于常微分方程应用非常广泛,因此我们在教学中不能只停留在理论的讲解上,更要注重常微分方程在其他学科中的应用。

我们在教学过程中应开设实践课,培养学生的应用能力.在实践课教学过程中,我们先要结合一些实际问题,建立研究对象的数学模型,根据其内在规律列出微分方程或微分方程组,然后研究解的问题.例如池州学院数学与计算机科学系将这门课的教学内容与数学建模紧密结合,结合大学生数学建模竞赛在实践课堂中以竞赛的课题为例,编写一些生动有实际背景的数学模型为实践课教材,通过教材讲解怎样构建数学模型,怎样用微分方程的手法研究问题、解决问题,并引导学生用所学的方法,联系实际模型培养学生解决问题的能力和创新能力.4.熟练掌握数学软件,促进常微分方程的教学和应用.计算机软件的快速发展为我们进行常微分方程的学习和研究提供了有力的辅助,首先利用数学软件的计算功能直接求解方程,降低了解题难度,减少人工繁琐重复的计算;其次利用计算机软件的数值计算和绘图功能使我们很方便了解或探索微分方程的性态.根据应用的普遍性和各自的特色功能,我们主要学习的数学软件为Mathematica、MATLAB、Maple,例如Mathematica是一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统和与其他的.应用程序的高级连接;MATLAB在数值计算方面首屈一指.MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序;Maple系统内置高级技术解决建模和仿真中的数学问题,包括世界上最强大的符号计算、无限精度数值计算、创新的互联网连接、强大的4GL语言等.结合常微分方程的学习和研究,我们利用计算机软件在如下的四个方面进行辅助计算:一是用于求平衡点的代数方程和方程组的求解及用于线性微分方程求解指数函数与矩阵特征值、特征向量的计算;二是通过计算机符号计算程序直接求解方程;三是通过计算机软件描绘常微分方程积分或辅助曲线的图形;四是常微分方程的特殊解法,如Laplace transform、power-series solution.参考文献:[1]王高雄,周之铭,朱思铭,王寿松.常微分方程.第三版[M].北京:高教出版社,2006,7.[2]丁同仁,李承治.常微分方程教程.第二版[M].北京:高教出版社,2004.[3]陶祥兴,张松艳.精品课程的建设与实践――以常微分方程课为例[J].宁波大学学报,2007,29,(5):104-107.[4]王言芹.浅谈常微分方程教学的几点体会[J].科技信息,2010,29:29-30.[5]张伟平.本科数学专业常微分方程教学改革与实践[J].高等理科教育,2003,(1):58.常微分方程的教学论文【2】摘要:常微分方程是一门重要的数学基础课,作者结合教学经验,对常微分方程的教学方法进行初步探讨。

常微分方程求解的高阶方法毕业论文

常微分方程求解的高阶方法毕业论文

常微分方程求解的高阶方法毕业论文常微分方程求解的高阶方法毕业论文目录第一章前言 (1)1.1案例引入微分方程概念 (1)1.2微分方程的基本概念 (1)1.2.1微分方程及微分方程的阶 (1)1.2.2微分方程的解、通解与特解 (1)1.2.3微分方程的初值条件及其提法 (2)1.2.4微分方程的解的几何意义. (2)1.3从解析方法到数值方法概述 (3)1.4常温分方程的离散化 (4)第二章数值解法公共程序模块分析 (5)第三章欧拉(Euler)方法 (7)3.1 Euler方法思想 (7)3.2 Euler方法的误差估计 (8)3.3改进的Euler方法 (8)3.3.1梯形公式 (8)3.3.2改进Euler法 (9)第四章休恩方法 (10)4.1 休恩方法思想 (10)4.2休恩方法的步长和误差 (10)第五章泰勒级数法 (11)5.1泰勒定理 (11)5.2 N次泰勒方法 (12)第六章龙格-库塔(Runge—Kutta法) (13)6.1龙格-库塔(Runge—Kutta)方法基本思想 (13) 6.2 阶龙格-库塔(Runge—Kutta)方法公式 (14) 第七章预报-校正方法 (15)7.1 Milne-Simpon方法 (16)7.2误差估计于校正 (16)7.3 正确的步长 (17)第八章一阶微分方程组与高阶微分方程的数值解法 (17)8.1 一阶微分方程组的数值解法 (17)8.2 高阶微分方程的数值解法 (18)第九章常微分方程模型数值解法在数学建模中的应用 (19)9.1耐用消费新产品的销售规律模型 (19)9.1.1 问题的提出 (19)9.1.2 模型的构建 (19)9.1.3 模型的求解 (20)9.2 司机饮酒驾车防避模型的数值解法 (21)9.2.1 模型假设 (22)9.2.2 模型建立 (22)9.2.3 模型求解 (24)9.2.4 模型评价 (25)9.2.5 诚恳建议 (25)9.2.6 模型推广 (26)主要参考文献 (26)致谢 (27)第一章前言1.1案例引入微分方程概念在科技、工程、经济管理、生态、生态、刑侦等各个领域微分方程有着广泛的应用。

常微分方程毕业论文.

常微分方程毕业论文.

安阳师范学院本科学生毕业论文一阶常微分方程初等解法作专年学日学生诚信承诺书本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果.尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料.与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意.签名:日期:论文使用授权说明本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文.签名:导师签名:日期:一阶常微分方程初等解法田丰(安阳师范学院数学与统计学院,河南安阳 100801066)摘要: 文章对一阶常微分方程运用变量分离,积分因子,恰当微分方程等各类初等解法进行了归纳与总结,同时结合例题演示了常微分方程的求解问题。

