第一章计数原理(复习教案)(学生)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章计数原理复习导学案
一.学习目标
1.掌握分类计数原理与分步计数原理、并能用它分析和解决一些简单的应用问题.
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.
3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.二.知识网络
第一课两个原理
一.知识梳理
1.分类计数原理(也称加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n 种不同的方法,那么完成这件事共有N=种不同的方法.
2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做n步有m n种不同的方法,那么完成这件事共有N=种不同的方法.
3.解题方法:枚举法、插空法、隔板法.
二.基础自测
1.有一项活动需在3名老师,8名男同学和5名女同学中选人参加,(1)若只需一人参加,有多少种不同的选法?
(2)若需一名老师,一名学生参加,有多少种不同的选法?
(3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法?
2.(09重庆卷)将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).
3.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有种.
4.(09全国卷)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从
甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有
5.(09浙江卷)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).
三.典例剖析
例1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?
练习:1.从1到20这20个整数中,任取两个相加,使其和大于20,共有几种取法?
例2已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:
(1)P可表示平面上多少个不同的点?
(2)P可表示平面上多少个第二象限的点?
(3)P可表示多少个不在直线y=x上的点?
练习:2.某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把这种要求的号全买下,至少要花多少元钱?
例3(16分)现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.
(1)选其中一人为负责人,有多少种不同的选法?
(2)每班选一名组长,有多少种不同的选法?
(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?
练习:3.某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.
(1)任选1个班的学生参加社会实践,有多少种不同的选法?
(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?
(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?
四.自主检测
一.选择题
1.(09北京卷理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328 C.360 D.648
2.(08·全国Ⅰ文)将1,2,3填入3×3的方格中,要求每行、每列都
没有重复数字,右面是一种填法,则不同的填写方法共有()
A.6种B.12种C.24种D.48种
3.(2009四川卷文)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是
A. 60
B. 48
C. 42
D. 36
二、填空题
4.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有种.
答案32
5.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位中带有数字“4”或“7”的一律作为优惠卡,则这组号码中“优惠卡”共有个.
答案 5 904
6.若一个m,n均为非负整数的有序数对(m,n),在做m+n的加法时各位均不会进位,则称
(m,n)为“简单的”有序数对,m+n称为有序数对(m,n)的值,那么值为1 942的“简单的”有序数对的个数是 .
答案300
三、解答题
7.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?
(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?
8.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有
公共边)的区域不同色,那么共有多少种不同的涂色方法?
9.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的
元素,又点P到原点的距离|OP|≥5.求这样的点P的个数.
10.将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能
种植同一种作物,不同的种植方法共有多少种?