关键词:一阶常微分方程;变量分离;恰当微分方程;积分因子1 引言常微分方程在微积分概念出现后即已出现,对常微分方程的研究也可分为几个阶段.发展初期是对具体的常微分方程希望能用初等函数或超越函数表示其解,属于“求通解”时代.莱布尼茨曾专门研究利用变量变换解决一阶常微分方程的求解问题,而欧拉则试图用积分因子处理.但是求解热潮最终被刘维尔证明里卡蒂方程不存在一般初等解而中断.加上柯西初值问题的提出,常微分方程从“求通解”转向“求定解”时代.在20世纪六七十年代以后,常微分方程由于计算机技术的发展迎来了新的时期,从求“求所有解”转入“求特殊解”时代,发现了具有新性质的特殊的解和方程,如混沌(解)、奇异吸引子及孤立子等. 微分方程里各项的次数,其实说的是方程各项中未知函数(y)及其导数(y',y'',y'''……)的次数但是一般接触到的有解析解的微分方程都不会超过1次,所以齐次一般指的就是方程各项中未知函数(y)及其导数(y',y'',y'''……)的次数为1也就是说方程各项中必须出现且只出现单独的y,y',y'',y'''……,而不出现它们的平方、n次方,也不出现它们互相相乘,也不出现常数项(次数为0)其中的常见的求解一阶微分2 一阶常微分方程的初等解法2.1 变量分离法2.1.1 一般变量分离法()()dy f x y dxϕ=, )1.2( 的方程,称为变量分离方程,()f x ,()y ϕ分别是x ,y 的连续函数.这是一类最简单的一阶函数.如果()0y ϕ≠,我们可将)1.2(改写成()()dy f x dx y ϕ=, 这样,变量就分离开来了.两边积分,得到 ()()dy f x dx c y ϕ=+⎰⎰. )2.2(这里我们把积分常数c 明确写出来,而把⎰)(y dy ϕ, ⎰dx x f )(分别理解为)(1y ϕ,)(x f 的原函数.常数c 的取值必须保证)2.2(有意义,如无特别声明,以后也做这样理解. 因)2.2(式不适合0)(=y ϕ情形.但是如果存在0y 使0)(0=y ϕ,则直接验证知0y y =也是)1.2(的解.因此,还必须寻求0)(=y ϕ的解0y ,当0y y =不包括在方程的通解)2.2(中时,必须补上特解0y y =例1 求解方程dx dy -=xy 解 将变量分离,得到xdx ydy -=,两边积分,即得22222c x y +-=, 因而,通解为c y x =+22.这里c 是任意正常数,或者解出y ,写出显函数形式的解2x c y -±=.例2 求解方程y x p dxdy )(=, )1.3( 的通解,其中是)(x p x 的连续函数解 将变量分离,得到dx x p y dy )(=, 两边积分,即cdx x p y ~)(||ln +=⎰. 这里c~是任意常数.由对数定义,有 c dx x p ey ~)(||+⎰=, 即dx x p c e e y ⎰⋅±=)(~,令c e c =±~,得到⎰=dx x p ce y )(, )2.3( 此外,0=y 显然也是方程)1.3(的解,如果允许)2.3(中允许0=c 则0=y 也就包括在)2.3(中,因而)1.3(的通解为)2.3(,其中c 为任意常数2.1.2 用变量分离解齐次微分方程2.1.2.1 用变量分离法解齐次微分方程类型一形如)(yx g dx dy =, 的方程,称为齐次微分方程,这里)(u g 是u 的连续函数.作变量变换xy u =, 即ux y =,于是u dxdu x dx dy +=. 代入原方程可得)(u g u dxdu x =+, 整理后,得到x u u g dx du -=)(. )3.2( 因)3.2(是一个变量分离方程.则可按照变量分离方法求解,然后代回原来的变量,即可得到原方程的解例3 求解方程x y xy dx dy tan += 解 这是齐次微分方程,以u dxdu x dx dy u x y +==及代入,则原方程变为 ,tan u u u dxdu x +=+ 即xu dx du tan =. )3.3( 将上式分离变量,既有,cot x dx udu = 两边积分,得到cx u ~||ln |sin |ln +=. 这里c~是任意常数,整理后,得到 u sin =,~x e c ⋅±c e=±~得到 cx u =sin . )4.3( 此外,方程)3.3(还有解 0tan =u .如果在)3.3(中允许0=c ,则0tan =u 也就包括在)4.3(中,这就是说,方程)3.3(的通解为)4.3(带回原来的变量,得到方程的通解为.sin cx x y=例4 求解方程y xy dx dyx =+2(0<x )解 将方程改写为x yx y dx dy +=2,这是齐次微分方程.以u dx dux dx dy u x y+==及代入,则原方程变为 .2u dx dux =)5.3( 分离变量,得到,2x dxu du =两边积分,得到)5.3(的通解.)ln(c x u +-=即当0)ln(>+-c x 时,2])[ln(c x u +-=.这里c 时任意常数.此外,方程)5.3(还有解.0=u注意,此解并不包括在通解)5.3(中.代入原来的变量,即得原方程的通解为.])[ln(2c x x y +-=2.1.2.2用变量分离法解齐次微分方程类型二形如222111c y b x a c y b x a dx dy ++++=, )4.2( 的方程不可直接进行变量分离,但是可以经过变量变换后化为变量分离方程,这里1a ,1b ,1c ,2a ,2b ,2c 均为常数.可分为三种情况来讨论:()1k c c b b a a ===212121(常数)的情形 这时方程可化为k dxdy =, 有通解c kx y +=,其中c 为任意常数.()2212121c c k b b a a ≠==的情形. 令y b x a u 22+=,这时有212222c u c ku b a dx dy b a dx du +++=+=. 是变量分离方程()32121b b a a ≠及21,c c 不全为零的情形 因为方程右端分子,分母都是y x ,的一次多项式,因此⎩⎨⎧=++=++.0,0222111c y b x a c y b x a 代表Oxy 平面上两条相交的直线,设交点为()βα,,若令⎩⎨⎧-=-=,,βαy Y x X 则方程可化为⎩⎨⎧=+=+,0,02211y b x a y b x a 从而方程)4.2(变为.2211⎪⎭⎫ ⎝⎛=++=X Y g Y b X a Y b X a dX dY 因此,求解上述变量分离方程,最后代回原方程,即可得到原方程的解.)4(021==c c 的情形, 此时直接变换xy u =即可. 例5 求解方程111dy dx x y =+-+. 解 令1u x y =-+,则有1y u x -=--,代入所求方程()111d u x dx u---=+, 整理可得1du dx u=-, 由变量分离得22u x c =-+,故所求方程的解为()212x y x c -++=.例6 求解方程 31-++-=y x y x dx dy . 解 解方程组⎩⎨⎧=-+=+-,03,01y x y x 得.2,1==y x 令⎩⎨⎧+=+=,1,1Y y X x 代入上式方程,则有YX YX dX dY +-=. 再令,uX Y XYu ==即则上式可化为 du uu uX dX 2211--+=, 两边积分,得cu u X ~|12|ln ln 22+-+-=, 因此c e u u X ~22)12(±=-+,记,1~c e c=±并带回原变量,得1222c X XY Y =-+,122)1()2)(1(2)2(c x y x y =----+-.此外容易验证0122=-+u u ,即2220,Y XY X +-=也是方程的解 ,因此方程的通解为c x y x xy y =---+26222,其中c 为任意的常数. 2.2常数变易法2.2.1常数变易法类型一一阶线性微分方程()(),x Q y x P dxdy+= 其中()()x Q x P ,在考虑的区间上是x 的连续函数,若Q ()0=x ,方程变为(),y x P dxdy= 称其为一阶齐次线性微分方程,若(),0≠x Q 称其为一阶非齐次线性微分方程.变易分离方程,易求得它的通解为(),⎰=dxx P ce y这里c 是任意常数.现在讨论非齐次线性方程的通解的求法.不难看出,是特殊情形,两者既有联系又有差别,因此可以设想它们的解也应该有一定的联系而又有差别,现试图利用方程的通解的形式去求出方程的通解,显然,如果中c 恒保持为常数,它们不可能是的解.可以设想在中将常数c 变易为x 的待定函数,使它满足方程,从而求出(),x c 为此,令()(),dxx P e x c y ⎰=两边同时微分,得到()()()()().dx x P dxx P e x P x c e dxx dc dx dy ⎰+⎰= 代入原方程,得到()()()()()()()()(),x Q e x c x P e x P x c e dxx dc dx x P dx x P dx x P +⎰=⎰+⎰ 即()()(),⎰=-dx x P e x Q dxx dc两边同时积分,得到()()(),1c dx e x Q x c dxx P +⎰=-⎰这里1c 是任意常数,求得到()()().1⎪⎭⎫ ⎝⎛+⎰⎰=⎰-c dx e x Q e y dx x P dxx P就是方程的通解.这种将常数变为待定函数的方法通常被称之为常数变易法.例7 求方程22y x y dx dy -=的通解 解 原方程可改写为yy x dy dx 22-=, 即y x ydy dx -=2, )6.3( 首先,求出齐次线性微分方程x ydy dx 2=, 的通解为2cy x =.其次,利用常数变易法求非齐次线性微分方程)6.3(的通解 把c 看成)(y c ,将方程2cy x =两边同时微分得y y c y dyy dc dy dx )(2)(2+=. 代入)6.3(,得到ydy y dc 1)(-=, 两边同时积分,即可求得cy y c ~ln )(+-=. 从而,原方程的通解为)ln ~(2y cy x -=, 这里c~是任意常数.2.2.2常数变易法类型二形如n y x Q y x P dxdy)()(+=, )5.2( 的方程,称为伯努利方程,这里)(x P ,)(x Q 为x 的连续函数,n ≠0,1是常数.利用变量变换可将伯努利微分方程化为线性微分方程.事实上,对于0≠y ,用n y -乘)5.2(的两边,得到)()(1x Q x P y dxdyy n n+=--, 引入变量变换n y z -=1,从而dxdyy n dx dz n--=)1(. 代入方程)5.2(,得到)()1()()1(x Q n z x P n dxdz-+-=, 这是线性微分方程,可按照前面介绍的方法来求出它的通解,然后代换原来的变量,便得到方程的通解.此外,当0>n 时,方程还有解0=y .例8 求方程的26xy xydx dy -=通解 解 这是2=n 时的伯努利微分方程.令1-=y z ,算得x z xdx dz +-=6, 这是线性微分方程,求得它的通解为826x xc z +=.代入原来的变量y ,得到8126x x c y +=, 或者c x y x =-886, 这就是原方程的通解. 此外,方程还有解0=y 2.3 利用恰当微分方程求解法 对于一阶微分方程()(),,0M x y dx N x y dy +=,若有M Ny x∂∂=∂∂,则该方程必为恰当微分方程. 下面讨论如何求得该恰当微分方程的解. 把(),uM x y x∂=∂看作只关于自变量y 的函数,对它积分可得 ()(),u M x y dx y ϕ=+⎰由此式可得N dyy d dx y x M y y u =+∂∂=∂∂⎰)(),(ϕ, 由此可得dx y x M yN dy y d ⎰∂∂-=),()(ϕ, 又因为]),([]),([⎰⎰∂∂∂∂-∂∂=∂∂-∂∂dx y x M yx x N dx y x M y N x ]),([⎰∂∂∂∂-∂∂=dx y x M x y x N0=∂∂-∂∂=yMx N , 故等式右边只含有y ,积分可得dy ydx x M y N y ⎰⎰∂∂-=]),([)(ϕ, 进而可得dy dx y x M yN dx y x M u ⎰⎰⎰∂∂-+=]),([),(. 则恰当微分方程的通解为c dy dx y x M y N dx y x M =∂∂-+⎰⎰⎰]),([),(, 这里c 是任意常数.例10 求解方程0)1()1(cos 2=-++dy yxy dx y x .解 因为221,1yx N y y M -=∂∂-=∂∂,故方程是恰当微分方程.把方程重新分项组合,得到0)1()1(cos 2=-++dy yxy dx y x ,即0||ln sin 2=-++yxdyydx y d x d , 或者写成0)||ln (sin =++yxy x d .于是,方程的通解为c yxy x =++||ln sin , 这里c 是任意常数2.4 利用积分因子求解法函数(),x y μ为()(),,0M x y dx N x y dy +=积分因子的充要条件是()()M N y xμμ∂∂=∂∂, 即()M N NM x y y xμμμ∂∂∂∂-=-∂∂∂∂. 假设原方程存在只与x 有关的积分因子()x μμ=,则0xμ∂=∂,则μ为原方程的积分因子的充要条件是()M N x y x μμ∂∂∂=-∂∂∂,即()()M Ny x x Nφ∂∂-∂∂=仅是关于x 的函数.此时可求得原方程的一个积分因子为()x dxe φμ⎰=.同样有只与y 有关的积分因子的充要条件是()()M N y xy Mϕ∂∂-∂∂=-是仅为y的函数,此时可求得方程的一个积分因子为()y dye ϕμ⎰=例9 求解方程0)(=-+dy x y ydx . 解 这里,1,1,,-=∂∂=∂∂-==XNy M x y N y M 方程不是恰当的. 因为yy M 2-=∂∂只与y 有关,故方程有只与y 的积分因子 2||ln 221ye eu y y==⎰=--, 以21yu =乘方程两边,得到 0112=-+yxdydy y dx y , 或者写成02=+-y dyyxdy ydx , 因而通解为c y yx=+||ln .3 结束语文章详细介绍了一阶常微分方程的初等解法,即把一阶常微分方程的解通过初等函数或它们的积分表达出来。

数学常微分论文

数学常微分论文

宁波大学答题纸(2009—2010学年第 1 学期)课号:081S07B05 课程名称:常微分方程改卷教师:学号:084773236 姓名:张芳芳得分:对常微分方程的认识常微分方程,我经过大二第一学期的学习,不可以说是对其非常的了解,更不可以说是彻底地掌握,但是基于课前的按时预习,上课的认真听讲,课后的及时巩固,我也简单地认识了常微分方程的一些概况,掌握了一些基本常微分方程思想及其解决方法。

接下来,我就来谈谈我对常微分方程的认识吧。

常微分方程是指自变量只有一个的微分方程。

它在微积分概念出现后即已出现,后来依次经过“求同解”的时代,“求定解”的时代,“求所有解”的时代,直到现在的“求特殊解”时代。

在每个时代中,都有许多大数学家的积极参与,常微分方程在其自身蓬勃发展的同时也促进了其他学科及领域的最大限度的进步,在物理、工程、力学、天文学、生物学、医学、经济学等诸多领域一直发挥着它不可估量的伟大作用。

如自动控制、各种电子学装置的设计、弹道的计算、飞机的稳定性的研究、化学反应过程稳定性的研究等都需要常微分方程的涉及。

例如,在天文学上,一般星体都是通过观察得到的,而海王星的发现却是个罕见的例外。

牛顿研究天体运动的微分方程,从理论上得到行星运动的规律,而这些规律原来只是由开普勒通过观测归纳出的。

而后1846年,法国巴黎天文台的勒威耶(Le-verrier, 1811-1877)在对这个微分方程进行数值分析计算的基础上,预言太阳系中还有第八颗行星的存在,并计算出了第八颗行星的位置,这之后人们按照他的计算结果通过观察才找到海王星。

这一事实既推动了天文学的发展,也促进了微分方程的发展。

常微分方程是数学中与应用密切相关的基础学科,它在很多学科领域内有着重要的应用,著名数学家塞蒙斯曾如此评价常微分方程在数学中的地位:“300年来分析是数学里首要的分支,而微分方程又是分析的心脏,这是初等微积分的天然后继课,又是为了解物理科学的一门最重要的数学,而且在它所产生的较深的问题中,它又是高等分析里大部分思想和理论的根源。

常微分方程论文

常微分方程论文

《关于常微分方程解法的探究》 班级:数学与应用数学131学号:姓名:丁延辉日期:2016年5月25号摘要常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具。

并且常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中。

因此,由实际问题列出微分方程后,其解法非常关键,微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。

关键词:微分方程 降阶法 变量代换法 齐次型 一阶线性 1 一阶微分方程1.1 变量可分离的微分方程形如()()dy f x y dxϕ=(1) 的方程,称为变量分离方程,()f x ,()y ϕ分别是x ,y 的连续函数.这是一类最简单的一阶函数.如果()0y ϕ≠,我们可将(1)改写成这样变量就分离开来了.两边积分,得到c 为任意常数.由该式所确定的函数关系式(,)y y x c =就是常微分方程的解. 例1:求解2dy xy dx =的通解。

解:12dy xdx y=→12dy xdx y =⎰⎰→21ln y x c =+→通解:221x c x y e ce +=±= 1.2 齐次型微分方程 (变量代换的思想) 一阶微分方程可以化成dy y f dx x ⎛⎫= ⎪⎝⎭的形式。

求解:dy y f dx x ⎛⎫= ⎪⎝⎭yu x =→y ux =, dy du x u dx dx =+→()du x u f u dx +=→()11du dx f u u x=-(可分离变量)→通解 例2:解方程22dy dy y x xy dx dx+= 1.3 一阶线性微分方程若称为一阶齐次线性微分方程。

毕业论文正文(常微分方程积分因子法的求解)

毕业论文正文(常微分方程积分因子法的求解)

毕业论文正文(常微分方程积分因子法的求解)————————————————————————————————作者:————————————————————————————————日期:摘要微分方程是表达自然规律的一种自然的数学语言。

它从生产实践与科学技术中产生,而又成为现代科学技术中分析问题与解决问题的一个强有力的工具.人们在探求物质世界某些规律的过程中,一般很难完全依靠实验观测认识到该规律,反而是依照某种规律存在的联系常常容易被我们捕捉到,而这种规律用数学语言表达出来,其结果往往形成一个微分方程,而一旦求出方程的解,其规律则一目了然。

所以我们必须能够求出它的解.同时,对于恰当微分方程我们有一个通用的求解公式。

但是,就如大家都知道的那样,并不是所有的微分形式的一阶方程都是恰当微分方程.对于这类不是恰当微分方程的一阶常微分方程该如何求出它的解呢,这就需要用到这里我们讨论的积分因子了。

关键词:微分方程;积分因子;恰当微分方程;一阶微分;AbstractDifferential expression of natural law is a natural mathematical language。

It from the production practice and science and technology generation, but modern science and technology in analyzing and solving problems in a powerful tool..Some people in the law to explore the process of the material world, the general experimental observation is difficult to completely rely on recognizing that the law, but there is a link in accordance with certain laws are often easy to catch us,and such laws expressed in mathematical language, which often results in the formation of a differential equation,and once obtained equation,the law is clear So we must be able to find its solution。

关于对常微分方程中积分因子的研究毕业论文

关于对常微分方程中积分因子的研究毕业论文

毕业论文论文题目:关于对常微分方程中积分因子的研究姓名:学科专业:数学教育指导教师:完成时间:2011年 5 月20 日摘 要研究了四种一阶微分方程的积分因子存在的充要条件,主要通过一些特殊变形的方法来得到这四种类型的常微分方程积分因子的通解,具体可以分为:()(),,y x G y x +=μ()(),,by ax G y x +=μ()()b a y x G y x -=,μ及()()xy G y x =,μ, 四种类型各有特点但又互有联系。

关键词:常微分方程;积分因子;充要条件目录第一章引言 (1)第二章四类常微分方程积分因子的存在充要条件 (2)()()yμ (2),=y x+Gx()()byμ (3)=x+,axGy()()ba yμ (4)x-,=yxG()()xyμ (5),Gx=y参考文献 (7)第一章 引言一阶微分方程()()0,,=+dy y x N dx y x M ()的积分因子的形式,其一,其求解方法是根据类型确定解法,其中一类是全微分方程,所谓全微分方程就是方程()的左端恰为某个方程的全微分。

我们知道方程()是全微分的充要条件是,xNy M ∂∂=∂∂当此不满足的时候,方程()就不是全微分方程,此时若有一个恰当的函数()0,≠y x μ使方程(1)两端乘以后()0,≠y x μ所得的方程()()()()0,,,,=+y x N y x y x M y x μμ ()为全微分方程,则称函数()y x ,μ为方程()的积分因子。

积分因子存在的充要条件:如何求方程()的积分因子?一下就是关于()y x ,μ为积分因子的充要条件,微分方程()()()()0,,,,=+y x N y x y x M y x μμ ()为全微分方程的充要条件是: ()()()()()(),,,,,xy x N y x y y x M y x ∂∂=∂∂μμ即()()()()()()()()()()()xy x y x N y y x N y x x y x y x M y y x M y x ∂∂+∂∂=∂∂+∂∂,,,,,,,,μμμμ () (),,μμ=y x (),,M y x M = (),,N y x N =上式可以整理到μμμ⎪⎪⎭⎫⎝⎛∂∂-∂∂=∂∂-∂∂x N y M y M x N() 所以()y x ,μ为方程()的积分因子的充要条件是()y x ,μ为方程的解。

论文模版(一篇关于微分方程的论文)

论文模版(一篇关于微分方程的论文)

本科生毕业设计 (论文)题目:论积分因子的存在条件及其求法教学单位 _计算机科学与技术学院姓名 ___ 彭倩___学号___ 200531105002年级 _____2005级_________专业 _ 数学与应用数学指导教师 ___ 宋荣荣职称 _____ 讲师___ _____2009 年 5 月 7 日摘要在常微分方程理论的形成过程中, 求解常微分方程曾出现过许多方法, 如分离变量法、变量替换法、常数变易法以及积分因子法等等. 其中尤以积分因子法出现的最晚, 而作用也最大.积分因子法的实质是把常微分方程转化为恰当方程, 由于恰当方程的通解很容易得出, 这样我们也就能很容易求得常微分方程的解.因此用积分因子法解常微分方程的关键是找到积分因子.本文首先介绍了二元微分方程的恰当方程的定义, 然后在二元非恰当方程的条件下引出积分因子的定义和存在条件. 通过探讨积分因子的存在条件,本文得到了几种求常微分方程积分因子的基本求法:观察法、公式法、分组法和几种特殊类型方程积分因子的求法. 并对各种积分因子求法作了详细论证.然后根据二元原函数存在条件及积分因子的求法来推导三元原函数存在条件及积分因子的求解方法.关键词:常微分方程;积分因子;恰当方程;三元原函数.AbstractTheory of ordinary differential equations in the formation process, the solution of ordinary differential equations there have been many methods, such as separation of variables, variable substitution method, constant variation, and so integral factor method. Especially integral factor method appears the latest, The biggest role. integral factor method is the essence of ordinary differential equations into appropriate, as the appropriate general solution of the equation is easy to draw, so we can easily obtain the solution of ordinary differential equations. therefore integral factor method the key to solution of ordinary differential equations is to find the integrating factor.In this paper, the dual differential equations first introduced the definition of the appropriate equation, and then in the dual non-appropriate conditions equation integrating factor leads to the definition and conditions for the existence of. By exploring the conditions for the existence of the integrating factor, this paper has been seeking several ordinary differential equations integral factor of the basic method: To observe the law, the formula law, sub-law and several special types of integral equation method factor. and a variety of integral factor a detailed appraisal method. and then the original function in accordance with the conditions for the existence of binary and integral factor of the law is derived for three conditions for the existence of the original function and the integral factor method.Key words: ordinary differential equations; integral factor; proper equation; Ternary primitive function.目录第一章绪论 (5)1.1课题背景及目的 (5)1.2国内外研究状况和相关领域中已有的成果 (5)1.3研究方法、论文构成及研究内容 (6)1.3.1研究方法 (6)1.3.2 论文研究内容 (6)第二章二元微分方程积分因子的定义及其存在条件 (7)2.1 积分因子的定义 (7)2.2积分因子存在条件 (8)2.3积分因子的几种解法 (9)2.3.1 观察法 (9)2.3.2 公式法 (9)2.3.3 分组法 (12)2.3.4 几种特殊类型方程积分因子的求法 (13)第三章三元微分方程积分因子的存在条件及解法 (14)3.1三元原函数存在条件 (14)3.2 三元微分方程积分因子存在的条件 (15)3.3 三元微分方程积分因子的解法 (16)结论 (20)参考文献 (21)致谢 (21)第一章绪论1.1课题背景及目的微分方程差不多是和微积分同时产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解. 牛顿在建立微积分的同时,对简单的微分方程用级数来求解. 后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的. 数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具.微分方程可以精确地表述事物变化所遵循的基本规律. 随着微分方程的理论的逐步完善,只要列出相应的微分方程并找到解方程的方法, 微分方程也就成了最有生命力的数学分支. 事实上,大部分的常微分方程求不出十分精确的解,而只能得到近似解. 当然,这个近似解的精确程度是比较高的.现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等. 这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题. 应该说,应用常微分方程理论已经取得了很大的成就. 解常微分方程大致有分离变量法、变量替换法、常数变易法以及积分因子法等等,其中,积分因子法尤为重要,本论文主要讨论积分因子存在条件及其解法,通过积分因子使常微分方程化为全微分方程形式来求解.1.2 国内外研究状况和相关领域中已有的成果积分因子的概念是由瑞士大数学家欧拉提出来的,而且他还确定了可采用积分因子的微分方程类型,证明了凡是可用分离变量求解的微分方程都可以用积分因子求解,但反之不然.随着微分方程理论的不断深入研究,积分因子的应用越来越广. 经过许多人的研究证明:不仅仅是可用分离变量求解的微分方程可以用积分因子法求解,甚至只要微分方程的解存在,都可以采用积分因子法求解. 只是有些方程求积分因子比求方程的解本身更为复杂.目前国内的伍军、刘许成、阎淑芳等人对积分因子的求法作了详细的研究,并取得了许多重大的成果. 尽管目前还没有找到求积分因子的普通解法,但已在相当大的范围内,给出了一些微分方程的存在某些特殊类型积分因子的求法。

常微分方程平衡点及稳定性研究.

常微分方程平衡点及稳定性研究.

本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。

这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。

在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。

所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。

在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型()()()() ().11N tN t r t N tcN t ττ--=--的平衡点1x=的全局吸引性,所获结果改进了文献中相关的结论。

关键词:自治系统平衡点稳定性全局吸引性AbstractIn this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1x=of the following delay single population model()()()() ().11N tN t r t N tcN t ττ--=--is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature.Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity摘要 (I)Abstract (I)目录 (II)第1章引言 (1)第2章微分方程平衡点及稳定性分析 (3)2.1 平衡点及稳定性定义 (3)2.2 自治系统零解的稳定性 (4)2.2.1 V函数 (4)2.2.2 Liapunov稳定性定理 (5)2.3 非自治系统的稳定性 (8)2.3.1 V函数和k类函数 (8)2.3.2 零解的稳定性 (10)2.4 判定一阶微分方程平衡点稳定性的方法 (14)2.4.1 相关定义 (14)2.4.2 判定平衡点稳定性的方法 (14)2.5 判定二阶微分方程平衡点稳定性的方法 (15)2.5.1 相关定义 (15)2.5.2 判定平衡点稳定性的方法 (15)第3章一类时滞微分方程平衡点的全局吸引性 (17)3.1 差分方程(3-7)的全局渐近稳定性 (17)3.2 微分方程(3-1)的全局吸引性 (19)第4章常微分方程稳定性的一个应用 (23)第5章结论 (25)参考文献 (27)致谢 (29)第1章引言20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,在自然科学(如物理化学生物天文)和社会科学(如工程经济军事)中的大量问题都可以用微分方程来描述,尤其当我们描述实际对象的某些特性随时间(空间)而演变的过程,分析它的变化规律,预测它的未来形态时,要建立对象的动态模型,通常要用到微分方程模型,而稳定性模型的对象仍是动态过程,而建模的目的是研究时间充分长以后过程的变化趋势、平衡状态是否稳定。

常微分方程小论文

常微分方程小论文

现代数学选讲论文名称: 关于'''0y ay b ++=的系数与解的研究 所属课程: 常 微 分 方 程 学院(系): 数学学院 姓 名: 曹汝婷 学号: 1007010124[摘要]本文就关于方程'''0y ay b ++=的解的相关性质与其系数的关系进行了研究,选取了4道例题作为相关题型的代表。

[正文]关于'''0y ay b ++=的系数与解的研究方程'''0y ay b ++=是在解高阶线性微分方程中经常遇到的一类方程,而关于其系数与解的题型也非常多。

本文独辟蹊径,并不是给定系数,去计算其解的性质,而是针对各种对解的要求,来计算其系数。

从这种观点来思考问题或许会对今后解这类题型有所帮助。

[例1]当a 和b 取何值时,方程'''0y ay b ++=的所有解在整条数轴x -∞<<+∞上是有界的?[解] 首先求出特征方程20b λαλ++=的根。

有1,22a λ=-±。

其次研究所有解的表达式的各种情形。

如果24a b =,则通解是212()ax y C C x e -=+. (1)如果24a b ≠,则通解形如1212xx y C eC e λλ=+ (2)从(1)式得,无论a 取什么值(实数或复数),所有解y 都是无界的。

事实上,如果Re 0a >,则函数y 当0x <时无界;如果Re 0a <,则函数y 当0x >时无界;如果Re 0a =,则函数y 也显然无界。

现在研究用公式(2)表示的解。

设1Re 0λ<或2Re 0λ<,则解(2)当0x <时都无界。

设1Re 0λ>或2Re 0λ>,则(2)式的不是所有解当0x >时有界。

最后,如果12Re Re 0λλ==,即如果11i λγ=,22i λγ=(12γγ≠),则对于所有的(,)x ∈-∞+∞,所有的解都是有界的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学年论文常微分方程学年论文作者:王嘉德关键词:常微分方程论文摘要:目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)0 前言 (1)1预备知识 (1)1. 1变量分离方程 (2)1. 2恰当微分方程 (2)1. 3积分因子 (2)2 基本方法 (2)2. 1一般变量分离 (3)2. 2齐次微分方程 (3)2. 2 .1齐次微分方程类型一 (3)2. 2. 2齐次微分方程类型二 (4)2. 3常数变易法 (5)2.3.1常数变易法一 (5)2.3.2常数变易法二 (6)2.4积分因子求解法 (7)2.5恰当微分方程求解法 (8)3基本方法的应用 (8)3. 1一般变量分离方程应用 (8)3.1.1应用举例 (9)3.1.2应用举例 (9)3. 2齐次微分方程应用 (10)3.2.1类型一应用举例 (10)3.2.2类型一应用举例 (11)3.2.3类型二应用举例 (11)3.2.4类型二应用举例 (12)3.3常数变易法应用 (13)3.3.1常数变易法应用举例 (13)3.3.2伯努利微分方程应用举例 (14)3. 4利用积分因子求解 (14)3. 5 利用恰当微分方程求解 (15)参考文献 (16)一阶常微分方程初等解法摘要: 本文对一阶微分方程的初等解法进行归纳与总结,同时简要分析了变量分离,积分因子,恰当微分方程等各类初等解法.并且结合例题演示了如何把常微分方程的求解问题化为积分问题,进行求解.关键词: 一阶常微分方程;变量分离;恰当微分方程;积分因子The Fundamental methods of the first-order ordinarydifferential equationAbstract:In this thesis, we summarize the fundamental methods of the first-order ordinary differential equation. At the same time, we analysis the various types of fundamental methods such as the separation of variables, integrating factor and the exact differential equation. Combined with examples, we show how the ordinary differential equations solve problems by transforming them into the problems of integration.Key Words: first-order ordinary differential equation; separation of variables; exact differential equation; integrating factor0 前言常微分方程在微积分概念出现后即已出现,对常微分方程的研究也可分为几个阶段.发展初期是对具体的常微分方程希望能用初等函数或超越函数表示其解,属于“求通解”时代.莱布尼茨曾专门研究利用变量变换解决一阶微分方程的求解问题,而欧拉则试图用积分因子处理.但是求解热潮最终被刘维尔证明里卡蒂方程不存在一般初等解而中断.加上柯西初值问题的提出,常微分方程从“求通解”转向“求定解”时代.在20世纪六七十年代以后,常微分方程由于计算机技术的发展迎来了新的时期,从求“求所有解”转入“求特殊解”时代,发现了具有新性质的特殊的解和方程,如混沌(解)、奇异吸引子及孤立子等.常微分方程的研究还与其他学科或领域的结合而出现各种新的分支,如控制论、种群分析、种群生态学、分支理论、泛函微分方程、脉冲微分方程等.总之,常微分方程属于数学分析的一支,是数学中与应用密切相关的基础学科,其自身也在不断发展中,学好常微分方程基本理论和实际应用均非常重要.因此本文对一阶常微分方程的初等解法进行了简要的分析,同时结合例题,展示了初等解法在解题过程中的应用.1预备知识1. 1 变量分离方程形如()()dyf x y dxϕ=, (1.1) 的方程,称为变量分离方程,()f x ,()y ϕ分别是x ,y 的连续函数.这是一类最简单的一阶函数.如果()0y ϕ≠,我们可将(1)改写成()()dyf x dx y ϕ=,这样变量就分离开来了.两边积分,得到()()dyf x dx c y ϕ=+⎰⎰,c 为任意常数.由该式所确定的函数关系式(,)y y x c =就是常微分方程(1)的解.1.2 恰当微分方程 将方程),(y x f dxdy=, 写成微分的形式,得到0),(=-dy dx y x f ,或把x ,y 平等看待,写成下面具有对称形式的一阶微分方程0),(),(=+dy y x N dx y x M , (1.2) 如果方程)2(的左端恰好是某个二元函数),(y x u 的全微分,即()()(),,,u u M x y dx N x y dy du x y dx dy x y∂∂+==+∂∂,则称方程)2(就是恰当微分方程. 1.3 积分因子如果存在连续可微函数(),0x y μμ=≠,使得()()()(),,,,0x y M x y dx x y N x y dy μμ+=为一恰当微分方程,即存在函数u ,使Mdx Ndy du μμ+=,则称(),x y μ为方程()(),,0M x y dx N x y dy +=的积分因子.2基本方法2.1一般变量分离()()dyf x y dxϕ=, )1.2( 的方程,称为变量分离方程,()f x ,()y ϕ分别是x ,y 的连续函数.这是一类最简单的一阶函数.如果()0y ϕ≠,我们可将)1.2(改写成()()dyf x dx y ϕ=, 这样,变量就分离开来了.两边积分,得到()()dyf x dx c y ϕ=+⎰⎰. )2.2(这里我们把积分常数c 明确写出来,而把⎰)(y dyϕ, ⎰dx x f )(分别理解为)(1y ϕ,)(x f 的原函数.常数c 的取值必须保证)2.2(有意义,如无特别声明,以后也做这样理解.因)2.2(式不适合0)(=y ϕ情形.但是如果存在0y 使0)(0=y ϕ,则直接验证知0y y =也是)1.2(的解.因此,还必须寻求0)(=y ϕ的解0y ,当0y y =不包括在方程的通解)2.2(中时,必须补上特解0y y = 2.2齐次微分方程2.2.1齐次微分方程类型一形如)(yx g dx dy =, 的方程,称为奇次微分方程,这里)(u g 是u 的连续函数. 作变量变换xyu =, 即ux y =,于是u dxdu x dx dy +=. 代入原方程可得)(u g u dxdux=+, 整理后,得到xuu g dx du -=)(. )3.2( 因)3.2(是一个变量分离方程.则可按照变量分离方法求解,然后代回原来的变量,即可得到原方程的解2.2.2齐次微分方程类型二形如222111c y b x a c y b x a dx dy ++++=, )4.2( 的方程不可直接进行变量分离,但是可以经过变量变换后化为变量分离方程,这里1a ,1b ,1c ,2a ,2b ,2c 均为常数.可分为三种情况来讨论:()1k c c b b a a ===212121(常数)的情形 这时方程可化为k dxdy=, 有通解c kx y +=,其中c 为任意常数. ()2212121c c k b b a a ≠==的情形. 令y b x a u 22+=,这时有212222c u c ku b a dx dyb a dx du +++=+=. 是变量分离方程()32121b b a a ≠及21,c c 不全为零的情形 因为方程右端分子,分母都是y x ,的一次多项式,因此⎩⎨⎧=++=++.0,0222111c y b x a c y b x a 代表Oxy 平面上两条相交的直线,设交点为()βα,,若令⎩⎨⎧-=-=,,βαy Y x X 则方程可化为⎩⎨⎧=+=+,0,02211y b x a y b x a 从而方程)4.2(变为.2211⎪⎭⎫ ⎝⎛=++=X Y g Y b X a Y b X a dX dY 因此,求解上述变量分离方程,最后代回原方程,即可得到原方程的解.)4(021==c c 的情形此时直接变换xyu =即可 2.3常数变易法 2.3.1常数变易法一一阶线性微分方程()(),x Q y x P dxdy+= 其中()()x Q x P ,在考虑的区间上是x 的连续函数,若Q ()0=x ,方程变为(),y x P dxdy= 称其为一阶齐次线性微分方程,若(),0≠x Q 称其为一阶非齐次线性微分方程.变易分离方程,易求得它的通解为(),⎰=dxx P ce y这里c 是任意常数.现在讨论非齐次线性方程的通解的求法.不难看出,是特殊情形,两者既有联系又有差别,因此可以设想它们的解也应该有一定的联系而又有差别,现试图利用方程的通解的形式去求出方程的通解,显然,如果中c 恒保持为常数,它们不可能是的解.可以设想在中将常数c 变易为x 的待定函数,使它满足方程,从而求出(),x c 为此,令()(),dxx P e x c y ⎰=两边同时微分,得到()()()()().dx x P dxx P e x P x c e dxx dc dx dy ⎰+⎰= 代入原方程,得到()()()()()()()()(),x Q e x c x P e x P x c e dxx dc dx x P dx x P dx x P +⎰=⎰+⎰ 即()()(),⎰=-dx x P e x Q dxx dc两边同时积分,得到()()(),1c dx e x Q x c dxx P +⎰=-⎰这里1c 是任意常数,求得到()()().1⎪⎭⎫ ⎝⎛+⎰⎰=⎰-c dx e x Q e y dx x P dxx P就是方程的通解.这种将常数变为待定函数的方法通常被称之为常数变易法. 2.3.2 常数变易法二形如n y x Q y x P dxdy)()(+=, )5.2( 的方程,称为伯努利方程,这里)(x P ,)(x Q 为x 的连续函数,n ≠0,1是常数.利用变量变换可将伯努利微分方程化为线性微分方程.事实上,对于0≠y ,用n y -乘)5.2(的两边,得到)()(1x Q x P y dxdyy n n+=--, 引入变量变换n y z -=1,从而dxdyy n dx dz n--=)1(. 代入方程)5.2(,得到)()1()()1(x Q n z x P n dxdz-+-=, 这是线性微分方程,可按照前面介绍的方法来求出它的通解,然后代换原来的变量,便得到方程的通解.此外,当0>n 时,方程还有解0=y . 2.4积分因子求解法函数(),x y μ为()(),,0M x y dx N x y dy +=积分因子的充要条件是()()M N y xμμ∂∂=∂∂, 即()M N NM x y y xμμμ∂∂∂∂-=-∂∂∂∂. 假设原方程存在只与x 有关的积分因子()x μμ=,则0xμ∂=∂,则μ为原方程的积分因子的充要条件是()M N x y x μμ∂∂∂=-∂∂∂,即()()M Ny x x Nφ∂∂-∂∂=仅是关于x 的函数.此时可求得原方程的一个积分因子为()x dxe φμ⎰=.同样有只与y 有关的积分因子的充要条件是()()M N y xy Mϕ∂∂-∂∂=-是仅为y 的函数,此时可求得方程的一个积分因子为()y dy e ϕμ⎰=2.5恰当微分方程求解 对于一阶微分方程()(),,0M x y dx N x y dy +=,若有M Ny x∂∂=∂∂,则该方程必为恰当微分方程. 下面讨论如何求得该恰当微分方程的解. 把(),uM x y x∂=∂看作只关于自变量y 的函数,对它积分可得 ()(),u M x y dx y ϕ=+⎰ 由此式可得N dyy d dx y x M y y u =+∂∂=∂∂⎰)(),(ϕ, 由此可得dx y x M yN dy y d ⎰∂∂-=),()(ϕ, 又因为]),([]),([⎰⎰∂∂∂∂-∂∂=∂∂-∂∂dx y x M y x x N dx y x M y N x ]),([⎰∂∂∂∂-∂∂=dx y x M x y x N 0=∂∂-∂∂=yMx N , 故等式右边只含有y ,积分可得dy ydx x M y N y ⎰⎰∂∂-=]),([)(ϕ, 进而可得dy dx y x M yN dx y x M u ⎰⎰⎰∂∂-+=]),([),(. 则恰当微分方程的通解为c dy dx y x M y N dx y x M =∂∂-+⎰⎰⎰]),([),(, 这里c 是任意常数. 3.基本方法的应用 3.1 一般变量分离应用举例 3.1.1应用举例 例 1 求解方程dx dy -=xy 解 将变量分离,得到xdx ydy -=,两边积分,即得22222cx y +-=, 因而,通解为c y x =+22.这里c 是任意正常数,或者解出y ,写出显函数形式的解2x c y -±=.3.1.2应用举例例 2 求解方程y x p dxdy)(=, )1.3( 的通解,其中是)(x p x 的连续函数解 将变量分离,得到dx x p ydy)(=, 两边积分,即cdx x p y ~)(||ln +=⎰. 这里c~是任意常数.由对数定义,有 c dx x p ey ~)(||+⎰=, 即dxx p c e e y ⎰⋅±=)(~,令c e c =±~,得到⎰=dxx p ce y )(, )2.3(此外,0=y 显然也是方程)1.3(的解,如果允许)2.3(中允许0=c 则0=y 也就包括在)2.3(中,因而)1.3(的通解为)2.3(,其中c 为任意常数.3.2齐次微分方程应用举例 3.2.1类型一应用举例例 3 求解方程xyx y dx dy tan += 解 这是齐次微分方程,以u dx dux dx dy u x y +==及代入,则原方程变为,tan u u u dxdu x +=+ 即xu dx du tan =. )3.3( 将上式分离变量,既有,cot xdx udu =两边积分,得到cx u ~||ln |sin |ln +=. 这里c~是任意常数,整理后,得到 u sin =,~x e c ⋅±c e=±~得到 cx u =sin . )4.3(此外,方程)3.3(还有解0tan =u .如果在)3.3(中允许0=c ,则0tan =u 也就包括在)4.3(中,这就是说,方程)3.3(的通解为)4.3(带回原来的变量,得到方程的通解为.sincx xy= 3.2.2类型一应用举例 例 4 求解方程y xy dxdyx=+2(0<x ) 解 将方程改写为xy x y dx dy +=2, 这是齐次微分方程.以u dxdux dx dy u x y +==及代入,则原方程变为 .2u dxdu x = )5.3( 分离变量,得到,2xdx udu = 两边积分,得到)5.3(的通解.)ln(c x u +-=即当0)ln(>+-c x 时,2])[ln(c x u +-=.这里c 时任意常数.此外,方程)5.3(还有解.0=u注意,此解并不包括在通解)5.3(中.代入原来的变量,即得原方程的通解为.])[ln(2c x x y +-=3.2.3类型二应用举例例 5 求解方程111dy dx x y =+-+. 解 令1u x y =-+,则有1y u x -=--,代入所求方程()111d u x dx u---=+,整理可得1du dx u=-, 由变量分离得22u x c =-+,故所求方程的解为()212x y x c -++=.3.2.4类型二应用举例例 6 求解方程31-++-=y x y x dx dy . 解 解方程组⎩⎨⎧=-+=+-,03,01y x y x 得.2,1==y x 令⎩⎨⎧+=+=,1,1Y y X x 代入上式方程,则有YX YX dX dY +-=. 再令,uX Y XYu ==即则上式可化为 du u u uX dX 2211--+=, 两边积分,得cu u X ~|12|ln ln 22+-+-=, 因此c e u u X ~22)12(±=-+,记,1~c e c=±并带回原变量,得1222c X XY Y =-+,122)1()2)(1(2)2(c x y x y =----+-.此外容易验证0122=-+u u ,即2220,Y XY X +-=也是方程的解 ,因此方程的通解为c x y x xy y =---+26222,其中c 为任意的常数. 3.3常数变易法应用 3.3.1常数变易法应用举例例 7 求方程22y x ydx dy -=的通解 解 原方程可改写为yy x dy dx 22-=, 即y x ydy dx -=2, )6.3( 首先,求出齐次线性微分方程x ydy dx 2=, 的通解为2cy x =.其次,利用常数变易法求非齐次线性微分方程)6.3(的通解 把c 看成)(y c ,将方程2cy x =两边同时微分得y y c y dyy dc dy dx )(2)(2+=. 代入)6.3(,得到ydy y dc 1)(-=, 两边同时积分,即可求得cy y c ~ln )(+-=. 从而,原方程的通解为)ln ~(2y cy x -=, 这里c~是任意常数. 3.3.2 伯努利微分方程的求解例 8 求方程的26xy xydx dy -=通解 解 这是2=n 时的伯努利微分方程.令1-=y z ,算得x z xdx dz +-=6, 这是线性微分方程,求得它的通解为826x xc z +=.代入原来的变量y ,得到8126x x c y +=, 或者c x y x =-886, 这就是原方程的通解. 此外,方程还有解0=y 3.4利用积分因子求解例 9 求解方程0)(=-+dy x y ydx . 解 这里,1,1,,-=∂∂=∂∂-==XN y M x y N y M 方程不是恰当的. 因为yy M 2-=∂∂只与y 有关,故方程有只与y 的积分因子 2||ln 221y e eu y y==⎰=--, 以21yu =乘方程两边,得到 0112=-+yxdydy y dx y , 或者写成02=+-y dyyxdy ydx , 因而通解为c y yx=+||ln .3.5利用恰当微分方程求解例 10 求解方程0)1()1(cos 2=-++dy yxy dx y x .解 因为221,1yx N y y M -=∂∂-=∂∂,故方程是恰当微分方程.把方程重新分项组合,得到0)1()1(cos 2=-++dy yxy dx y x ,即0||ln sin 2=-++y xdyydx y d x d , 或者写成0)||ln (sin =++yxy x d .于是,方程的通解为c yxy x =++||ln sin , 这里c 是任意常数参考文献[1] 王高雄,周之铭,朱思铭,王寿松.常微分方程(第三版)[M].北京:高等教育出版社;2006. [2] 杨继明,常系数线性微分方程组的解法[J];宝鸡文理学院学报(自然科学版);2001,34-47. [3] 伍卓群,李勇编,常微分方程(第三版)[M],北京:高等教育出版社,2004.[4] 杨继明,蔡炯辉;常系数非齐次线性微分方程组初值问题的求解公式[J].宝鸡文理学院学报(自然科学版);2001,45-62.[5] 胡建伟,汤怀民,常微分方程数值解法[M],北京:科学出版社.1999. [6] 周义仓.常微分方程及其应用.[M] .北京:高等教育出版社,1985. [7] 尤秉礼.常微分方程补充教程.[M] .北京:人民教育出版社,1981.。

相关文档
最新文档